MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCoursesOnline.Me] [UDACITY] Deep Learning Nanodegree Program - [FCO]

磁力链接/BT种子名称

[FreeCoursesOnline.Me] [UDACITY] Deep Learning Nanodegree Program - [FCO]

磁力链接/BT种子简介

种子哈希:f4afbac627a859c20f1e7e2b11b2d7789d3ed36c
文件大小: 3.33G
已经下载:3956次
下载速度:极快
收录时间:2021-03-19
最近下载:2025-09-01

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:F4AFBAC627A859C20F1E7E2B11B2D7789D3ED36C
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 她趣 TikTok成人版 PornHub 听泉鉴鲍 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

蒼井 磨一磨 38f 撕夜 美原和 界二 柚木木 勾引按摩店老板娘风韵犹存的老板娘 任人 启示录 2006 的世界 adn-uncensored 表 巨人 酒店稀缺 海燕 飞行 全部都是在校大学生 一整个学校的妹子都被拍光了 teachmefisting 插炮机 毕业生 elamigos 美娜 「 loli 娘娘 娇娇爱 模蒂蒂 the.apprentice.2024 新.娘

文件列表

  • Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.mp4 57.2 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.mp4 52.7 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.mp4 50.7 MB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.mp4 45.7 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.mp4 41.3 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.mp4 41.0 MB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.mp4 40.0 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.mp4 38.9 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.mp4 37.9 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.mp4 36.5 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.mp4 35.3 MB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.mp4 35.0 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.mp4 34.8 MB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.mp4 34.1 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.mp4 31.9 MB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.mp4 31.6 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.mp4 30.3 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.mp4 30.1 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.mp4 28.9 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.mp4 27.9 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.mp4 27.9 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.mp4 27.0 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.mp4 26.9 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.mp4 26.0 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.mp4 25.4 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.mp4 24.9 MB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.mp4 24.5 MB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.mp4 24.2 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.mp4 23.4 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.mp4 23.2 MB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.mp4 23.1 MB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.mp4 23.1 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.mp4 22.6 MB
  • Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.mp4 22.6 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4 22.4 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.mp4 22.1 MB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.mp4 22.0 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.mp4 22.0 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.mp4 21.9 MB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.mp4 21.7 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.mp4 21.7 MB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.mp4 21.2 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.mp4 21.1 MB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.mp4 21.0 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.mp4 20.8 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.mp4 20.6 MB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.mp4 20.0 MB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.mp4 19.8 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.mp4 19.0 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.mp4 19.0 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.mp4 18.8 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.mp4 18.6 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.mp4 18.6 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.mp4 18.5 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4 18.3 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.mp4 18.2 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.mp4 18.1 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.mp4 18.1 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.mp4 17.8 MB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.mp4 17.7 MB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.mp4 17.5 MB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.mp4 17.3 MB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.mp4 16.8 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.mp4 16.7 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.mp4 16.6 MB
  • Part 03-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.mp4 16.4 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.mp4 16.4 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.mp4 15.5 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.mp4 15.5 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.mp4 15.0 MB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/01. 01 Welcome To The Deep Learning Program-3QPEmwq2NaE.mp4 15.0 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.mp4 14.8 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4 14.3 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.mp4 14.1 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.mp4 14.0 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.mp4 13.9 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.mp4 13.7 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.mp4 13.6 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.mp4 13.4 MB
  • Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.mp4 13.3 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.mp4 13.3 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.mp4 13.3 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.mp4 13.2 MB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.mp4 13.1 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.mp4 12.6 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.mp4 12.4 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.mp4 12.2 MB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.mp4 11.8 MB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.mp4 11.8 MB
  • Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.mp4 11.6 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.mp4 11.6 MB
  • Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.mp4 11.3 MB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.mp4 11.2 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.mp4 11.2 MB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.mp4 11.1 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.mp4 11.0 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.mp4 10.9 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.mp4 10.9 MB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.mp4 10.9 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.mp4 10.8 MB
  • Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.mp4 10.8 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.mp4 10.8 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.mp4 10.8 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.mp4 10.7 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.mp4 10.6 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4 10.6 MB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.mp4 10.5 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.mp4 10.4 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.mp4 10.4 MB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.mp4 10.3 MB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.mp4 10.2 MB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.mp4 10.1 MB
  • Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.mp4 10.1 MB
  • Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.mp4 10.0 MB
  • Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.mp4 9.9 MB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.mp4 9.7 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.mp4 9.7 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.mp4 9.6 MB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.mp4 9.5 MB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.mp4 9.5 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.mp4 9.5 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.mp4 9.4 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.mp4 9.3 MB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.mp4 9.3 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.mp4 9.3 MB
  • Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.mp4 9.2 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 9.1 MB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.mp4 9.1 MB
  • Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.mp4 9.0 MB
  • Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.mp4 8.9 MB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.mp4 8.8 MB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.mp4 8.7 MB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.mp4 8.7 MB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.mp4 8.6 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.mp4 8.6 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.mp4 8.5 MB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.mp4 8.5 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 8.5 MB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.mp4 8.5 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4 8.4 MB
  • Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.mp4 8.4 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.mp4 8.4 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.mp4 8.4 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.mp4 8.2 MB
  • Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.mp4 8.1 MB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.mp4 8.1 MB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.mp4 8.0 MB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.mp4 8.0 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4 7.9 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/chess-game.jpg 7.9 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4 7.9 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.mp4 7.8 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.mp4 7.7 MB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4 7.7 MB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.mp4 7.7 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.mp4 7.6 MB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.mp4 7.6 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4 7.6 MB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.mp4 7.6 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.mp4 7.5 MB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.mp4 7.5 MB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.mp4 7.5 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.mp4 7.4 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.mp4 7.4 MB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.mp4 7.3 MB
  • Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.mp4 7.3 MB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.mp4 7.3 MB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.mp4 7.2 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4 7.2 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.mp4 7.2 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.mp4 7.2 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.mp4 7.0 MB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.mp4 7.0 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.mp4 7.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4 6.9 MB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.mp4 6.9 MB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.mp4 6.9 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4 6.8 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 6.7 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.mp4 6.6 MB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.mp4 6.5 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.mp4 6.5 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.mp4 6.5 MB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.mp4 6.5 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.mp4 6.4 MB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.mp4 6.4 MB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.mp4 6.3 MB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4 6.2 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.mp4 6.2 MB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.mp4 6.1 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.mp4 6.1 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.mp4 6.1 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 6.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 6.0 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 5.8 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.mp4 5.8 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.mp4 5.7 MB
  • Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.mp4 5.7 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.mp4 5.7 MB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.mp4 5.7 MB
  • Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/img/carnd.jpg 5.6 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.6 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.6 MB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.mp4 5.5 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.mp4 5.5 MB
  • Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.mp4 5.4 MB
  • Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.mp4 5.4 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.4 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.mp4 5.3 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.3 MB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.3 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.mp4 5.3 MB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.mp4 5.2 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4 5.2 MB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.mp4 5.2 MB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.mp4 5.2 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4 5.1 MB
  • Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.mp4 5.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4 5.0 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.mp4 5.0 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.mp4 4.9 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.mp4 4.9 MB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.mp4 4.6 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.mp4 4.6 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.mp4 4.6 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.mp4 4.5 MB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.mp4 4.5 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.mp4 4.5 MB
  • Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.mp4 4.5 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4 4.4 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.mp4 4.4 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4 4.4 MB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.mp4 4.4 MB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.mp4 4.4 MB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.mp4 4.3 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.3 MB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.mp4 4.3 MB
  • Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.mp4 4.3 MB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.mp4 4.3 MB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.mp4 4.2 MB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.mp4 4.2 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.2 MB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.mp4 4.2 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 4.1 MB
  • Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.mp4 4.1 MB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.mp4 4.1 MB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.mp4 4.1 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.mp4 4.0 MB
  • Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.mp4 4.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4 4.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 4.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4 3.9 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.8 MB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.mp4 3.8 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.mp4 3.7 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4 3.7 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.24-pm.png 3.7 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.mp4 3.6 MB
  • Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression-aUJCBqBfEnI.mp4 3.6 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.mp4 3.6 MB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.mp4 3.6 MB
  • Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4 3.6 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.5 MB
  • Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.mp4 3.4 MB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.mp4 3.4 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.mp4 3.4 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.4 MB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.mp4 3.3 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4 3.3 MB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.mp4 3.2 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.02-pm.png 3.2 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.mp4 3.2 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4 3.2 MB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.mp4 3.2 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4 3.1 MB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.mp4 3.0 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.08.11-pm.png 3.0 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.mp4 3.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 3.0 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.mp4 3.0 MB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.mp4 3.0 MB
  • Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.mp4 3.0 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.mp4 3.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 3.0 MB
  • Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-agent-monitor-main.gif 2.9 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.mp4 2.8 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.8 MB
  • Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.mp4 2.8 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4 2.7 MB
  • Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.mp4 2.7 MB
  • Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.mp4 2.7 MB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.mp4 2.6 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-1.29.13-pm.png 2.6 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.mp4 2.5 MB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.mp4 2.5 MB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.mp4 2.5 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.mp4 2.4 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4 2.4 MB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.mp4 2.4 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.4 MB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.mp4 2.4 MB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.mp4 2.3 MB
  • Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.mp4 2.3 MB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.mp4 2.3 MB
  • Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.mp4 2.3 MB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4 2.3 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.mp4 2.3 MB
  • Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.mp4 2.3 MB
  • Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.mp4 2.3 MB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.mp4 2.3 MB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.mp4 2.3 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4 2.2 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4 2.2 MB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.mp4 2.2 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4 2.2 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.mp4 2.2 MB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.mp4 2.2 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4 2.1 MB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.mp4 2.1 MB
  • Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/run-main.gif 2.1 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 2.1 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4 2.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4 2.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4 2.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4 2.0 MB
  • Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.mp4 1.9 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4 1.8 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4 1.8 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.8 MB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.mp4 1.8 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4 1.7 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/skin-disease-classes.png 1.7 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.mp4 1.7 MB
  • Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.mp4 1.7 MB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.mp4 1.7 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.mp4 1.7 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.mp4 1.7 MB
  • Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.mp4 1.6 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/lesions.png 1.6 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.mp4 1.6 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.mp4 1.6 MB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4 1.6 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/frozen-lake-6.jpg 1.6 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.6 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.mp4 1.6 MB
  • Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 1.6 MB
  • Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.mp4 1.5 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.mp4 1.5 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4 1.5 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.mp4 1.5 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.4 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4 1.4 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.mp4 1.3 MB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/arch.png 1.3 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.mp4 1.2 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.mp4 1.2 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.2 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4 1.2 MB
  • Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.mp4 1.2 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.31.11-pm.png 1.2 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.mp4 1.2 MB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.mp4 1.2 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-11-at-2.04.14-pm.png 1.2 MB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4 1.2 MB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.mp4 1.1 MB
  • Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.mp4 1.1 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-10.43.49-pm.png 1.1 MB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.mp4 1.1 MB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.mp4 1.1 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.12.31-am.png 1.1 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.16.19-am.png 1.1 MB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.1 MB
  • Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.mp4 1.0 MB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/statevalue.png 1.0 MB
  • Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.mp4 1.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.mp4 1.0 MB
  • Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.mp4 1.0 MB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.14.30-am.png 1.0 MB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.mp4 969.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4 949.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-10-at-9.12.16-pm.png 919.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/nature.png 914.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.mp4 909.9 kB
  • img/dl-classroom-1200x900.jpg 896.3 kB
  • Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4 894.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.13-pm.png 892.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.mp4 883.2 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/img/chi-waves.png 843.4 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4 839.5 kB
  • Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-terminal.gif 838.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.52-pm.png 826.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.49.20-pm.png 776.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png 767.0 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-4.58.58-pm.png 733.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-2.04.54-pm.png 713.1 kB
  • Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4 709.4 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.mp4 693.2 kB
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.mp4 683.2 kB
  • Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.mp4 676.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/actionvalue.png 643.5 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-24-at-4.28.04-pm.png 637.6 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/go.jpg 629.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png 620.7 kB
  • Part 01-Module 01-Lesson 03_Anaconda/media/conda_default_install.mp4 609.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-3.png 589.7 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.mp4 587.6 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/img/submit-workspace.png 559.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.51.44-pm.png 531.3 kB
  • Part 08-Module 01-Lesson 02_Regression/img/house.png 503.3 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/screen-shot-2016-10-21-at-15.43.05.png 493.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.10.02-pm.png 489.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png 482.9 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png 482.9 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/examples.jpg 480.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/threshold.png 479.5 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-08-31-at-3.27.10-pm.png 474.2 kB
  • assets/img/udacimak.png 472.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/quadcopter.png 466.6 kB
  • Part 01-Module 01-Lesson 03_Anaconda/img/screen-shot-2018-03-19-at-2.49.57-pm.png 453.1 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/screen-shot-2018-03-19-at-2.49.57-pm.png 453.1 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.38.24-am.png 451.5 kB
  • Part 01-Module 01-Lesson 03_Anaconda/img/conda-search.png 441.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/study-group.png 425.2 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.55.20-am.png 424.2 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-2.18.38-pm.png 415.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. Images-1GdiN5Wc8LA.mp4 404.9 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4 404.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png 403.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.22-am.png 395.8 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/value-iteration.png 390.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.46.35-pm.png 375.8 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-action.png 372.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/review-example.png 371.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.27.51-pm.png 371.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-1.40.14-pm.png 369.8 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-state.png 356.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.34.41-pm.png 355.8 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/img/generated-mnist.png 354.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.08.28-pm.png 342.6 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-12-17-at-12.49.34-pm.png 340.5 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/Markdown+cells.mp4 338.3 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/boston-back-bay-reflection.jpg 325.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-08-at-3.43.34-pm.png 324.4 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/td-prediction.png 318.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/confusion-matrix.png 318.4 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/img/atari-network.png 317.4 kB
  • Part 02-Module 01-Lesson 07_Keras/img/all-ranks.png 315.9 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/screen-shot-2017-01-26-at-2.51.02-pm.png 309.8 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/screen-shot-2016-10-26-at-19.28.34.png 304.9 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-glie.png 304.3 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsa.png 293.7 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/layers.png 293.0 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.38.03-am.png 282.8 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-constant-a.png 281.6 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/truncated-iter.png 280.6 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-5.01.26-pm.png 278.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-10.54.50-am.png 276.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png 272.2 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsamax.png 270.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 266.2 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/policy-eval.png 265.9 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-11.03.16-pm.png 265.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-06.png 265.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/screen-shot-2018-06-12-at-5.07.10-pm.png 263.6 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-04.png 261.3 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/expected-sarsa.png 260.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-01.png 257.3 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/img/precision-quiz.png 256.8 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/matengai-of-kuniga-coast-in-oki-island-shimane-pref600.jpg 252.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.23.49-pm.png 252.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-10.png 247.6 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-08.png 247.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/iteration.png 247.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.49.43-pm.png 239.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-07.png 238.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-05.png 238.1 kB
  • assets/js/katex.min.js 236.8 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-2.jpeg 236.8 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-1.jpeg 236.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.58.01-pm.png 235.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-03.png 234.4 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/img/recall-quiz.png 233.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-09.png 233.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.38.51-pm.png 230.7 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/truncated-eval.png 230.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/karpathy-network.png 227.1 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/full-padding-no-strides-transposed.gif 227.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-4.22.09-pm.png 224.6 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-02.png 224.5 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/notebook+interface.mp4 220.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png 220.1 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/multi-layer.png 219.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.50-pm.png 215.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png 214.1 kB
  • Part 02-Module 01-Lesson 07_Keras/img/meme.png 214.1 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/meme.png 214.1 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/meme.png 214.1 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/img/meme.png 214.1 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/exploration-vs.-exploitation.png 209.2 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.30-pm.png 208.0 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-21-at-12.20.30-pm.png 208.0 kB
  • Part 01-Module 01-Lesson 03_Anaconda/media/conda_install.mp4 206.6 kB
  • Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 01_Recurrent Neural Networks/data.json 204.0 kB
  • Part 08-Module 01-Lesson 02_Regression/img/batch-stochastic.png 201.6 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-06-13-at-12.58.03-pm.png 201.0 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/media/monkey-doctor.png 194.5 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/img/confusion.png 193.4 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/p2-limit-increase.png 192.7 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/img/medical.png 191.0 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/new-confusion-matrix.png 190.6 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/1omsg2-mkguagky1c64uflw.gif 188.4 kB
  • Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/new-tab.gif 185.7 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/pup.jpg 185.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.44.20-pm.png 185.3 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/img/screen-shot-2017-11-30-at-1.34.44-pm.png 185.0 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/img/mat-headshot.png 184.3 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/mat-headshot.png 184.3 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/img/mat-headshot.png 184.3 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/img/mat-headshot.png 184.3 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/img/mat-headshot.png 184.3 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/img/mat-headshot.png 184.3 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/img/mat-headshot.png 184.3 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/img/mat-headshot.png 184.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/img/mat-headshot.png 184.3 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/img/mat-headshot.png 184.3 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/2-card-21.png 180.1 kB
  • Part 08-Module 01-Lesson 02_Regression/img/quiz.jpg 178.4 kB
  • Part 08_Additional Lessons/Module 02_Miniflow/Lesson 01_MiniFlow/data.json 177.6 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/media/input-to-output-2.mp4 176.2 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/img/svhn-examples.png 174.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-5.33.53-pm.png 173.7 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/command+palette.mp4 173.2 kB
  • Discuss.FreeTutorials.Us.html 169.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.09.07-pm.png 168.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.14.45-pm.png 167.8 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/example-neural-network.png 167.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.49.24-pm.png 163.3 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-12-17-at-9.41.03-am.png 162.0 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit.png 161.1 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/precision-recall.png 160.5 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/rnn.png 159.4 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/server-shutdown.png 159.2 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sensitivity-specificity.png 158.9 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.08.03-pm.png 156.6 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/incremental.png 155.6 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/est-action.png 154.2 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/img/email.png 152.1 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/img/parrot-ar-drone.jpg 150.0 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-submit.png 149.7 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-gpu.png 149.0 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-10.30.15-am.png 148.6 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/constant-alpha.png 147.1 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-notebook.png 146.3 kB
  • assets/css/bootstrap.min.css 140.9 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curves.png 140.6 kB
  • Part 08-Module 01-Lesson 02_Regression/img/minibatch.png 140.0 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-07-19-at-5.39.37-pm.png 134.2 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-confusion-matrix.png 133.7 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/p2xlarge-limit-request.png 132.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.03.45-pm.png 132.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-6.29.49-pm.png 132.4 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/img/poker-hand-3-of-a-kind.png 131.7 kB
  • assets/js/plyr.polyfilled.min.js 129.2 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/improve.png 127.4 kB
  • Part 02_Neural Networks/Module 01_Neural Networks/Lesson 01_Introduction to Neural Networks/data.json 127.3 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/admissions-data.png 121.2 kB
