MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

Udemy-Deep-Learning-A-Z-2025

磁力链接/BT种子名称

Udemy-Deep-Learning-A-Z-2025

磁力链接/BT种子简介

种子哈希:f97b0b301d3d3c200d2a2e609dd71cd35e2efb7d
文件大小: 4.65G
已经下载:3570次
下载速度:极快
收录时间:2025-01-29
最近下载:2025-07-05

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:F97B0B301D3D3C200D2A2E609DD71CD35E2EFB7D
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 TikTok成人版 PornHub 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

真实感爆棚 妹c 主播秀 推荐【】新人 眼镜表妹 大一小模特 撮影会 おとちち ai 模特 甜美游戏 双飞熟 java 厕沟厕 主播录制 炮机双 投稿自拍 the phoenician scheme 约出 探花车模 何何子 啊啊啊啊 教程 拍完写真 斗鱼主播米娜写真 无码 流出 传媒 伦 常用 开放 我的主人 互动

文件列表

  • 07 - Building a CNN/007 Develop an Image Recognition System Using Convolutional Neural Networks.mp4 91.4 MB
  • 18 - Building a Boltzmann Machine/007 Step 4 - Convert Training --& Test Sets to RBM-Ready Arrays in Python.mp4 83.2 MB
  • 09 - RNN Intuition/005 Understanding Long Short-Term Memory --(LSTM--) Architecture for Deep Learning.mp4 78.7 MB
  • 18 - Building a Boltzmann Machine/016 Step 13 - RBM Training Updating Weights and Biases with Contrastive Divergence.mp4 77.3 MB
  • 21 - Building an AutoEncoder/007 Step 4 - Prepare Data for Autoencoder Creating User-Movie Rating Matrices.mp4 75.7 MB
  • 04 - Building an ANN/004 Step 2 - Data Preprocessing for Neural Networks Essential Steps and Techniques.mp4 72.5 MB
  • 07 - Building a CNN/004 Step 3 - Building CNN Architecture Convolutional Layers --& Max Pooling Explained.mp4 71.3 MB
  • 07 - Building a CNN/003 Step 2 - Deep Learning Preprocessing Scaling --& Transforming Images for CNNs.mp4 70.7 MB
  • 06 - CNN Intuition/010 Understanding Softmax Activation and Cross-Entropy Loss in Deep Learning.mp4 70.6 MB
  • 18 - Building a Boltzmann Machine/017 Step 14 - Optimizing RBM Models From Training to Test Set Performance Analysis.mp4 68.3 MB
  • 14 - Building a SOM/004 Step 3 - SOM Visualization Techniques Colorbar --& Markers for Outlier Detection.mp4 67.4 MB
  • 10 - Building a RNN/014 Step 13 - Preparing Historical Stock Data for LSTM Model Scaling and Reshaping.mp4 67.2 MB
  • 09 - RNN Intuition/006 How LSTMs Work in Practice Visualizing Neural Network Predictions.mp4 67.2 MB
  • 04 - Building an ANN/007 Step 5 - How to Make Predictions and Evaluate Neural Network Model in Python.mp4 64.6 MB
  • 17 - Boltzmann Machine Intuition/006 How Energy-Based Models Work Deep Dive into Contrastive Divergence Algorithm.mp4 62.1 MB
  • 21 - Building an AutoEncoder/009 Step 6 - Building Autoencoder Architecture Class Creation for Neural Networks.mp4 61.3 MB
  • 23 - Regression & Classification Intuition/005 Understanding Logistic Regression Intuition and Probability in Classification.mp4 60.8 MB
  • 10 - Building a RNN/005 Step 4 - Building X_train and y_train Arrays for LSTM Time Series Forecasting.mp4 60.6 MB
  • 07 - Building a CNN/006 Step 5 - Deploying a CNN for Real-World Image Recognition.mp4 59.4 MB
  • 03 - ANN Intuition/003 Understanding Neurons The Building Blocks of Artificial Neural Networks.mp4 59.4 MB
  • 06 - CNN Intuition/006 Understanding Spatial Invariance in CNNs Max Pooling Explained for Beginners.mp4 58.4 MB
  • 15 - Mega Case Study/004 Step 3 - Building a Hybrid Model From Unsupervised to Supervised Deep Learning.mp4 58.4 MB
  • 06 - CNN Intuition/003 How Do Convolutional Neural Networks Work Understanding CNN Architecture.mp4 57.6 MB
  • 09 - RNN Intuition/004 Understanding the Vanishing Gradient Problem in Recurrent Neural Networks --(RNNs--).mp4 57.6 MB
  • 04 - Building an ANN/005 Step 3 - Constructing an Artificial Neural Network Adding Input --& Hidden Layers.mp4 57.5 MB
  • 13 - SOMs Intuition/008 Understanding K-Means Clustering Intuitive Explanation with Visual Examples.mp4 57.3 MB
  • 17 - Boltzmann Machine Intuition/002 Boltzmann Machines vs. Neural Networks Key Differences in Deep Learning.mp4 57.1 MB
  • 13 - SOMs Intuition/004 Self-Organizing Maps Tutorial Dimensionality Reduction in Machine Learning.mp4 56.4 MB
  • 06 - CNN Intuition/008 How Do Fully Connected Layers Work in Convolutional Neural Networks --(CNNs--).mp4 55.3 MB
  • 14 - Building a SOM/002 Step 1 - Implementing Self-Organizing Maps --(SOMs--) for Fraud Detection in Python.mp4 54.5 MB
  • 21 - Building an AutoEncoder/011 Step 8 - PyTorch Techniques for Efficient Autoencoder Training on Large Datasets.mp4 54.4 MB
  • 18 - Building a Boltzmann Machine/015 Step 12 - RBM Training Loop Epoch Setup and Loss Function Implementation.mp4 53.5 MB
  • 03 - ANN Intuition/006 How Do Neural Networks Learn Understanding Backpropagation and Cost Functions.mp4 51.6 MB
  • 18 - Building a Boltzmann Machine/011 Step 8 - RBM Hidden Layer Sampling Bernoulli Distribution in PyTorch Tutorial.mp4 50.7 MB
  • 21 - Building an AutoEncoder/010 Step 7 - Python Autoencoder Tutorial Implementing Activation Functions --& Layers.mp4 50.1 MB
  • 17 - Boltzmann Machine Intuition/005 How Restricted Boltzmann Machines Work Deep Learning for Recommender Systems.mp4 49.9 MB
  • 21 - Building an AutoEncoder/012 Step 9 - Implementing Stochastic Gradient Descent in Autoencoder Architecture.mp4 48.9 MB
  • 04 - Building an ANN/006 Step 4 - Compile and Train Neural Network Optimizers, Loss Functions --& Metrics.mp4 47.6 MB