  • Part 02_Neural Networks/Module 01_Neural Networks/Lesson 08_TensorFlow/data.json 117.2 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/backgammonboard.svg.png 115.5 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/img/linear-relationships.png 115.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.00.15-pm.png 112.9 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/conda-tab.png 112.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.36.39-pm.png 112.3 kB
  • FreeCoursesOnline.Me.html 110.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-17-at-5.38.55-pm.png 110.6 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/topological-sort.001.jpeg 109.8 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/amazonwebservices-logo.svg.png 109.7 kB
  • Part 08-Module 01-Lesson 02_Regression/img/nn.png 108.5 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/img/accuracy-quiz.png 108.4 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-server.png 105.8 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/article-2278590-1792e332000005dc-394-634x615.jpg 105.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.09.13-pm.png 105.1 kB
  • FreeTutorials.Eu.html 104.7 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/new-notebook.png 104.2 kB
  • Part 02_Neural Networks/Module 01_Neural Networks/Lesson 02_Implementing Gradient Descent/data.json 103.6 kB
  • Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 02_Convolutional Neural Networks/data.json 99.9 kB
  • Part 01-Module 01-Lesson 03_Anaconda/media/conda_enter.mp4 99.6 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-json.png 97.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.46.43-pm.png 97.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png 96.4 kB
  • Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 04_Dynamic Programming/data.json 96.2 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-menu.png 96.2 kB
  • Part 02-Module 01-Lesson 07_Keras/img/summary.png 96.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png 95.9 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/example-data.png 94.3 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-matplotlib.png 92.9 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/img/regularization-quiz.png 90.0 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/tensorflow.png 87.3 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-new.png 87.3 kB
  • assets/js/jquery-3.3.1.min.js 86.9 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-05-at-3.55.40-pm.png 86.7 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-jupyter.png 85.5 kB
  • Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 02_The RL Framework The Problem/data.json 85.5 kB
  • Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 05_Monte Carlo Methods/data.json 84.3 kB
  • Part 01-Module 01-Lesson 03_Anaconda/img/conda-install.png 83.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.43.36-pm.png 82.8 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-download.png 81.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.29.14-pm.png 81.2 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/matrix-mult-3.png 80.9 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc.png 80.9 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-6.02.37-pm.png 80.7 kB
  • Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/data.json 79.8 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/img/flappy-bird.jpg 78.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/word-embeddings.jpg 76.9 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-12-at-5.47.45-pm.png 75.4 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/img/enable-gpu.png 75.2 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/nbconvert-example.png 75.1 kB
  • Part 08_Additional Lessons/Module 01_Regression, Eval/Lesson 02_Regression/data.json 74.0 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/gradient-descent.png 73.7 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-5.54.40-pm.png 73.1 kB
  • Part 01-Module 01-Lesson 03_Anaconda/img/conda-create-env.png 72.5 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/img/notebook.png 71.9 kB
  • assets/css/fonts/KaTeX_AMS-Regular.ttf 71.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.40.57-pm.png 71.3 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/img/grokking-deep-learning.jpg 71.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/addition-graph.png 70.6 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-pdb.png 70.3 kB
  • Part 08-Module 01-Lesson 02_Regression/img/just-a-2d-reg.png 70.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.41.08-pm.png 70.1 kB
  • assets/css/fonts/KaTeX_Main-Regular.ttf 70.1 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/img/paper-notes.svg.png 69.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.19-pm.png 68.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.35-pm.png 68.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-11.55.58-am.png 66.8 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-5.51.40-pm.png 66.1 kB
  • Part 01-Module 01-Lesson 03_Anaconda/img/conda-env-export.png 65.6 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/convolution-schematic.gif 65.2 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/convolution-schematic.gif 65.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png 64.7 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/pasted-image-at-2016-10-25-01-17-pm.png 64.3 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/dropout-node.jpeg 64.2 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/cross-entropy-diagram.png 64.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-16-at-2.40.57-pm.png 64.1 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-shutdown.png 63.8 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/slides-cell-toolbar-menu.png 62.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.42.56-am.png 62.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-1.48.59-pm.png 62.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.50.40-am.png 62.5 kB
  • assets/css/fonts/KaTeX_Main-Bold.ttf 61.7 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/convolutional-neural-networks-2.jpg 61.1 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-weights.png 60.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.37.27-am.png 60.5 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-2.46.11-pm.png 60.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.10.56-pm.png 60.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.45.50-pm.png 59.3 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/w1-backprop-graph.png 58.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.44.11-pm.png 58.2 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-10-17-at-11.02.44-am.png 57.9 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit2.png 57.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.25.10-pm.png 56.9 kB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/media/Screen+Shot+2017-01-27+at+11.38.54+AM.png 56.4 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/derivative-example.png 56.4 kB
  • Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 03_The RL Framework The Solution/data.json 56.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.08.59-pm.png 55.5 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/notmnist.png 55.5 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/media/nmn.png 55.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.44.15-pm.png 55.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.06.19-pm.png 54.7 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/slides-choose-slide-type.png 54.6 kB
  • Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 04_Jupyter Notebooks/data.json 54.0 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-9.18.00-pm.png 53.7 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/softmax-input-output.png 53.7 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.46.12-pm.png 53.5 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-nodes.png 53.2 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/img/input-times-weights.png 53.1 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/input-times-weights.png 53.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.48.31-pm.png 52.9 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/w2-backprop-graph.png 51.3 kB
  • assets/js/bootstrap.min.js 51.0 kB
  • Part 02-Module 01-Lesson 07_Keras/img/data.png 50.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-4.12.59-pm.png 50.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.58.26-pm.png 50.0 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/multilayer-diagram-weights.png 49.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.07.21-pm.png 49.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.42.29-pm.png 49.0 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/stop.png 48.7 kB
  • Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/screen-shot-2018-04-14-at-3.13.15-pm.png 48.2 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-terminal.png 48.0 kB
  • assets/css/fonts/KaTeX_Main-Italic.ttf 48.0 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-roc-curve.png 47.4 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/layer-1-grid.png 46.8 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.31.41-pm.png 46.0 kB
  • Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 01_Welcome to Deep Learning/data.json 45.5 kB
  • assets/js/jquery.mCustomScrollbar.concat.min.js 45.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.46.12-pm.png 45.0 kB
  • assets/css/fonts/KaTeX_Main-BoldItalic.ttf 44.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.21.41-pm.png 44.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/neuron.png 44.0 kB
  • Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 06_Temporal-Difference Methods/data.json 43.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.38.11-pm.png 43.8 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/two-layer-graph.png 43.8 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/faces.png 43.8 kB
  • assets/css/jquery.mCustomScrollbar.min.css 42.8 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/aws-add-sec-group.png 42.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-3.54.17-pm.png 42.7 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.26.22-pm.png 42.2 kB
  • assets/css/fonts/KaTeX_Math-Italic.ttf 41.4 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/conda-environments.png 41.1 kB
  • Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 05_Matrix Math and NumPy Refresher/data.json 40.4 kB
  • assets/css/fonts/KaTeX_AMS-Regular.woff 40.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-6.01.16-pm.png 40.1 kB
  • assets/css/fonts/KaTeX_Math-BoldItalic.ttf 39.7 kB
  • assets/css/fonts/KaTeX_Main-Regular.woff 39.4 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/local-minima.png 39.0 kB
  • Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 01_Cloud Computing/data.json 38.6 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/maxpool.jpeg 38.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-3.38.43-pm.png 37.9 kB
  • Part 02_Neural Networks/Module 01_Neural Networks/Lesson 06_Sentiment Analysis/data.json 37.9 kB
  • assets/css/fonts/KaTeX_Main-Bold.woff 36.8 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/12. Backpropagation.html 36.5 kB
  • assets/css/fonts/KaTeX_Typewriter-Regular.ttf 36.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/grid-layer-1.png 36.1 kB
  • assets/css/fonts/KaTeX_Fraktur-Bold.ttf 36.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-3.53.12-pm.png 35.9 kB
  • Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 05_Teach a Quadcopter How to Fly/data.json 35.8 kB
  • assets/css/fonts/KaTeX_Fraktur-Regular.ttf 34.7 kB
  • Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 03_Anaconda/data.json 34.3 kB
  • Part 02_Neural Networks/Module 01_Neural Networks/Lesson 07_Keras/data.json 34.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-4.47.47-pm.png 34.1 kB
  • assets/css/fonts/KaTeX_SansSerif-Bold.ttf 34.0 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.37.22-am.png 34.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.16.55-pm.png 33.3 kB
  • assets/css/fonts/KaTeX_AMS-Regular.woff2 33.2 kB
  • assets/css/fonts/KaTeX_Main-Regular.woff2 32.9 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curve.png 32.2 kB
  • Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 03_CNNs in TensorFlow/data.json 32.1 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/relu-network.png 31.8 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/session.png 31.6 kB
  • assets/css/fonts/KaTeX_SansSerif-Italic.ttf 31.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.10.10-pm.png 31.1 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-components.png 31.0 kB
  • assets/css/fonts/KaTeX_Main-Bold.woff2 30.6 kB
  • assets/css/fonts/KaTeX_SansSerif-Regular.ttf 30.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/pooling-dims.png 29.9 kB
  • Part 08-Module 01-Lesson 02_Regression/img/lin-reg-no-outliers.png 29.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/conv-dims.png 29.2 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.27.58-pm.png 28.4 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-20-at-12.02.06-pm.png 28.3 kB
  • Part 08-Module 01-Lesson 02_Regression/img/lin-reg-w-outliers.png 28.2 kB
  • Part 08_Additional Lessons/Module 01_Regression, Eval/Lesson 01_Evaluation Metrics/data.json 27.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.04.21-am.png 27.7 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-4.34.08-pm.png 27.5 kB
  • assets/css/fonts/KaTeX_Main-Italic.woff 27.2 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/img/f3iwvmld-400x400.jpg 27.1 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/gradient-descent-convergence.gif 27.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.54.48-pm.png 26.8 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/05. Implementing Gradient Descent.html 26.7 kB
  • Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 04_Hyperparameters/data.json 26.6 kB
  • Part 08-Module 01-Lesson 02_Regression/img/just-a-simple-lin-reg.png 26.6 kB
  • assets/css/fonts/KaTeX_Main-BoldItalic.woff 26.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/gradient-descent-divergence.gif 26.2 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-11.35.38-am.png 25.8 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/07. Quiz Mini-batch.html 25.8 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/max-pooling.png 25.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.02.16-pm.png 25.8 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/img/autoencoder-1.png 25.3 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/weights-0-1-2.png 25.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/tensorflow-825x510.png 25.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.05.00-pm.png 24.9 kB
  • assets/css/fonts/KaTeX_Script-Regular.ttf 24.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.02.19-pm.png 24.8 kB
  • assets/css/plyr.css 24.2 kB
  • Part 08-Module 01-Lesson 02_Regression/img/quadraticlinearregression.png 24.1 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/13. Stochastic Gradient Descent.html 24.0 kB
  • assets/css/fonts/KaTeX_Math-Italic.woff 23.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-5.14.13-pm.png 23.8 kB
  • assets/css/fonts/KaTeX_Fraktur-Bold.woff 23.4 kB
  • assets/css/fonts/KaTeX_Math-BoldItalic.woff 23.2 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/launch-instance.png 23.1 kB
  • assets/css/fonts/KaTeX_Main-Italic.woff2 23.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-11.43.26-am.png 23.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/sequence-to-sequence-unrolled-encoder-decoder.png 23.0 kB
  • assets/css/fonts/KaTeX_Fraktur-Regular.woff 22.8 kB
  • assets/css/fonts/KaTeX_Main-BoldItalic.woff2 22.2 kB
  • assets/css/katex.min.css 22.1 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/04. Quiz TensorFlow Linear Function.html 21.8 kB
  • Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 02_Long Short-Term Memory Networks (LSTM)/data.json 21.8 kB
  • Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 02_Applying Deep Learning/data.json 21.5 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/08. Implementing Backpropagation.html 21.3 kB
  • Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 01_Generative Adversarial Networks/data.json 21.1 kB
  • Part 02-Module 01-Lesson 07_Keras/img/student-acceptance.png 21.0 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer Perceptrons.html 20.9 kB
  • assets/css/fonts/KaTeX_Typewriter-Regular.woff 20.9 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/mnist-012.png 20.7 kB
  • Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 01_RL in Continuous Spaces/data.json 20.6 kB
  • assets/css/fonts/KaTeX_Fraktur-Bold.woff2 20.5 kB
  • assets/css/fonts/KaTeX_Math-Italic.woff2 20.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.51.54-pm.png 20.3 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.pt-BR.vtt 20.3 kB
  • assets/css/fonts/KaTeX_Math-BoldItalic.woff2 20.0 kB
  • Part 02_Neural Networks/Module 01_Neural Networks/Lesson 04_GPU Workspaces Demo/data.json 19.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html 19.9 kB
  • assets/css/fonts/KaTeX_Fraktur-Regular.woff2 19.9 kB
  • assets/css/fonts/KaTeX_Caligraphic-Bold.ttf 19.6 kB
  • Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 02_Deep Q-Learning/data.json 19.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/29. Mini Project Dermatologist AI.html 19.5 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/14. SGD Solution.html 19.4 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/07. Linear Transform.html 19.3 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation.html 19.2 kB
  • assets/css/fonts/KaTeX_SansSerif-Bold.woff 19.2 kB
  • assets/css/fonts/KaTeX_Caligraphic-Regular.ttf 19.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.en.vtt 18.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. Backpropagation- Example (part b).html 18.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning.html 18.8 kB
  • Part 02_Neural Networks/Module 01_Neural Networks/Lesson 03_Training Neural Networks/data.json 18.5 kB
  • assets/css/fonts/KaTeX_SansSerif-Italic.woff 18.1 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt 18.1 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.pt-BR.vtt 18.0 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt 17.6 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/09. Cost.html 17.5 kB
  • assets/css/fonts/KaTeX_Typewriter-Regular.woff2 17.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. Backpropagation Through Time (part b).html 17.5 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/15. Exploration vs. Exploitation.html 17.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.08-pm.png 17.3 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.en.vtt 17.3 kB
  • Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/data.json 17.1 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/08. Sigmoid Function.html 17.1 kB
  • assets/css/fonts/KaTeX_SansSerif-Regular.woff 16.8 kB