  • 14 - Building a SOM/005 Step 4 - Catching Cheaters with SOMs Mapping Winning Nodes to Customer Data.mp4 47.0 MB
  • 06 - CNN Intuition/004 How to Apply Convolution Filters in Neural Networks Feature Detection Explained.mp4 46.6 MB
  • 18 - Building a Boltzmann Machine/013 Step 10 - RBM Training Function Updating Weights and Biases with Gibbs Sampling.mp4 46.5 MB
  • 09 - RNN Intuition/003 What is a Recurrent Neural Network --(RNN--) Deep Learning for Sequential Data.mp4 45.7 MB
  • 13 - SOMs Intuition/010 How to Find the Optimal Number of Clusters in K-Means WCSS and Elbow Method.mp4 45.3 MB
  • 21 - Building an AutoEncoder/003 Step 1 - Building a Movie Recommendation System with AutoEncoders Data Import.mp4 43.6 MB
  • 10 - Building a RNN/012 Step 11 - Optimizing Epochs and Batch Size for LSTM Stock Price Forecasting.mp4 43.5 MB
  • 10 - Building a RNN/006 Step 5 - Preparing Time Series Data for LSTM Neural Network in Stock Forecasting.mp4 43.4 MB
  • 21 - Building an AutoEncoder/004 Step 2 - Preparing Training and Test Sets for Autoencoder Recommendation System.mp4 42.6 MB
  • 17 - Boltzmann Machine Intuition/003 Deep Learning Fundamentals Energy-Based Models --& Their Role in Neural Networks.mp4 42.4 MB
  • 21 - Building an AutoEncoder/014 Step 11 - How to Evaluate Recommender System Performance Using Test Set Loss.mp4 42.1 MB
  • 13 - SOMs Intuition/005 How Self-Organizing Maps --(SOMs--) Learn Unsupervised Deep Learning Explained.mp4 40.8 MB
  • 18 - Building a Boltzmann Machine/010 Step 7 - Implementing Restricted Boltzmann Machine Class Structure in PyTorch.mp4 40.8 MB
  • 18 - Building a Boltzmann Machine/005 Step 2 - Preparing Training and Test Sets for Restricted Boltzmann Machine.mp4 38.5 MB
  • 14 - Building a SOM/003 Step 2 - SOM Weight Initialization and Training Tutorial for Anomaly Detection.mp4 38.4 MB
  • 04 - Building an ANN/002 Step 1 - Data Preprocessing for Deep Learning Preparing Neural Network Dataset.mp4 38.1 MB
  • 15 - Mega Case Study/005 Step 4 - Implementing Fraud Detection with SOM A Deep Learning Approach.mp4 37.1 MB
  • 18 - Building a Boltzmann Machine/004 Step 1 - Importing Movie Datasets for RBM-Based Recommender Systems in Python.mp4 36.8 MB
  • 18 - Building a Boltzmann Machine/002 Step 0 - Building a Movie Recommender System with RBMs Data Preprocessing Guide.mp4 36.5 MB
  • 01 - Welcome to the course!/002 Introduction to Deep Learning From Historical Context to Modern Applications.mp4 36.3 MB
  • 10 - Building a RNN/016 Step 15 - Visualizing LSTM Predictions Plotting Real vs Predicted Stock Prices.mp4 36.0 MB
  • 03 - ANN Intuition/007 Mastering Gradient Descent Key to Efficient Neural Network Training.mp4 35.9 MB
  • 03 - ANN Intuition/008 How to Use Stochastic Gradient Descent for Deep Learning Optimization.mp4 34.8 MB
  • 10 - Building a RNN/008 Step 7 - Adding First LSTM Layer Key Components for Stock Market Prediction.mp4 34.7 MB
  • 13 - SOMs Intuition/002 Self-Organizing Maps --(SOM--) Unsupervised Deep Learning for Dimensionality Reduct.mp4 34.1 MB
  • 18 - Building a Boltzmann Machine/006 Step 3 - Preparing Data for RBM Calculating Total Users and Movies in Python.mp4 33.4 MB
  • 10 - Building a RNN/015 Step 14 - Creating 3D Input Structure for LSTM Stock Price Prediction in Python.mp4 33.2 MB
  • 03 - ANN Intuition/004 Understanding Activation Functions in Neural Networks Sigmoid, ReLU, and More.mp4 33.0 MB
  • 03 - ANN Intuition/005 How Do Neural Networks Work Step-by-Step Guide to Property Valuation Example.mp4 31.1 MB
  • 13 - SOMs Intuition/009 K-Means Clustering Avoiding the Random Initialization Trap in Machine Learning.mp4 31.1 MB
  • 18 - Building a Boltzmann Machine/009 Step 6 - RBM Data Preprocessing Transforming Movie Ratings for Neural Networks.mp4 30.5 MB
  • 21 - Building an AutoEncoder/005 Step 3 - Preparing Data for Recommendation Systems User --& Movie Count in Python.mp4 30.3 MB
  • 07 - Building a CNN/005 Step 4 - Train CNN for Image Classification Optimize with Keras --& TensorFlow.mp4 29.3 MB
  • 07 - Building a CNN/002 Step 1 - Convolutional Neural Networks Explained Image Classification Tutorial.mp4 29.2 MB
  • 18 - Building a Boltzmann Machine/014 Step 11 - How to Set Up an RBM Model Choosing NV, NH, and Batch Size Parameters.mp4 28.3 MB
  • 10 - Building a RNN/003 Step 2 - Importing Training Data for LSTM Stock Price Prediction Model.mp4 28.1 MB
  • 20 - AutoEncoders Intuition/002 Autoencoders in Machine Learning Applications and Architecture Overview.mp4 26.9 MB
  • 13 - SOMs Intuition/006 How to Create a Self-Organizing Map --(SOM--) in DL Step-by-Step Tutorial.mp4 26.6 MB
  • 06 - CNN Intuition/005 Rectified Linear Units --(ReLU--) in Deep Learning Optimizing CNN Performance.mp4 26.4 MB
  • 10 - Building a RNN/002 Step 1 - Building a Robust LSTM Neural Network for Stock Price Trend Prediction.mp4 25.8 MB
  • 18 - Building a Boltzmann Machine/012 Step 9 - RBM Visible Node Sampling Bernoulli Distribution in Deep Learning.mp4 25.0 MB
  • 20 - AutoEncoders Intuition/006 Sparse Autoencoders in Deep Learning Preventing Overfitting in Neural Networks.mp4 24.8 MB
  • 20 - AutoEncoders Intuition/004 How to Train an Autoencoder Step-by-Step Guide for Deep Learning Beginners.mp4 24.6 MB
  • 10 - Building a RNN/004 Step 3 - Applying Min-Max Normalization for Time Series Data in Neural Networks.mp4 23.7 MB
  • 10 - Building a RNN/013 Step 12 - Visualizing LSTM Predictions Real vs Forecasted Google Stock Prices.mp4 22.3 MB
  • 25 - Data Preprocessing in Python/014 Step 2 - Split Data into Train --& Test Sets with Scikit-learn--'s train_test_split.mp4 21.6 MB
  • 26 - Logistic Regression/009 Step 4a - Using Classifier Objects to Make Predictions in Machine Learning.mp4 21.6 MB
  • 25 - Data Preprocessing in Python/009 Step 2 - Preprocessing Datasets Fit and Transform to Handle Missing Values.mp4 21.5 MB
  • 17 - Boltzmann Machine Intuition/007 Deep Belief Networks Understanding RBM Stacking in Deep Learning Models.mp4 21.5 MB
  • 26 - Logistic Regression/006 Step 2b - Data Preprocessing Feature Scaling for Machine Learning in Python.mp4 21.5 MB
  • 25 - Data Preprocessing in Python/016 Step 1 - How to Apply Feature Scaling for Preprocessing Machine Learning Data.mp4 21.4 MB
  • 26 - Logistic Regression/011 Step 5 - Evaluating Machine Learning Models Confusion Matrix and Accuracy.mp4 21.4 MB
  • 25 - Data Preprocessing in Python/008 Step 1 - Handling Missing Data in Python SimpleImputer for Data Preprocessing.mp4 21.4 MB
  • 03 - ANN Intuition/009 Understanding Backpropagation Algorithm Key to Optimizing Deep Learning Models.mp4 21.3 MB
  • 26 - Logistic Regression/014 Step 7a - Visualizing Logistic Regression 2D Plots for Classification Models.mp4 21.3 MB
  • 25 - Data Preprocessing in Python/011 Step 2 - Using fit_transform Method for Efficient Data Preprocessing in Python.mp4 21.3 MB
  • 10 - Building a RNN/009 Step 8 - Implementing Dropout Regularization in LSTM Networks for Forecasting.mp4 21.2 MB
  • 26 - Logistic Regression/012 Step 6a - Creating a Confusion Matrix for Machine Learning Model Evaluation.mp4 21.2 MB
  • 25 - Data Preprocessing in Python/019 Step 4 - How to Apply Feature Scaling to Training --& Test Sets in ML.mp4 21.2 MB
  • 26 - Logistic Regression/005 Step 2a - Data Preprocessing for Logistic Regression Importing and Splitting.mp4 21.1 MB
  • 25 - Data Preprocessing in Python/006 Step 3 - Preprocessing Data Extracting Features and Target Variables in Python.mp4 20.8 MB
  • 26 - Logistic Regression/003 Step 1a - Machine Learning Classification Logistic Regression in Python.mp4 20.6 MB
  • 18 - Building a Boltzmann Machine/008 Step 5 - Converting NumPy Arrays to PyTorch Tensors for Deep Learning Models.mp4 20.3 MB
  • 25 - Data Preprocessing in Python/002 Step 2 - How to Handle Missing Data in Python Data Preprocessing Techniques.mp4 19.3 MB
  • 25 - Data Preprocessing in Python/001 Step 1 - Data Preprocessing in Python Essential Tools for ML Models.mp4 19.3 MB
  • 25 - Data Preprocessing in Python/004 Step 1 - Creating a DataFrame from CSV Python Data Preprocessing Basics.mp4 18.8 MB
  • 15 - Mega Case Study/003 Step 2 - Developing a Fraud Detection System Using Self-Organizing Maps.mp4 18.6 MB
  • 21 - Building an AutoEncoder/008 Step 5 - Convert Training and Test Sets to PyTorch Tensors for Deep Learning.mp4 18.4 MB
  • 13 - SOMs Intuition/007 Interpreting SOM Clusters Unsupervised Learning Techniques for Data Analysis.mp4 17.8 MB
  • 26 - Logistic Regression/001 Understanding the Logistic Regression Equation A Step-by-Step Guide.mp4 17.7 MB
  • 10 - Building a RNN/011 Step 10 - Compile RNN with Adam Optimizer for Stock Price Prediction in Python.mp4 17.4 MB
  • 24 - Data Preprocessing/004 Machine Learning Workflow Data Splitting, Feature Scaling, and Model Training.mp4 17.3 MB
  • 06 - CNN Intuition/009 CNN Building Blocks Feature Maps, ReLU, Pooling, and Fully Connected Layers.mp4 17.2 MB
  • 25 - Data Preprocessing in Python/017 Step 2 - Feature Scaling in Machine Learning When to Apply StandardScaler.mp4 17.1 MB
  • 23 - Regression & Classification Intuition/002 Simple Linear Regression Understanding Y = B0 + B1X in Machine Learning.mp4 17.1 MB
  • 25 - Data Preprocessing in Python/005 Step 2 - Pandas DataFrame Indexing Building Feature Matrix X with iloc Method.mp4 17.0 MB
  • 25 - Data Preprocessing in Python/012 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.mp4 16.8 MB
  • 21 - Building an AutoEncoder/013 Step 10 - Machine Learning Metrics Interpreting Loss in Autoencoder Training.mp4 16.0 MB
  • 25 - Data Preprocessing in Python/010 Step 1 - Preprocessing Categorical Variables One-Hot Encoding in Python.mp4 15.9 MB
  • 20 - AutoEncoders Intuition/005 How to Use Overcomplete Hidden Layers in Autoencoders for Feature Extraction.mp4 15.5 MB
  • 09 - RNN Intuition/007 LSTM Variations Peepholes, Combined Gates, and GRUs in Deep Learning.mp4 14.4 MB
  • 26 - Logistic Regression/004 Step 1b - Logistic Regression Analysis Importing Libraries and Splitting Data.mp4 14.4 MB
  • 26 - Logistic Regression/007 Step 3a - Implementing Logistic Regression for Classification with Scikit-Learn.mp4 14.3 MB
  • 25 - Data Preprocessing in Python/013 Step 1 - Machine Learning Data Prep Splitting Dataset Before Feature Scaling.mp4 14.1 MB