  • Part 08-Module 01-Lesson 02_Regression/15. Linear Regression in scikit-learn.html 16.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html 16.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.zh-CN.vtt 16.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.pt-BR.vtt 16.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/14. Quiz Dimensionality.html 16.2 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt 16.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/06. Deadline Policy.html 16.1 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/review-and-launch.png 16.1 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.en.vtt 16.0 kB
  • assets/css/fonts/KaTeX_SansSerif-Bold.woff2 16.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html 15.6 kB
  • index.rar 15.6 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.en.vtt 15.5 kB
  • Part 02-Module 01-Lesson 07_Keras/02. Keras.html 15.3 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/01. Introduction to GPU Workspaces.html 15.2 kB
  • assets/css/fonts/KaTeX_SansSerif-Italic.woff2 15.2 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/19. MC Control Constant-alpha, Part 2.html 15.2 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Refresh on Confusion Matrices.html 15.1 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt 15.1 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/22. Summary.html 15.0 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/14. Save and Restore TensorFlow Models.html 14.9 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.pt-BR.vtt 14.9 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/04. Forward Propagation.html 14.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. The Feedforward Process.html 14.6 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt 14.6 kB
  • Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 02_Deep Convolutional GANs/data.json 14.6 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/16. Quiz One-Step Dynamics, Part 2.html 14.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Backpropagation - Example (part a).html 14.5 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.pt-BR.vtt 14.5 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.en.vtt 14.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.42-pm.png 14.5 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/14. Quiz Epsilon-Greedy Policies.html 14.4 kB
  • Part 08-Module 01-Lesson 02_Regression/19. (Optional) Closed form Solution Math.html 14.3 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.en.vtt 14.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/24. Visualizing CNNs (Part 2).html 14.2 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.en.vtt 14.2 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.pt-BR.vtt 14.2 kB
  • Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 03_Implementation of RNN and LSTM/data.json 14.2 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.zh-CN.vtt 14.1 kB
  • assets/css/fonts/KaTeX_SansSerif-Regular.woff2 14.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.pt-BR.vtt 14.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.en.vtt 14.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. Backpropagation Through Time (part c).html 13.9 kB
  • assets/css/fonts/KaTeX_Script-Regular.woff 13.9 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/16. Quiz TensorFlow Dropout.html 13.9 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/aws-create-account.png 13.8 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.zh-CN.vtt 13.8 kB
  • Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 04_Semi-Supervised Learning/data.json 13.8 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/27. Summary.html 13.7 kB
  • Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 07_CNN Project Dog Breed Classifier/rubric.json 13.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/23. Some more math.html 13.4 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-network.png 13.4 kB
  • Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 01_Introduction to RL/data.json 13.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary.html 13.4 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.en.vtt 13.3 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/08. Epochs.html 13.2 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-10-02-at-10.41.44-am.png 13.2 kB
  • assets/css/fonts/KaTeX_Size1-Regular.ttf 13.2 kB
  • Part 08-Module 01-Lesson 02_Regression/17. Multiple Linear Regression.html 13.1 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/03. Data in NumPy.html 13.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/06. An Iterative Method, Part 2.html 13.1 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/edit-security-group.png 13.1 kB
  • Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/Project Rubric - Dog Breed Classifier.html 13.1 kB
  • Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 07_Generate TV Scripts/rubric.json 13.0 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/06. Learning and Loss.html 13.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.pt-BR.vtt 12.9 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/05. Forward Propagation Solution.html 12.9 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.pt-BR.vtt 12.8 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.en.vtt 12.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html 12.8 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/09. Quiz Goals and Rewards.html 12.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs.html 12.7 kB
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/Project Rubric - Generate TV Scripts.html 12.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/04. Program Structure.html 12.6 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt 12.6 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/12. Quiz Optimal Policies.html 12.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. Backpropagation Through Time (part a).html 12.5 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/09. Implementation.html 12.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt 12.5 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/07. CNNs in TensorFlow.html 12.5 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.pt-BR.vtt 12.5 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.en.vtt 12.4 kB
  • assets/css/fonts/KaTeX_Size2-Regular.ttf 12.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html 12.4 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.zh-CN.vtt 12.4 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent.html 12.4 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/04. Quiz Test Your Intuition.html 12.4 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/07. Quiz State-Value Functions.html 12.4 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.zh-CN.vtt 12.4 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt 12.4 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/05. Launch an Instance.html 12.3 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.zh-CN.vtt 12.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. RNN (part b).html 12.3 kB
  • assets/css/fonts/KaTeX_Script-Regular.woff2 12.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html 12.2 kB
  • Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 06_Transfer Learning in TensorFlow/data.json 12.2 kB
  • assets/css/fonts/KaTeX_Caligraphic-Bold.woff 12.1 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt 12.1 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/03. Quiz Interpret the Policy.html 12.0 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.en.vtt 12.0 kB
  • Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 05_Embeddings and Word2vec/data.json 12.0 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. What are Jupyter notebooks.html 12.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/22. BPTT Quiz 3.html 12.0 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.en.vtt 12.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html 11.9 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/11. Action Values.html 11.9 kB
  • assets/css/fonts/KaTeX_Caligraphic-Regular.woff 11.9 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/19. Summary.html 11.9 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/02. Style Transfer.html 11.8 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/index.jpg 11.8 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/neww-nk-fixed.gif 11.8 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/12. Quiz Pole-Balancing.html 11.7 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/13. Deep Neural Network in TensorFlow.html 11.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/13. Convolutional Layers in Keras.html 11.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt 11.6 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.pt-BR.vtt 11.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. Backpropagation- Theory.html 11.6 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters.html 11.5 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.pt-BR.vtt 11.5 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/11. Gradient Descent.html 11.5 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt 11.4 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.en.vtt 11.3 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/07. Quiz An Iterative Method.html 11.3 kB
  • assets/css/fonts/KaTeX_Size4-Regular.ttf 11.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.40.54-pm.png 11.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt 11.3 kB
  • Part 02-Module 01-Lesson 07_Keras/03. Pre-Lab Student Admissions in Keras.html 11.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/11. Backpropagation Quiz.html 11.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.en.vtt 11.2 kB
  • Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.en.vtt 11.1 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt 11.1 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt 11.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/18. Finite MDPs.html 11.0 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.en.vtt 11.0 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.zh-CN.vtt 11.0 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.zh-CN.vtt 11.0 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt 10.9 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.en.vtt 10.9 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/save-2.png 10.9 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/15. Quiz One-Step Dynamics, Part 1.html 10.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.55-pm.png 10.8 kB
  • Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/02. Instructions.html 10.8 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. Refresh on ROC Curves.html 10.8 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/13. Summary.html 10.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. Feedforward Neural Network-Reminder.html 10.7 kB
  • Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.pt-BR.vtt 10.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html 10.6 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt 10.6 kB
  • assets/css/fonts/KaTeX_Caligraphic-Bold.woff2 10.6 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/08. Mini Project Training an MLP on MNIST.html 10.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/15. More on Sensitivity and Specificity.html 10.6 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.pt-BR.vtt 10.5 kB
  • Part 08-Module 01-Lesson 02_Regression/14. Absolute Error vs Squared Error.html 10.5 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.zh-CN.vtt 10.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html 10.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/16. Max Pooling Layers in Keras.html 10.5 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/04. Launching the notebook server.html 10.4 kB
  • assets/css/fonts/KaTeX_Caligraphic-Regular.woff2 10.4 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.pt-BR.vtt 10.4 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.en.vtt 10.4 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/04. Gradient Descent The Code.html 10.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html 10.4 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.zh-CN.vtt 10.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. RNN History.html 10.3 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/26. Check Your Understanding.html 10.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs for Image Classification.html 10.3 kB
  • Part 01-Module 01-Lesson 03_Anaconda/03. What is Anaconda.html 10.3 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/06. DDPG Agent.html 10.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.en.vtt 10.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.zh-CN.vtt 10.2 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.en.vtt 10.2 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations.html 10.2 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/15. Finetuning.html 10.2 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt 10.2 kB
  • Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 07_CNN Project Dog Breed Classifier/data.json 10.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/02. OpenAI Gym FrozenLakeEnv.html 10.1 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt 10.1 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/11. NumPy Quiz.html 10.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/07. Feedforward Quiz.html 10.1 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/17. Summary.html 10.0 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. Solution Diagnosing Cancer.html 10.0 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt 10.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.04.24-pm.png 9.9 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/03. MiniFlow Architecture.html 9.9 kB
  • Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 06_Sentiment Prediction RNN/data.json 9.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-11.56.27-am.png 9.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html 9.9 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.en.vtt 9.9 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/02. Graphs.html 9.9 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.zh-CN.vtt 9.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Lab Gradient Descent.html 9.8 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/24. Implementation.html 9.8 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.en.vtt 9.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html 9.8 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.pt-BR.vtt 9.8 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.en.vtt 9.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html 9.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt 9.7 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.en.vtt 9.7 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.zh-CN.vtt 9.7 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt 9.7 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/09. Magic keywords.html 9.6 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/03. Your Workspace.html 9.6 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/21. Implementation.html 9.6 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt 9.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. From RNN to LSTM.html 9.5 kB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/Project Description - Your first neural network.html 9.5 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.en.vtt 9.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt 9.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. Skin Cancer.html 9.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs (Part 1).html 9.5 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.zh-CN.vtt 9.5 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/15. Implementation.html 9.5 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/04. DDPG Actor.html 9.5 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.zh-CN.vtt 9.4 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/12. Quiz TensorFlow ReLUs.html 9.4 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/01. Project Intro.html 9.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt 9.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html 9.3 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.pt-BR.vtt 9.3 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.en.vtt 9.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.pt-BR.vtt 9.3 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.en.vtt 9.3 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.pt-BR.vtt 9.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html 9.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html 9.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html 9.3 kB
  • Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 05_Autoencoders/data.json 9.3 kB
  • Part 02-Module 01-Lesson 07_Keras/07. Pre-Lab IMDB Data in Keras.html 9.3 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/x-mn.png 9.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html 9.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.pt-BR.vtt 9.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/07. Udacity Support.html 9.2 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/07. Markdown cells.html 9.2 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/06. Quiz TensorFlow Cross Entropy.html 9.2 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/11. Quiz Incremental Mean.html 9.2 kB
  • Part 02_Neural Networks/Module 01_Neural Networks/Lesson 05_Project Predicting Bike Sharing Data/data.json 9.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.en.vtt 9.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. RNN (part a).html 9.2 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. Quiz Sensitivity and Specificity.html 9.2 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/01. Convolutional Layers.html 9.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png 9.2 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.pt-BR.vtt 9.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/09. Mini Project 2.html 9.1 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/04. Implementation.html 9.1 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/06. Login to the Instance.html 9.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.zh-CN.vtt 9.1 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/img/launch.png 9.1 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras.html 9.1 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/05. Notebook interface.html 9.1 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.zh-CN.vtt 9.1 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.en.vtt 9.0 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.en.vtt 9.0 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example.html 9.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.en.vtt 9.0 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt 9.0 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/02. OpenAI Gym BlackjackEnv.html 9.0 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.pt-BR.vtt 9.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Lab Analyzing Student Data.html 9.0 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt 8.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt 8.9 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/03. Materials.html 8.9 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.en.vtt 8.9 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.en.vtt 8.9 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.en.vtt 8.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.en.vtt 8.9 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/10. Transposes in NumPy.html 8.8 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/05. Element-wise Operations in NumPy.html 8.8 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/05. DDPG Critic.html 8.8 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/05. Quiz TensorFlow Softmax.html 8.8 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt 8.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html 8.8 kB
  • Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions.html 8.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy.html 8.8 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/12. Implementation.html 8.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.45.22-pm.png 8.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/20. BPTT Quiz 1.html 8.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras.html 8.7 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/05. Quiz Episodic or Continuing.html 8.7 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.en.vtt 8.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. Quiz Data Challenges.html 8.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.en.vtt 8.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt 8.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images.html 8.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. Quiz ROC Curve.html 8.7 kB
  • Part 08-Module 01-Lesson 02_Regression/20. Linear Regression Warnings.html 8.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.pt-BR.vtt 8.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/27. Useful Resources.html 8.6 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/03. Hello, Tensor World!.html 8.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. Quiz Random vs Pre-initialized Weights.html 8.6 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.pt-BR.vtt 8.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt 8.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.en.vtt 8.5 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.en.vtt 8.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. RNN Applications.html 8.5 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.zh-CN.vtt 8.5 kB
  • Part 01-Module 01-Lesson 03_Anaconda/06. Managing environments.html 8.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html 8.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures.html 8.5 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/02. Installing TensorFlow.html 8.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/15. Unfolded Model Quiz.html 8.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html 8.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. Quiz Diagnosing Cancer.html 8.5 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.pt-BR.vtt 8.5 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.zh-CN.vtt 8.4 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/08. Troubleshooting.html 8.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.pt-BR.vtt 8.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html 8.4 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/07. Implementation.html 8.4 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.en.vtt 8.4 kB
  • Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 03_Policy-Based Methods/data.json 8.4 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.zh-CN.vtt 8.4 kB
  • Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 04_Weight Initialization/data.json 8.4 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.zh-CN.vtt 8.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/21. BPTT Quiz 2.html 8.4 kB
  • Part 08-Module 01-Lesson 02_Regression/13. Mini-batch Gradient Descent.html 8.4 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.pt-BR.vtt 8.4 kB
  • assets/css/fonts/KaTeX_Size3-Regular.ttf 8.4 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/02. Quiz Convolutional Layers.html 8.3 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt 8.3 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/08. NumPy Matrix Multiplication.html 8.3 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.zh-CN.vtt 8.3 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.3 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.3 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/09. Pre-Lab NotMNIST in TensorFlow.html 8.3 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.zh-CN.vtt 8.3 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.en.vtt 8.3 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.en.vtt 8.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html 8.3 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/08. Implementation.html 8.3 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.en.vtt 8.3 kB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/Project Rubric - Your first neural network.html 8.3 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/20. Mini Project 6.html 8.2 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/03. Get Access to GPU Instances.html 8.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.2 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt 8.2 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/16. Analyzing Performance.html 8.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html 8.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/12. Mini Project 3.html 8.2 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.zh-CN.vtt 8.2 kB
  • Part 01-Module 01-Lesson 03_Anaconda/05. Managing packages.html 8.2 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.pt-BR.vtt 8.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif 8.2 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt 8.1 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/21. Mini Project Image Augmentation in Keras.html 8.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html 8.1 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt 8.1 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/17. Mini Project 5.html 8.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html 8.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html 8.1 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.zh-CN.vtt 8.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html 8.1 kB
  • Part 02_Neural Networks/Module 01_Neural Networks/Lesson 05_Project Predicting Bike Sharing Data/rubric.json 8.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html 8.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.pt-BR.vtt 8.0 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers (Part 2).html 8.0 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/19. Mini Project CNNs in Keras.html 8.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html 8.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.pt-BR.vtt 8.0 kB
  • Part 08-Module 01-Lesson 02_Regression/02. Quiz Housing Prices.html 8.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html 8.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.pt-BR.vtt 8.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html 8.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html 8.0 kB
  • Part 08-Module 01-Lesson 02_Regression/12. Mean vs Total Error.html 8.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html 8.0 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/01. Intro.html 8.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html 8.0 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.en.vtt 8.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 8.0 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.pt-BR.vtt 8.0 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. Image Challenges.html 8.0 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dcdl2-grad-fixed.gif 8.0 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.pt-BR.vtt 8.0 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en-US.vtt 7.9 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/06. Number of Training Iterations Epochs.html 7.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras.html 7.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs for Image Classification.html 7.9 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/02. OpenAI Gym CliffWalkingEnv.html 7.9 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/18. Implementation.html 7.9 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt 7.9 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.pt-BR.vtt 7.9 kB
  • Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/Project Description - Dog Breed Classifier.html 7.9 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/02. Resources.html 7.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix.html 7.9 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt 7.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt 7.8 kB
  • Part 05-Module 01-Lesson 03_Generate Faces/Project Rubric - Generate Faces.html 7.8 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/Project Rubric - Teach a Quadcopter How to Fly.html 7.8 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.pt-BR.vtt 7.8 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt 7.8 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.pt-BR.vtt 7.8 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/11. Two-layer Neural Network.html 7.8 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.pt-BR.vtt 7.8 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/17. Doing More With Your GAN.html 7.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt 7.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.en.vtt 7.7 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/04. Implementation.html 7.7 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/03. Learning Plan.html 7.7 kB
  • Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/01. Introduction.html 7.7 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.en.vtt 7.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. RNN Introduction.html 7.7 kB
  • Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 04_Actor-Critic Methods/data.json 7.7 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.en.vtt 7.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt 7.7 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.pt-BR.vtt 7.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random vs Pre-initialized Weight.html 7.6 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction.html 7.6 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.en.vtt 7.6 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.pt-BR.vtt 7.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivity and Specificity.html 7.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What is the network looking at.html 7.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/08. Community Guidelines.html 7.6 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well .html 7.6 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.zh-CN.vtt 7.6 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example.html 7.5 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/20. Implementation.html 7.5 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en.vtt 7.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1.html 7.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training the Neural Network.html 7.5 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/11. Creating a slideshow.html 7.5 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.en.vtt 7.5 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt 7.5 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.pt-BR.vtt 7.5 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.en.vtt 7.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction.html 7.5 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.en.vtt 7.5 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/07. False Negatives and Positives.html 7.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges.html 7.5 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.zh-CN.vtt 7.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating the Training.html 7.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers.html 7.5 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.pt-BR.vtt 7.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification.html 7.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.5 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Probability of Skin Cancer.html 7.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve.html 7.5 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/16. Implementation.html 7.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. Comparing our Results with Doctors.html 7.4 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.pt-BR.vtt 7.4 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.pt-BR.vtt 7.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix.html 7.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/10. Mini Project DP (Parts 0 and 1).html 7.4 kB
  • Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/01. Enroll in your next ND program.html 7.4 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/04. Max Pooling Layers.html 7.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/13. Mini Project DP (Part 2).html 7.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/16. Mini Project DP (Part 3).html 7.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/19. Mini Project DP (Part 4).html 7.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/22. Mini Project DP (Part 5).html 7.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/25. Mini Project DP (Part 6).html 7.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization.html 7.4 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis.html 7.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. RNN- Example.html 7.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Intro.html 7.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion.html 7.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.05.19-pm.png 7.4 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.en.vtt 7.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The data.html 7.4 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.en.vtt 7.4 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.zh-CN.vtt 7.4 kB
  • Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent.html 7.4 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/14. Implementation.html 7.4 kB
  • Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 03_Generate Faces/rubric.json 7.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.zh-CN.vtt 7.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.3 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.en.vtt 7.3 kB
  • Part 08-Module 01-Lesson 02_Regression/24. Neural Networks Playground.html 7.3 kB
  • Part 01-Module 01-Lesson 03_Anaconda/04. Installing Anaconda.html 7.3 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.pt-BR.vtt 7.3 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/15. Mini Project 4.html 7.3 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/04. Learning Rate.html 7.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers (Part 1).html 7.3 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.en.vtt 7.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity.html 7.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding.html 7.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.en.vtt 7.2 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.en.vtt 7.2 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.pt-BR.vtt 7.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/06. Mini Project 1.html 7.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt 7.2 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.pt-BR.vtt 7.2 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.zh-CN.vtt 7.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/26. Wrap Up.html 7.1 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.zh-CN.vtt 7.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. RNN- Unfolded Model.html 7.1 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/10. Quiz.html 7.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.zh-CN.vtt 7.1 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.en.vtt 7.1 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.en.vtt 7.1 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/05. Mini Project MC (Parts 0 and 1).html 7.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.zh-CN.vtt 7.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation.html 7.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration.html 7.1 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/08. Mini Project MC (Part 2).html 7.1 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/17. Mini Project MC (Part 3).html 7.1 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/21. Mini Project MC (Part 4).html 7.1 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution.html 7.0 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.pt-BR.vtt 7.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights.html 7.0 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method, Part 1.html 7.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/04. The Notebooks.html 7.0 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt 7.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.zh-CN.vtt 7.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. Introducing Ortal .html 7.0 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement.html 7.0 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/05. Quiz Max Pooling Layers.html 7.0 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration.html 7.0 kB
  • assets/css/fonts/KaTeX_Size1-Regular.woff 7.0 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.en.vtt 7.0 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration.html 7.0 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return.html 7.0 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation.html 7.0 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.zh-CN.vtt 7.0 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.en.vtt 6.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt 6.9 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Meet Andrew.html 6.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.9 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/07. Ornstein–Uhlenbeck Noise.html 6.9 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/04. Quiz Space Representations.html 6.9 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.pt-BR.vtt 6.9 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution.html 6.9 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution.html 6.9 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution.html 6.9 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution.html 6.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/10. Recall.html 6.9 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.en.vtt 6.9 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.en.vtt 6.9 kB
  • Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution.html 6.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.zh-CN.vtt 6.9 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction.html 6.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/06. Regularization.html 6.8 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/06. Build a GAN.html 6.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.8 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/10. Cost Solution.html 6.8 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2.html 6.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.pt-BR.vtt 6.8 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions.html 6.8 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network.html 6.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/diagonal-line-2.png 6.8 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications.html 6.8 kB
  • Part 01-Module 01-Lesson 03_Anaconda/07. More environment actions.html 6.8 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/09. Precision.html 6.7 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/01. Transfer Learning Intro.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.en.vtt 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices.html 6.7 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/11. Implementation.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/01. Intro.html 6.7 kB
  • Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/01. CNN Project.html 6.7 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error.html 6.7 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.en.vtt 6.7 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/04. Fitting a Line Through Data.html 6.7 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error.html 6.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt 6.7 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration.html 6.7 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha, Part 1.html 6.7 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values.html 6.7 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions.html 6.7 kB
  • assets/css/fonts/KaTeX_Size2-Regular.woff 6.7 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/22. Regularization.html 6.7 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise.html 6.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/05. Moving a Line.html 6.7 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/10. Converting notebooks.html 6.7 kB
  • Part 01-Module 01-Lesson 03_Anaconda/09. On Python versions at Udacity.html 6.7 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2.html 6.7 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network.html 6.7 kB
  • Part 08-Module 01-Lesson 02_Regression/07. Square Trick.html 6.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.7 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask.html 6.7 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction.html 6.6 kB
  • Part 08-Module 01-Lesson 02_Regression/25. Outro.html 6.6 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.zh-CN.vtt 6.6 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem.html 6.6 kB
  • Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression.html 6.6 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Conclusion.html 6.6 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.en.vtt 6.6 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym.html 6.6 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.pt-BR.vtt 6.6 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.zh-CN.vtt 6.6 kB
  • Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt 6.6 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.zh-CN.vtt 6.6 kB
  • Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 03_Generate Faces/data.json 6.6 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/11. Implementing Deep Q-Learning.html 6.5 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/01. Semi-supervised Learning.html 6.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.5 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.en.vtt 6.5 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/01. Embeddings Intro.html 6.5 kB
  • Part 01-Module 01-Lesson 03_Anaconda/08. Best practices.html 6.5 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/10. Quiz Action-Value Functions.html 6.5 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.zh-CN.vtt 6.5 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.pt-BR.vtt 6.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.pt-BR.vtt 6.5 kB
  • assets/css/fonts/KaTeX_Size4-Regular.woff 6.5 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements.html 6.4 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. How GANs work.html 6.4 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt 6.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.zh-CN.vtt 6.4 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.zh-CN.vtt 6.4 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/09. RNN Hyperparameters.html 6.4 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.zh-CN.vtt 6.4 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.pt-BR.vtt 6.4 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/10. Lab NotMNIST in TensorFlow.html 6.4 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/05. Mini Project TD (Parts 0 and 1).html 6.4 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction.html 6.4 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/09. Mini Project TD (Part 2).html 6.4 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/12. Mini Project TD (Part 3).html 6.4 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/15. Mini Project TD (Part 4).html 6.4 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt 6.4 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/04. Flappy Bird.html 6.4 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/03. Solution Convolutional Layers.html 6.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.pt-BR.vtt 6.3 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions.html 6.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/01. Deep Convolutional GANs.html 6.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.3 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.pt-BR.vtt 6.3 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy.html 6.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.en.vtt 6.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt 6.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt 6.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt 6.2 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/04. Apply Credits.html 6.2 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks.html 6.2 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.zh-CN.vtt 6.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt 6.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.pt-BR.vtt 6.2 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solution.html 6.2 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.en.vtt 6.2 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values.html 6.2 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.en.vtt 6.2 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1.html 6.2 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions.html 6.2 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.zh-CN.vtt 6.2 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited.html 6.2 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis.html 6.2 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games and Equilibria.html 6.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw1-grad-fixed.gif 6.2 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/10. Sources & References.html 6.2 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.zh-CN.vtt 6.2 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/03. Batch Normalization.html 6.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.pt-BR.vtt 6.2 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax.html 6.2 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. Introducing Ian Goodfellow.html 6.2 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.pt-BR.vtt 6.2 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward.html 6.2 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa.html 6.1 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.en.vtt 6.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution.html 6.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.pt-BR.vtt 6.1 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/03. Replay Buffer.html 6.1 kB
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/Project Description - Generate TV Scripts.html 6.1 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.en.vtt 6.1 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.en.vtt 6.1 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions.html 6.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. What can you do with GANs.html 6.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2.html 6.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3.html 6.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.zh-CN.vtt 6.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. Practical tips and tricks for training GANs.html 6.1 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.en.vtt 6.1 kB
  • Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 05_Teach a Quadcopter How to Fly/rubric.json 6.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Get started with a GAN.html 6.1 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning.html 6.1 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/01. Autoencoder Lesson Intro.html 6.1 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/07. Number of Hidden Units Layers.html 6.1 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm.html 6.1 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt 6.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network.html 6.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.en.vtt 6.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network.html 6.1 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/01. Overview.html 6.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.pt-BR.vtt 6.1 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.pt-BR.vtt 6.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers.html 6.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network.html 6.1 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction.html 6.0 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/01. Intro to LSTM.html 6.0 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses.html 6.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 6.0 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN.html 6.0 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.zh-CN.vtt 6.0 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.en.vtt 6.0 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.pt-BR.vtt 6.0 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.en.vtt 6.0 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.pt-BR.vtt 6.0 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.zh-CN.vtt 5.9 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/01. Intro.html 5.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt 5.9 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/12. TensorFlow Implementation.html 5.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.pt-BR.vtt 5.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/index.html 5.9 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/03. DeepTraffic.html 5.9 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/06. Exercise Discretization.html 5.9 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/jupyter-logo.png 5.9 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.pt-BR.vtt 5.9 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.zh-CN.vtt 5.9 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/08. Exercise Tile Coding.html 5.9 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/17. Outro.html 5.9 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. The Use Gate.html 5.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.en.vtt 5.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/diagonal-line-1.png 5.9 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/06. Solution Max Pooling Layers.html 5.9 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html 5.9 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.en.vtt 5.9 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.zh-CN.vtt 5.9 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World.html 5.9 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. The Learn Gate.html 5.9 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.en.vtt 5.9 kB
  • Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 07_Generate TV Scripts/data.json 5.9 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.zh-CN.vtt 5.8 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.8 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.8 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt 5.8 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay.html 5.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/04. Overfitting and Underfitting.html 5.8 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0).html 5.8 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0).html 5.8 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/Project Description - Teach a Quadcopter How to Fly.html 5.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt 5.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.pt-BR.vtt 5.8 kB
  • assets/css/fonts/KaTeX_Size1-Regular.woff2 5.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.8 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.pt-BR.vtt 5.8 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network.html 5.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt 5.8 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/04. Character-wise RNN Notebook.html 5.8 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/15. Outro.html 5.8 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning.html 5.8 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/04. DCGAN Implementation.html 5.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization.html 5.8 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. The Forget Gate.html 5.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/01. Instructor.html 5.8 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.pt-BR.vtt 5.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/05. Early Stopping.html 5.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.en.vtt 5.8 kB
  • Part 02-Module 01-Lesson 07_Keras/05. Optimizers in Keras.html 5.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient.html 5.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.en.vtt 5.8 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning.html 5.8 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.zh-CN.vtt 5.8 kB
  • Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.en.vtt 5.7 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/inputs-matrix.png 5.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate Decay.html 5.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.en.vtt 5.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization 2.html 5.7 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets.html 5.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart.html 5.7 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.en.vtt 5.7 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation.html 5.7 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.zh-CN.vtt 5.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima.html 5.7 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate.html 5.7 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces.html 5.7 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other architectures.html 5.7 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation.html 5.7 kB
  • Part 01-Module 01-Lesson 03_Anaconda/02. Introduction.html 5.7 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator.html 5.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum.html 5.7 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/09. Prerequisites.html 5.7 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction.html 5.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing.html 5.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout.html 5.7 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning.html 5.7 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/01. Mean Squared Error Function.html 5.7 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. The Remember Gate.html 5.7 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/06. Code cells.html 5.7 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1.html 5.7 kB
  • Part 02-Module 01-Lesson 07_Keras/01. Intro.html 5.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt 5.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.6 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.6 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/02. Quadcopter workspace.html 5.6 kB
  • Part 07_Guaranteed Admission into your next Nanodegree/Module 01_Guaranteed Admission into your next Nanodegree/Lesson 01_Enroll in your next Nanodegree program/data.json 5.6 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.en.vtt 5.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You Will Build.html 5.6 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Classification with GANs.html 5.6 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions.html 5.6 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise.html 5.6 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN.html 5.6 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/01. Welcome to MiniFlow.html 5.6 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization.html 5.6 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding.html 5.6 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions.html 5.6 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN.html 5.6 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution.html 5.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.pt-BR.vtt 5.6 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/01. Intro.html 5.6 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding.html 5.6 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning.html 5.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting Set Up.html 5.6 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution.html 5.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/index.html 5.6 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network.html 5.6 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.pt-BR.vtt 5.6 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.en.vtt 5.6 kB