  • 25 - Data Preprocessing in Python/015 Step 3 - Preparing Data for ML Splitting Datasets with Python and Scikit-learn.mp4 14.0 MB
  • 17 - Boltzmann Machine Intuition/004 How to Edit Wikipedia Adding Boltzmann Distribution in Deep Learning.mp4 14.0 MB
  • 25 - Data Preprocessing in Python/018 Step 3 - Normalizing Data with Fit and Transform Methods in Scikit-learn.mp4 13.7 MB
  • 26 - Logistic Regression/015 Step 7b - Visualizing Logistic Regression Interpreting Classification Results.mp4 13.5 MB
  • 10 - Building a RNN/010 Step 9 - Finalizing RNN Architecture Dense Layer for Stock Price Forecasting.mp4 13.3 MB
  • 25 - Data Preprocessing in Python/003 Step 1 - Importing Essential Python Libraries for Data Preprocessing --& Analysis.mp4 12.8 MB
  • 26 - Logistic Regression/008 Step 3b - Predicting Purchase Decisions with Logistic Regression in Python.mp4 12.6 MB
  • 26 - Logistic Regression/016 Step 7c - Visualizing Test Results Assessing Machine Learning Model Accuracy.mp4 12.0 MB
  • 26 - Logistic Regression/013 Step 6b - Visualizing Machine Learning Results Training vs Test Set Comparison.mp4 12.0 MB
  • 17 - Boltzmann Machine Intuition/008 Deep Boltzmann Machines vs Deep Belief Networks Key Differences Explained.mp4 11.7 MB
  • 23 - Regression & Classification Intuition/003 Linear Regression Explained Finding the Best Fitting Line for Data Analysis.mp4 11.4 MB
  • 10 - Building a RNN/007 Step 6 - Create RNN Architecture Sequential Layers vs Computational Graphs.mp4 11.3 MB
  • 15 - Mega Case Study/002 Step 1 - Building a Hybrid Deep Learning Model for Credit Card Fraud Detection.mp4 11.3 MB
  • 06 - CNN Intuition/002 Understanding CNN Architecture From Convolution to Fully Connected Layers.mp4 11.2 MB
  • 26 - Logistic Regression/002 How to Calculate Maximum Likelihood in Logistic Regression Step-by-Step Guide.mp4 10.1 MB
  • 20 - AutoEncoders Intuition/007 Denoising Autoencoders Deep Learning Regularization Technique Explained.mp4 10.1 MB
  • 13 - SOMs Intuition/001 How Do Self-Organizing Maps Work Understanding SOM in Deep Learning.mp4 10.0 MB
  • 21 - Building an AutoEncoder/015 THANK YOU Video.mp4 9.6 MB
  • 20 - AutoEncoders Intuition/008 What are Contractive Autoencoders Deep Learning Regularization Techniques.mp4 9.5 MB
  • 20 - AutoEncoders Intuition/001 Deep Learning Autoencoders Types, Architecture, and Training Explained.mp4 8.7 MB
  • 03 - ANN Intuition/002 How Neural Networks Learn Gradient Descent and Backpropagation Explained.mp4 8.5 MB
  • 20 - AutoEncoders Intuition/009 What are Stacked Autoencoders in Deep Learning Architecture and Applications.mp4 7.6 MB
  • 13 - SOMs Intuition/003 Why K-Means Clustering is Essential for Understanding Self-Organizing Maps.mp4 7.5 MB
  • 20 - AutoEncoders Intuition/010 Deep Autoencoders vs Stacked Autoencoders Key Differences in Neural Networks.mp4 7.4 MB
  • 24 - Data Preprocessing/003 Machine Learning Basics Using Train-Test Split to Evaluate Model Performance.mp4 7.4 MB
  • 09 - RNN Intuition/002 How Do Recurrent Neural Networks --(RNNs--) Work Deep Learning Explained.mp4 7.2 MB
  • 17 - Boltzmann Machine Intuition/001 Understanding Boltzmann Machines Deep Learning Fundamentals for AI Enthusiasts.mp4 6.8 MB
  • 26 - Logistic Regression/010 Step 4b - Evaluating Logistic Regression Model Predicted vs Real Outcomes.mp4 6.6 MB
  • 06 - CNN Intuition/007 How to Flatten Pooled Feature Maps in Convolutional Neural Networks --(CNNs--).mp4 6.4 MB
  • 24 - Data Preprocessing/002 How to Scale Features in Machine Learning Normalization vs Standardization.mp4 5.5 MB
  • 20 - AutoEncoders Intuition/003 Autoencoder Bias in Deep Learning Improving Neural Network Performance.mp4 5.0 MB
  • 23 - Regression & Classification Intuition/004 Multiple Linear Regression - Understanding Dependent --& Independent Variables.mp4 3.5 MB
  • 06 - CNN Intuition/008 How Do Fully Connected Layers Work in Convolutional Neural Networks --(CNNs--).srt 38.4 kB
  • 07 - Building a CNN/004 Step 3 - Building CNN Architecture Convolutional Layers --& Max Pooling Explained.srt 37.5 kB
  • 07 - Building a CNN/007 Develop an Image Recognition System Using Convolutional Neural Networks.srt 37.4 kB
  • 18 - Building a Boltzmann Machine/007 Step 4 - Convert Training --& Test Sets to RBM-Ready Arrays in Python.srt 36.0 kB
  • 21 - Building an AutoEncoder/007 Step 4 - Prepare Data for Autoencoder Creating User-Movie Rating Matrices.srt 35.9 kB
  • 09 - RNN Intuition/005 Understanding Long Short-Term Memory --(LSTM--) Architecture for Deep Learning.srt 34.4 kB
  • 21 - Building an AutoEncoder/011 Step 8 - PyTorch Techniques for Efficient Autoencoder Training on Large Datasets.srt 32.8 kB
  • 06 - CNN Intuition/010 Understanding Softmax Activation and Cross-Entropy Loss in Deep Learning.srt 32.8 kB
  • 17 - Boltzmann Machine Intuition/005 How Restricted Boltzmann Machines Work Deep Learning for Recommender Systems.srt 32.3 kB
  • 04 - Building an ANN/004 Step 2 - Data Preprocessing for Neural Networks Essential Steps and Techniques.srt 31.6 kB
  • 07 - Building a CNN/003 Step 2 - Deep Learning Preprocessing Scaling --& Transforming Images for CNNs.srt 31.3 kB
  • 15 - Mega Case Study/004 Step 3 - Building a Hybrid Model From Unsupervised to Supervised Deep Learning.srt 30.9 kB
  • 18 - Building a Boltzmann Machine/016 Step 13 - RBM Training Updating Weights and Biases with Contrastive Divergence.srt 30.6 kB
  • 03 - ANN Intuition/003 Understanding Neurons The Building Blocks of Artificial Neural Networks.srt 30.2 kB
  • 18 - Building a Boltzmann Machine/017 Step 14 - Optimizing RBM Models From Training to Test Set Performance Analysis.srt 30.2 kB
  • 07 - Building a CNN/006 Step 5 - Deploying a CNN for Real-World Image Recognition.srt 30.2 kB
  • 21 - Building an AutoEncoder/009 Step 6 - Building Autoencoder Architecture Class Creation for Neural Networks.srt 30.1 kB
  • 14 - Building a SOM/004 Step 3 - SOM Visualization Techniques Colorbar --& Markers for Outlier Detection.srt 29.9 kB
  • 17 - Boltzmann Machine Intuition/006 How Energy-Based Models Work Deep Dive into Contrastive Divergence Algorithm.srt 29.6 kB
  • 23 - Regression & Classification Intuition/005 Understanding Logistic Regression Intuition and Probability in Classification.srt 29.0 kB
  • 06 - CNN Intuition/004 How to Apply Convolution Filters in Neural Networks Feature Detection Explained.srt 28.7 kB
  • 09 - RNN Intuition/003 What is a Recurrent Neural Network --(RNN--) Deep Learning for Sequential Data.srt 28.6 kB
  • 14 - Building a SOM/002 Step 1 - Implementing Self-Organizing Maps --(SOMs--) for Fraud Detection in Python.srt 28.4 kB
  • 21 - Building an AutoEncoder/012 Step 9 - Implementing Stochastic Gradient Descent in Autoencoder Architecture.srt 28.3 kB
  • 21 - Building an AutoEncoder/010 Step 7 - Python Autoencoder Tutorial Implementing Activation Functions --& Layers.srt 28.1 kB
  • 04 - Building an ANN/007 Step 5 - How to Make Predictions and Evaluate Neural Network Model in Python.srt 27.2 kB
  • 09 - RNN Intuition/004 Understanding the Vanishing Gradient Problem in Recurrent Neural Networks --(RNNs--).srt 27.2 kB
  • 06 - CNN Intuition/003 How Do Convolutional Neural Networks Work Understanding CNN Architecture.srt 27.0 kB
  • 13 - SOMs Intuition/004 Self-Organizing Maps Tutorial Dimensionality Reduction in Machine Learning.srt 26.7 kB
  • 10 - Building a RNN/014 Step 13 - Preparing Historical Stock Data for LSTM Model Scaling and Reshaping.srt 26.3 kB
  • 06 - CNN Intuition/006 Understanding Spatial Invariance in CNNs Max Pooling Explained for Beginners.srt 25.9 kB
  • 09 - RNN Intuition/006 How LSTMs Work in Practice Visualizing Neural Network Predictions.srt 25.5 kB
  • 13 - SOMs Intuition/005 How Self-Organizing Maps --(SOMs--) Learn Unsupervised Deep Learning Explained.srt 25.4 kB
  • 04 - Building an ANN/005 Step 3 - Constructing an Artificial Neural Network Adding Input --& Hidden Layers.srt 25.1 kB
  • 13 - SOMs Intuition/008 Understanding K-Means Clustering Intuitive Explanation with Visual Examples.srt 25.0 kB
  • 17 - Boltzmann Machine Intuition/002 Boltzmann Machines vs. Neural Networks Key Differences in Deep Learning.srt 24.9 kB
  • 10 - Building a RNN/005 Step 4 - Building X_train and y_train Arrays for LSTM Time Series Forecasting.srt 24.9 kB
  • 18 - Building a Boltzmann Machine/011 Step 8 - RBM Hidden Layer Sampling Bernoulli Distribution in PyTorch Tutorial.srt 24.7 kB
  • 03 - ANN Intuition/005 How Do Neural Networks Work Step-by-Step Guide to Property Valuation Example.srt 23.5 kB
  • 14 - Building a SOM/005 Step 4 - Catching Cheaters with SOMs Mapping Winning Nodes to Customer Data.srt 22.3 kB
  • 03 - ANN Intuition/006 How Do Neural Networks Learn Understanding Backpropagation and Cost Functions.srt 22.3 kB
  • 18 - Building a Boltzmann Machine/015 Step 12 - RBM Training Loop Epoch Setup and Loss Function Implementation.srt 21.8 kB
  • 01 - Welcome to the course!/002 Introduction to Deep Learning From Historical Context to Modern Applications.srt 21.8 kB
  • 21 - Building an AutoEncoder/003 Step 1 - Building a Movie Recommendation System with AutoEncoders Data Import.srt 21.4 kB
  • 13 - SOMs Intuition/010 How to Find the Optimal Number of Clusters in K-Means WCSS and Elbow Method.srt 20.9 kB
  • 21 - Building an AutoEncoder/014 Step 11 - How to Evaluate Recommender System Performance Using Test Set Loss.srt 20.8 kB
  • 04 - Building an ANN/006 Step 4 - Compile and Train Neural Network Optimizers, Loss Functions --& Metrics.srt 20.8 kB
  • 21 - Building an AutoEncoder/004 Step 2 - Preparing Training and Test Sets for Autoencoder Recommendation System.srt 20.5 kB
  • 10 - Building a RNN/006 Step 5 - Preparing Time Series Data for LSTM Neural Network in Stock Forecasting.srt 20.4 kB
  • 20 - AutoEncoders Intuition/002 Autoencoders in Machine Learning Applications and Architecture Overview.srt 19.9 kB
  • 18 - Building a Boltzmann Machine/013 Step 10 - RBM Training Function Updating Weights and Biases with Gibbs Sampling.srt 19.4 kB
  • 15 - Mega Case Study/005 Step 4 - Implementing Fraud Detection with SOM A Deep Learning Approach.srt 19.4 kB
  • 04 - Building an ANN/002 Step 1 - Data Preprocessing for Deep Learning Preparing Neural Network Dataset.srt 19.2 kB
  • 17 - Boltzmann Machine Intuition/003 Deep Learning Fundamentals Energy-Based Models --& Their Role in Neural Networks.srt 18.3 kB
  • 18 - Building a Boltzmann Machine/010 Step 7 - Implementing Restricted Boltzmann Machine Class Structure in PyTorch.srt 18.1 kB
  • 03 - ANN Intuition/007 Mastering Gradient Descent Key to Efficient Neural Network Training.srt 18.0 kB
  • 18 - Building a Boltzmann Machine/002 Step 0 - Building a Movie Recommender System with RBMs Data Preprocessing Guide.srt 17.1 kB
  • 18 - Building a Boltzmann Machine/006 Step 3 - Preparing Data for RBM Calculating Total Users and Movies in Python.srt 16.8 kB
  • 21 - Building an AutoEncoder/005 Step 3 - Preparing Data for Recommendation Systems User --& Movie Count in Python.srt 16.8 kB
  • 13 - SOMs Intuition/006 How to Create a Self-Organizing Map --(SOM--) in DL Step-by-Step Tutorial.srt 16.8 kB
  • 18 - Building a Boltzmann Machine/005 Step 2 - Preparing Training and Test Sets for Restricted Boltzmann Machine.srt 16.6 kB
  • 14 - Building a SOM/003 Step 2 - SOM Weight Initialization and Training Tutorial for Anomaly Detection.srt 16.4 kB
  • 18 - Building a Boltzmann Machine/004 Step 1 - Importing Movie Datasets for RBM-Based Recommender Systems in Python.srt 16.3 kB
  • 10 - Building a RNN/016 Step 15 - Visualizing LSTM Predictions Plotting Real vs Predicted Stock Prices.srt 15.6 kB
  • 03 - ANN Intuition/008 How to Use Stochastic Gradient Descent for Deep Learning Optimization.srt 15.2 kB
  • 13 - SOMs Intuition/002 Self-Organizing Maps --(SOM--) Unsupervised Deep Learning for Dimensionality Reduct.srt 15.2 kB
  • 10 - Building a RNN/012 Step 11 - Optimizing Epochs and Batch Size for LSTM Stock Price Forecasting.srt 14.6 kB
  • 03 - ANN Intuition/004 Understanding Activation Functions in Neural Networks Sigmoid, ReLU, and More.srt 14.5 kB
  • 10 - Building a RNN/008 Step 7 - Adding First LSTM Layer Key Components for Stock Market Prediction.srt 14.5 kB
  • 13 - SOMs Intuition/009 K-Means Clustering Avoiding the Random Initialization Trap in Machine Learning.srt 14.4 kB
  • 07 - Building a CNN/002 Step 1 - Convolutional Neural Networks Explained Image Classification Tutorial.srt 13.9 kB
  • 18 - Building a Boltzmann Machine/009 Step 6 - RBM Data Preprocessing Transforming Movie Ratings for Neural Networks.srt 13.3 kB
  • 10 - Building a RNN/002 Step 1 - Building a Robust LSTM Neural Network for Stock Price Trend Prediction.srt 13.1 kB
  • 10 - Building a RNN/015 Step 14 - Creating 3D Input Structure for LSTM Stock Price Prediction in Python.srt 13.0 kB
  • 07 - Building a CNN/005 Step 4 - Train CNN for Image Classification Optimize with Keras --& TensorFlow.srt 12.6 kB
  • 26 - Logistic Regression/011 Step 5 - Evaluating Machine Learning Models Confusion Matrix and Accuracy.srt 12.5 kB
  • 18 - Building a Boltzmann Machine/014 Step 11 - How to Set Up an RBM Model Choosing NV, NH, and Batch Size Parameters.srt 11.9 kB
  • 25 - Data Preprocessing in Python/002 Step 2 - How to Handle Missing Data in Python Data Preprocessing Techniques.srt 11.7 kB
  • 10 - Building a RNN/003 Step 2 - Importing Training Data for LSTM Stock Price Prediction Model.srt 11.5 kB
  • 20 - AutoEncoders Intuition/004 How to Train an Autoencoder Step-by-Step Guide for Deep Learning Beginners.srt 11.5 kB
  • 06 - CNN Intuition/005 Rectified Linear Units --(ReLU--) in Deep Learning Optimizing CNN Performance.srt 11.2 kB
  • 24 - Data Preprocessing/004 Machine Learning Workflow Data Splitting, Feature Scaling, and Model Training.srt 11.0 kB
  • 18 - Building a Boltzmann Machine/012 Step 9 - RBM Visible Node Sampling Bernoulli Distribution in Deep Learning.srt 10.9 kB
  • 20 - AutoEncoders Intuition/006 Sparse Autoencoders in Deep Learning Preventing Overfitting in Neural Networks.srt 10.4 kB
  • 25 - Data Preprocessing in Python/011 Step 2 - Using fit_transform Method for Efficient Data Preprocessing in Python.srt 10.3 kB
  • 26 - Logistic Regression/006 Step 2b - Data Preprocessing Feature Scaling for Machine Learning in Python.srt 10.3 kB
  • 25 - Data Preprocessing in Python/016 Step 1 - How to Apply Feature Scaling for Preprocessing Machine Learning Data.srt 10.3 kB
  • 25 - Data Preprocessing in Python/019 Step 4 - How to Apply Feature Scaling to Training --& Test Sets in ML.srt 10.3 kB
  • 25 - Data Preprocessing in Python/006 Step 3 - Preprocessing Data Extracting Features and Target Variables in Python.srt 10.3 kB
  • 26 - Logistic Regression/005 Step 2a - Data Preprocessing for Logistic Regression Importing and Splitting.srt 10.2 kB
  • 26 - Logistic Regression/012 Step 6a - Creating a Confusion Matrix for Machine Learning Model Evaluation.srt 10.2 kB
  • 25 - Data Preprocessing in Python/014 Step 2 - Split Data into Train --& Test Sets with Scikit-learn--'s train_test_split.srt 10.1 kB
  • 25 - Data Preprocessing in Python/008 Step 1 - Handling Missing Data in Python SimpleImputer for Data Preprocessing.srt 10.0 kB
  • 23 - Regression & Classification Intuition/002 Simple Linear Regression Understanding Y = B0 + B1X in Machine Learning.srt 9.8 kB
  • 25 - Data Preprocessing in Python/009 Step 2 - Preprocessing Datasets Fit and Transform to Handle Missing Values.srt 9.7 kB
  • 10 - Building a RNN/004 Step 3 - Applying Min-Max Normalization for Time Series Data in Neural Networks.srt 9.7 kB
  • 26 - Logistic Regression/009 Step 4a - Using Classifier Objects to Make Predictions in Machine Learning.srt 9.4 kB
  • 26 - Logistic Regression/014 Step 7a - Visualizing Logistic Regression 2D Plots for Classification Models.srt 9.4 kB
  • 26 - Logistic Regression/003 Step 1a - Machine Learning Classification Logistic Regression in Python.srt 9.3 kB
  • 25 - Data Preprocessing in Python/001 Step 1 - Data Preprocessing in Python Essential Tools for ML Models.srt 9.2 kB
  • 21 - Building an AutoEncoder/008 Step 5 - Convert Training and Test Sets to PyTorch Tensors for Deep Learning.srt 9.1 kB
  • 18 - Building a Boltzmann Machine/008 Step 5 - Converting NumPy Arrays to PyTorch Tensors for Deep Learning Models.srt 9.1 kB
  • 25 - Data Preprocessing in Python/004 Step 1 - Creating a DataFrame from CSV Python Data Preprocessing Basics.srt 9.0 kB
  • 17 - Boltzmann Machine Intuition/007 Deep Belief Networks Understanding RBM Stacking in Deep Learning Models.srt 9.0 kB
  • 03 - ANN Intuition/009 Understanding Backpropagation Algorithm Key to Optimizing Deep Learning Models.srt 8.8 kB
  • 10 - Building a RNN/009 Step 8 - Implementing Dropout Regularization in LSTM Networks for Forecasting.srt 8.7 kB
  • 10 - Building a RNN/013 Step 12 - Visualizing LSTM Predictions Real vs Forecasted Google Stock Prices.srt 8.6 kB
  • 26 - Logistic Regression/001 Understanding the Logistic Regression Equation A Step-by-Step Guide.srt 8.3 kB
  • 21 - Building an AutoEncoder/013 Step 10 - Machine Learning Metrics Interpreting Loss in Autoencoder Training.srt 8.3 kB
  • 25 - Data Preprocessing in Python/005 Step 2 - Pandas DataFrame Indexing Building Feature Matrix X with iloc Method.srt 8.2 kB
  • 25 - Data Preprocessing in Python/017 Step 2 - Feature Scaling in Machine Learning When to Apply StandardScaler.srt 8.1 kB
  • 25 - Data Preprocessing in Python/012 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.srt 7.9 kB
  • 13 - SOMs Intuition/007 Interpreting SOM Clusters Unsupervised Learning Techniques for Data Analysis.srt 7.8 kB
  • 15 - Mega Case Study/003 Step 2 - Developing a Fraud Detection System Using Self-Organizing Maps.srt 7.6 kB
  • 26 - Logistic Regression/004 Step 1b - Logistic Regression Analysis Importing Libraries and Splitting Data.srt 7.2 kB
  • 25 - Data Preprocessing in Python/010 Step 1 - Preprocessing Categorical Variables One-Hot Encoding in Python.srt 7.2 kB
  • 10 - Building a RNN/011 Step 10 - Compile RNN with Adam Optimizer for Stock Price Prediction in Python.srt 7.2 kB
  • 27 - Congratulations!! Don't forget your Prize )/001 Huge Congrats for completing the challenge!.html 7.2 kB
  • 06 - CNN Intuition/009 CNN Building Blocks Feature Maps, ReLU, Pooling, and Fully Connected Layers.srt 7.0 kB
  • 26 - Logistic Regression/007 Step 3a - Implementing Logistic Regression for Classification with Scikit-Learn.srt 6.8 kB
  • 20 - AutoEncoders Intuition/005 How to Use Overcomplete Hidden Layers in Autoencoders for Feature Extraction.srt 6.7 kB
  • 17 - Boltzmann Machine Intuition/004 How to Edit Wikipedia Adding Boltzmann Distribution in Deep Learning.srt 6.6 kB
  • 25 - Data Preprocessing in Python/018 Step 3 - Normalizing Data with Fit and Transform Methods in Scikit-learn.srt 6.4 kB
  • 25 - Data Preprocessing in Python/013 Step 1 - Machine Learning Data Prep Splitting Dataset Before Feature Scaling.srt 6.4 kB
  • 25 - Data Preprocessing in Python/003 Step 1 - Importing Essential Python Libraries for Data Preprocessing --& Analysis.srt 6.4 kB
  • 18 - Building a Boltzmann Machine/018 Evaluating the Boltzmann Machine.html 6.2 kB
  • 26 - Logistic Regression/002 How to Calculate Maximum Likelihood in Logistic Regression Step-by-Step Guide.srt 6.2 kB
  • 06 - CNN Intuition/002 Understanding CNN Architecture From Convolution to Fully Connected Layers.srt 6.2 kB
  • 26 - Logistic Regression/015 Step 7b - Visualizing Logistic Regression Interpreting Classification Results.srt 6.2 kB
  • 25 - Data Preprocessing in Python/015 Step 3 - Preparing Data for ML Splitting Datasets with Python and Scikit-learn.srt 6.2 kB
  • 09 - RNN Intuition/007 LSTM Variations Peepholes, Combined Gates, and GRUs in Deep Learning.srt 6.0 kB
  • 01 - Welcome to the course!/001 Welcome Challenge!.html 5.9 kB
  • 26 - Logistic Regression/013 Step 6b - Visualizing Machine Learning Results Training vs Test Set Comparison.srt 5.8 kB
  • 26 - Logistic Regression/008 Step 3b - Predicting Purchase Decisions with Logistic Regression in Python.srt 5.7 kB
  • 10 - Building a RNN/010 Step 9 - Finalizing RNN Architecture Dense Layer for Stock Price Forecasting.srt 5.5 kB
  • 26 - Logistic Regression/016 Step 7c - Visualizing Test Results Assessing Machine Learning Model Accuracy.srt 5.5 kB
  • 13 - SOMs Intuition/001 How Do Self-Organizing Maps Work Understanding SOM in Deep Learning.srt 5.4 kB
  • 15 - Mega Case Study/002 Step 1 - Building a Hybrid Deep Learning Model for Credit Card Fraud Detection.srt 5.3 kB
  • 23 - Regression & Classification Intuition/003 Linear Regression Explained Finding the Best Fitting Line for Data Analysis.srt 5.1 kB
  • 17 - Boltzmann Machine Intuition/008 Deep Boltzmann Machines vs Deep Belief Networks Key Differences Explained.srt 5.1 kB
  • 18 - Building a Boltzmann Machine/001 Get the code and dataset ready.html 4.9 kB
  • 21 - Building an AutoEncoder/001 Get the code and dataset ready.html 4.9 kB
  • 10 - Building a RNN/007 Step 6 - Create RNN Architecture Sequential Layers vs Computational Graphs.srt 4.8 kB
  • 17 - Boltzmann Machine Intuition/001 Understanding Boltzmann Machines Deep Learning Fundamentals for AI Enthusiasts.srt 4.7 kB
  • 03 - ANN Intuition/002 How Neural Networks Learn Gradient Descent and Backpropagation Explained.srt 4.6 kB
  • 10 - Building a RNN/001 Get the code and dataset ready.html 4.6 kB
  • 15 - Mega Case Study/001 Get the code and dataset ready.html 4.5 kB
  • 14 - Building a SOM/001 Get the code and dataset ready.html 4.5 kB
  • 20 - AutoEncoders Intuition/007 Denoising Autoencoders Deep Learning Regularization Technique Explained.srt 4.4 kB
  • 04 - Building an ANN/001 Get the code and dataset ready.html 4.1 kB
  • 27 - Congratulations!! Don't forget your Prize )/002 Bonus How To UNLOCK Top Salaries (Live Training).html 4.1 kB
  • 09 - RNN Intuition/002 How Do Recurrent Neural Networks --(RNNs--) Work Deep Learning Explained.srt 4.1 kB
  • 11 - Evaluating and Improving the RNN/001 Evaluating the RNN.html 4.1 kB
  • 20 - AutoEncoders Intuition/008 What are Contractive Autoencoders Deep Learning Regularization Techniques.srt 4.0 kB
  • 13 - SOMs Intuition/003 Why K-Means Clustering is Essential for Understanding Self-Organizing Maps.srt 4.0 kB
  • 21 - Building an AutoEncoder/006 Homework Challenge - Coding Exercise.html 3.9 kB
  • 07 - Building a CNN/001 Get the code and dataset ready.html 3.9 kB
  • 20 - AutoEncoders Intuition/001 Deep Learning Autoencoders Types, Architecture, and Training Explained.srt 3.9 kB
  • 25 - Data Preprocessing in Python/007 For Python learners, summary of Object-oriented programming classes & objects.html 3.8 kB
  • 16 - ------------------------- Part 5 - Boltzmann Machines -------------------------/001 Welcome to Part 5 - Boltzmann Machines.html 3.7 kB
  • 11 - Evaluating and Improving the RNN/002 Improving the RNN.html 3.6 kB
  • 24 - Data Preprocessing/003 Machine Learning Basics Using Train-Test Split to Evaluate Model Performance.srt 3.4 kB
  • 01 - Welcome to the course!/004 EXTRA Use ChatGPT to Boost your Deep Learning Skills.html 3.3 kB
  • 06 - CNN Intuition/007 How to Flatten Pooled Feature Maps in Convolutional Neural Networks --(CNNs--).srt 3.3 kB
  • 19 - ---------------------------- Part 6 - AutoEncoders ----------------------------/001 Welcome to Part 6 - AutoEncoders.html 3.2 kB
  • 22 - ------------------- Annex - Get the Machine Learning Basics -------------------/001 Annex - Get the Machine Learning Basics.html 3.2 kB
  • 26 - Logistic Regression/010 Step 4b - Evaluating Logistic Regression Model Predicted vs Real Outcomes.srt 3.2 kB
  • 26 - Logistic Regression/018 Machine Learning Regression and Classification EXTRA.html 3.1 kB
  • 20 - AutoEncoders Intuition/010 Deep Autoencoders vs Stacked Autoencoders Key Differences in Neural Networks.srt 3.1 kB
  • 26 - Logistic Regression/017 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html 3.0 kB
  • 21 - Building an AutoEncoder/015 THANK YOU Video.srt 2.9 kB
  • 26 - Logistic Regression/019 EXTRA CONTENT Logistic Regression Practical Case Study.html 2.9 kB
  • 20 - AutoEncoders Intuition/009 What are Stacked Autoencoders in Deep Learning Architecture and Applications.srt 2.9 kB
  • 04 - Building an ANN/003 Check out our free course on ANN for Regression.html 2.8 kB
  • 01 - Welcome to the course!/003 Get the codes, datasets and slides here.html 2.8 kB
  • 24 - Data Preprocessing/002 How to Scale Features in Machine Learning Normalization vs Standardization.srt 2.8 kB
  • 08 - ---------------------- Part 3 - Recurrent Neural Networks ----------------------/001 Welcome to Part 3 - Recurrent Neural Networks.html 2.8 kB
  • 24 - Data Preprocessing/001 Data Preprocessing.html 2.8 kB
  • 18 - Building a Boltzmann Machine/003 Same Data Preprocessing in Parts 5 and 6.html 2.7 kB
  • 12 - ------------------------ Part 4 - Self Organizing Maps ------------------------/001 Welcome to Part 4 - Self Organizing Maps.html 2.7 kB
  • 21 - Building an AutoEncoder/002 Same Data Preprocessing in Parts 5 and 6.html 2.6 kB
  • 23 - Regression & Classification Intuition/001 What You Need for Regression & Classification.html 2.6 kB
  • 06 - CNN Intuition/001 What You'll Need for CNN.html 2.6 kB
  • 03 - ANN Intuition/001 What You'll Need for ANN.html 2.6 kB
  • 09 - RNN Intuition/001 What You'll Need for RNN.html 2.6 kB
  • 02 - --------------------- Part 1 - Artificial Neural Networks ---------------------/001 Welcome to Part 1 - Artificial Neural Networks.html 2.6 kB
  • 05 - -------------------- Part 2 - Convolutional Neural Networks --------------------/001 Welcome to Part 2 - Convolutional Neural Networks.html 2.6 kB
  • 20 - AutoEncoders Intuition/003 Autoencoder Bias in Deep Learning Improving Neural Network Performance.srt 2.4 kB
  • 23 - Regression & Classification Intuition/004 Multiple Linear Regression - Understanding Dependent --& Independent Variables.srt 1.7 kB

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!