  • assets/css/fonts/KaTeX_Size2-Regular.woff2 5.6 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build the Network Solution.html 5.6 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise.html 5.6 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution.html 5.6 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt 5.6 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary.html 5.6 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning.html 5.6 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.en-US.vtt 5.6 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/08. CNNs - Additional Resources.html 5.6 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.en.vtt 5.6 kB
  • Part 05-Module 01-Lesson 03_Generate Faces/Project Description - Generate Faces.html 5.5 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output and Loss Solutions.html 5.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.en.vtt 5.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt 5.5 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/01. Introduction.html 5.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt 5.5 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution.html 5.5 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent The Math.html 5.5 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/08. Keyboard shortcuts.html 5.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.en.vtt 5.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.5 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/05. Books to Read.html 5.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.en.vtt 5.5 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-wise RNNs.html 5.5 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution.html 5.5 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.en.vtt 5.5 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep.html 5.5 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/02. Create an AWS Account.html 5.5 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence Batching.html 5.5 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build the Network.html 5.5 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.pt-BR.vtt 5.5 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.en.vtt 5.5 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.en.vtt 5.5 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Precision and Recall.html 5.5 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dsdl1.png 5.5 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example.html 5.5 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.en.vtt 5.5 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/01. Instructor.html 5.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.5 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies.html 5.5 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.4 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss.html 5.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.zh-CN.vtt 5.4 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.pt-BR.vtt 5.4 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up.html 5.4 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output.html 5.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.en.vtt 5.4 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt 5.4 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size.html 5.4 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations.html 5.4 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell.html 5.4 kB
  • Part 02-Module 01-Lesson 07_Keras/04. Lab Student Admissions in Keras.html 5.4 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.zh-CN.vtt 5.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.4 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources.html 5.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt 5.4 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality.html 5.4 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/01. Introducing Jay.html 5.4 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.zh-CN.vtt 5.4 kB
  • Part 02-Module 01-Lesson 07_Keras/08. Lab IMDB Data in Keras.html 5.4 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies.html 5.4 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.en.vtt 5.4 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/03. Installing Jupyter Notebook.html 5.4 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/index.html 5.4 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/01. Intro.html 5.4 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.zh-CN.vtt 5.4 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.pt-BR.vtt 5.4 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.zh-CN.vtt 5.4 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.pt-BR.vtt 5.4 kB
  • Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt 5.4 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2.html 5.3 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion Matrix 2.html 5.3 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/12. Finishing up.html 5.3 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/09. Further Reading.html 5.3 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes.html 5.3 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Dimensions.html 5.3 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.en.vtt 5.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building and Training the Network.html 5.3 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting it All Together.html 5.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt 5.3 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. Architecture of LSTM.html 5.3 kB
  • Part 01-Module 01-Lesson 03_Anaconda/01. Instructor.html 5.3 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.zh-CN.vtt 5.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.en.vtt 5.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameter Solutions.html 5.3 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.en.vtt 5.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN and the Generator.html 5.3 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.zh-CN.vtt 5.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution.html 5.3 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.pt-BR.vtt 5.3 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. Basics of LSTM.html 5.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.zh-CN.vtt 5.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt 5.2 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN vs LSTM.html 5.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.en.vtt 5.2 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/01. Weight Initialization Intro.html 5.2 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution.html 5.2 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/12. Outro LSTM.html 5.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors.html 5.2 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.en.vtt 5.2 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. DCGAN Architecture.html 5.2 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator.html 5.2 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.en.vtt 5.2 kB
  • assets/css/fonts/KaTeX_Size4-Regular.woff2 5.2 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.pt-BR.vtt 5.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.pt-BR.vtt 5.2 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt 5.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.zh-CN.vtt 5.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Classifier Solution.html 5.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.en.vtt 5.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning with VGGNet.html 5.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.2 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt 5.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.en.vtt 5.2 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets.html 5.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Classifier.html 5.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training solution.html 5.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training.html 5.2 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building the Network Solution.html 5.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation Solution.html 5.2 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction.html 5.1 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. VGGNet Solution.html 5.1 kB
  • Part 05-Module 01-Lesson 03_Generate Faces/03. Face Generation Workspace.html 5.1 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation.html 5.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/index.html 5.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5.1 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve.html 5.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.pt-BR.vtt 5.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.zh-CN.vtt 5.1 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. VGGNet.html 5.1 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec.html 5.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 5.1 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When accuracy won't work.html 5.1 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution.html 5.1 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building the Network.html 5.1 kB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/02. Project Workspace.html 5.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.zh-CN.vtt 5.1 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 5.1 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 5.1 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/06. Reference Guide.html 5.1 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. Actor-Critic with Advantage.html 5.1 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling.html 5.1 kB
  • Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.ar.vtt 5.1 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.zh-CN.vtt 5.1 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution.html 5.1 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results.html 5.1 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches.html 5.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/index.html 5.0 kB
  • Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/02. Dog Breed Workspace.html 5.0 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt 5.0 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. Actor-Critic Methods.html 5.0 kB
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/02. TV Script Workspace.html 5.0 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. Two Function Approximators.html 5.0 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/06. Additional Material.html 5.0 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. Advantage Function.html 5.0 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction.html 5.0 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.en.vtt 5.0 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.zh-CN.vtt 5.0 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building the RNN.html 5.0 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. The Actor and The Critic.html 5.0 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.pt-BR.vtt 5.0 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. A Better Score Function.html 5.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt 5.0 kB
  • Part 08-Module 01-Lesson 02_Regression/index.html 5.0 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/07. More Resources.html 5.0 kB
  • Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/03. Mini Project.html 5.0 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.pt-BR.vtt 5.0 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/01. Introduction.html 4.9 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/01. Welcome to the Deep Learning Nanodegree Program.html 4.9 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoders Solution.html 4.9 kB
  • Part 02-Module 01-Lesson 07_Keras/06. Mini Project Intro.html 4.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt 4.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.9 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/03. GPU Workspace Playground.html 4.9 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.zh-CN.vtt 4.9 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.en.vtt 4.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt 4.9 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt 4.9 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.zh-CN.vtt 4.9 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt 4.9 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/03. Policy Function Approximation.html 4.9 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/06. Monte Carlo Policy Gradients.html 4.9 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/07. Constrained Policy Gradients.html 4.9 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution.html 4.9 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.9 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/index.html 4.9 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/02. Why Policy-Based Methods.html 4.9 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/04. Stochastic Policy Search.html 4.9 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders.html 4.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.pt-BR.vtt 4.9 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/01. Policy-Based Methods.html 4.9 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.zh-CN.vtt 4.9 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/05. Policy Gradients.html 4.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt 4.9 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.zh-CN.vtt 4.8 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/index.html 4.8 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/08. Recap.html 4.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.8 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.en.vtt 4.8 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training the Network.html 4.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.en.vtt 4.8 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary.html 4.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.pt-BR.vtt 4.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt 4.8 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment RNN.html 4.8 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing.html 4.8 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.en.vtt 4.8 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.en.vtt 4.8 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/03. Uniform Distribution.html 4.8 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/05. Normal Distribution.html 4.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.8 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Solutions.html 4.8 kB
  • assets/css/fonts/KaTeX_Size3-Regular.woff 4.8 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders.html 4.8 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/02. Ones and Zeros.html 4.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.8 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.zh-CN.vtt 4.8 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.en.vtt 4.8 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/04. Too Small.html 4.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.pt-BR.vtt 4.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt 4.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.zh-CN.vtt 4.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.7 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.pt-BR.vtt 4.7 kB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project.html 4.7 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.zh-CN.vtt 4.7 kB
  • Part 05-Module 01-Lesson 03_Generate Faces/01. One Project Away!.html 4.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.zh-CN.vtt 4.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.7 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.zh-CN.vtt 4.7 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.en.vtt 4.7 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.zh-CN.vtt 4.7 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt 4.7 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.pt-BR.vtt 4.7 kB
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Introduction.html 4.7 kB
  • Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt 4.7 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.en.vtt 4.7 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.en.vtt 4.7 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.pt-BR.vtt 4.7 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.pt-BR.vtt 4.7 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt 4.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.pt-BR.vtt 4.7 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.zh-CN.vtt 4.7 kB
  • Part 05-Module 01-Lesson 03_Generate Faces/02. Project Introduction.html 4.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt 4.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.en.vtt 4.6 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/02. Workspace Playground.html 4.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.zh-CN.vtt 4.6 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.zh-CN.vtt 4.6 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting.html 4.6 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.pt-BR.vtt 4.6 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.en.vtt 4.6 kB
  • Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.en.vtt 4.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.6 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/03. A Simple Autoencoder.html 4.6 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.en.vtt 4.6 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.pt-BR.vtt 4.6 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.pt-BR.vtt 4.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.en.vtt 4.6 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt 4.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.en.vtt 4.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.zh-CN.vtt 4.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.en.vtt 4.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/index.html 4.5 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.pt-BR.vtt 4.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.5 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.en.vtt 4.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.en.vtt 4.5 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/index.html 4.5 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.zh-CN.vtt 4.4 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.zh-CN.vtt 4.4 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt 4.4 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt 4.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.pt-BR.vtt 4.4 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.en.vtt 4.4 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.pt-BR.vtt 4.4 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.pt-BR.vtt 4.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.4 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt 4.4 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt 4.3 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.en.vtt 4.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.3 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.pt-BR.vtt 4.3 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt 4.3 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/index.html 4.3 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt 4.3 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/index.html 4.3 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt 4.3 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.en.vtt 4.3 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.pt-BR.vtt 4.3 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/maze.png 4.3 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.pt-BR.vtt 4.3 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.en.vtt 4.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.3 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.zh-CN.vtt 4.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt 4.2 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.zh-CN.vtt 4.2 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.en.vtt 4.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.2 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.en.vtt 4.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.2 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.2 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.en.vtt 4.2 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/index.html 4.2 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.zh-CN.vtt 4.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.pt-BR.vtt 4.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt 4.2 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.2 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.en.vtt 4.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.zh-CN.vtt 4.2 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.pt-BR.vtt 4.1 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt 4.1 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.zh-CN.vtt 4.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.zh-CN.vtt 4.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.en.vtt 4.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.1 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.pt-BR.vtt 4.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.en.vtt 4.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.en.vtt 4.1 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/index.html 4.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 4.1 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt 4.1 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/index.html 4.1 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.pt-BR.vtt 4.0 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.en.vtt 4.0 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.zh-CN.vtt 4.0 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt 4.0 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.pt-BR.vtt 4.0 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw1-chain.png 4.0 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.en.vtt 4.0 kB
  • Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.en.vtt 4.0 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/index.html 4.0 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2-grad-fixed.gif 4.0 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.en.vtt 4.0 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/index.html 4.0 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/index.html 4.0 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt 4.0 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.en.vtt 4.0 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/index.html 4.0 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.zh-CN.vtt 4.0 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.pt-BR.vtt 4.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt 3.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt 3.9 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.zh-CN.vtt 3.9 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.zh-CN.vtt 3.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt 3.9 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.zh-CN.vtt 3.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt 3.9 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.en.vtt 3.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.44.44-pm.png 3.9 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.zh-CN.vtt 3.9 kB
  • Part 08-Module 01-Lesson 02_Regression/img/m.gif 3.9 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.en.vtt 3.9 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.pt-BR.vtt 3.9 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.en.vtt 3.9 kB
  • Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/index.html 3.9 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/index.html 3.9 kB
  • Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.pt-BR.vtt 3.9 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.en.vtt 3.9 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.zh-CN.vtt 3.9 kB
  • assets/css/fonts/KaTeX_Size3-Regular.woff2 3.9 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.en.vtt 3.9 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.en.vtt 3.9 kB
  • assets/css/styles.css 3.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.zh-CN.vtt 3.8 kB
  • Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt 3.8 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt 3.8 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.pt-BR.vtt 3.8 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.en.vtt 3.8 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/index.html 3.8 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dl2dw2-grad.png 3.8 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt 3.8 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt 3.8 kB
  • Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/index.html 3.8 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/index.html 3.8 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.pt-BR.vtt 3.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.zh-CN.vtt 3.8 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.pt-BR.vtt 3.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.8 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/index.html 3.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.en.vtt 3.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.pt-BR.vtt 3.8 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt 3.7 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.pt-BR.vtt 3.7 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.zh-CN.vtt 3.7 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/index.html 3.7 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/index.html 3.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.en.vtt 3.7 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.zh-CN.vtt 3.7 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/index.html 3.7 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/index.html 3.7 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt 3.7 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.zh-CN.vtt 3.7 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt 3.7 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.pt-BR.vtt 3.7 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.en.vtt 3.7 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.zh-CN.vtt 3.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.7 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.pt-BR.vtt 3.7 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/index.html 3.7 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.zh-CN.vtt 3.7 kB
  • Part 03-Module 01-Lesson 03_CNNs in TensorFlow/index.html 3.6 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dl1dw1-grad.png 3.6 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/index.html 3.6 kB
  • Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.en.vtt 3.6 kB
  • Part 01-Module 01-Lesson 03_Anaconda/index.html 3.6 kB
  • Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt 3.6 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt 3.6 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.en.vtt 3.6 kB
  • Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.en.vtt 3.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.zh-CN.vtt 3.6 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.pt-BR.vtt 3.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.6 kB
  • Part 02-Module 01-Lesson 07_Keras/index.html 3.6 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.en.vtt 3.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.en.vtt 3.5 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.zh-CN.vtt 3.5 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.zh-CN.vtt 3.5 kB
  • Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.en.vtt 3.5 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/index.html 3.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.5 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.en.vtt 3.5 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.pt-BR.vtt 3.5 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.zh-CN.vtt 3.5 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt 3.5 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.pt-BR.vtt 3.5 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.ar.vtt 3.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt 3.5 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/cost.png 3.5 kB
  • Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt 3.5 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.en.vtt 3.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.zh-CN.vtt 3.5 kB
  • Part 03-Module 01-Lesson 01_Cloud Computing/index.html 3.5 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/index.html 3.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.pt-BR.vtt 3.5 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.pt-BR.vtt 3.5 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.pt-BR.vtt 3.4 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/index.html 3.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.4 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.en.vtt 3.4 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.zh-CN.vtt 3.4 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt 3.4 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.en.vtt 3.4 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.en.vtt 3.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.4 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt 3.4 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.zh-CN.vtt 3.4 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.en.vtt 3.4 kB
  • Part 03-Module 01-Lesson 04_Weight Initialization/index.html 3.4 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/19.png 3.4 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.zh-CN.vtt 3.4 kB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/index.html 3.4 kB
  • Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt 3.4 kB
  • Part 05-Module 01-Lesson 03_Generate Faces/index.html 3.4 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.zh-CN.vtt 3.4 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.zh-CN.vtt 3.4 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.zh-CN.vtt 3.4 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.en.vtt 3.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.zh-CN.vtt 3.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt 3.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.en.vtt 3.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt 3.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.pt-BR.vtt 3.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.zh-CN.vtt 3.3 kB
  • Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/index.html 3.3 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.en.vtt 3.3 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/index.html 3.3 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt 3.3 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.zh-CN.vtt 3.3 kB
  • Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt 3.3 kB
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/index.html 3.3 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.en.vtt 3.3 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.zh-CN.vtt 3.3 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dl2ds-grad.png 3.3 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt 3.3 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/mse.png 3.3 kB
  • Part 01-Module 01-Lesson 02_Applying Deep Learning/index.html 3.3 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.pt-BR.vtt 3.2 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.pt-BR.vtt 3.2 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.pt-BR.vtt 3.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.2 kB
  • Part 02-Module 01-Lesson 04_GPU Workspaces Demo/index.html 3.2 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.pt-BR.vtt 3.2 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.en.vtt 3.2 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.pt-BR.vtt 3.2 kB
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt 3.2 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.pt-BR.vtt 3.2 kB
  • Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/index.html 3.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt 3.2 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.zh-CN.vtt 3.2 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.en.vtt 3.2 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.en.vtt 3.1 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.en.vtt 3.1 kB
  • Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.zh-CN.vtt 3.1 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt 3.1 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.en.vtt 3.1 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt 3.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt 3.1 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.en.vtt 3.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.pt-BR.vtt 3.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.en.vtt 3.1 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt 3.1 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.pt-BR.vtt 3.1 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt 3.1 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.pt-BR.vtt 3.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.1 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.pt-BR.vtt 3.1 kB
  • Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/index.html 3.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.zh-CN.vtt 3.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3.1 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.zh-CN.vtt 3.1 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.zh-CN.vtt 3.1 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.en.vtt 3.0 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.zh-CN.vtt 3.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt 3.0 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.en.vtt 3.0 kB
  • Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.en.vtt 3.0 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-error.gif 3.0 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.zh-CN.vtt 3.0 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.en.vtt 3.0 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.zh-CN.vtt 3.0 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.pt-BR.vtt 3.0 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt 3.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.zh-CN.vtt 3.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 3.0 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.pt-BR.vtt 2.9 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.en.vtt 2.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt 2.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt 2.9 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/weight-label-reference.gif 2.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt 2.9 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.en.vtt 2.9 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt 2.9 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt 2.9 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.pt-BR.vtt 2.9 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.zh-CN.vtt 2.9 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.zh-CN.vtt 2.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt 2.9 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.pt-BR.vtt 2.9 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-errors.gif 2.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt 2.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt 2.9 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.zh-CN.vtt 2.9 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.pt-BR.vtt 2.9 kB
  • Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt 2.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.8 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.zh-CN.vtt 2.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.pt-BR.vtt 2.8 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.en-US.vtt 2.8 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.pt-BR.vtt 2.8 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.en.vtt 2.8 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.zh-CN.vtt 2.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.en.vtt 2.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.en.vtt 2.8 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.en.vtt 2.8 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.pt-BR.vtt 2.8 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.pt-BR.vtt 2.8 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.en.vtt 2.8 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.en.vtt 2.7 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.7 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2-chain.png 2.7 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.zh-CN.vtt 2.7 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt 2.7 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt 2.7 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.zh-CN.vtt 2.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.en.vtt 2.7 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.en.vtt 2.7 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt 2.7 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.en.vtt 2.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt 2.7 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.zh-CN.vtt 2.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.pt-BR.vtt 2.7 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.en.vtt 2.7 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.pt-BR.vtt 2.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.zh-CN.vtt 2.6 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.pt-BR.vtt 2.6 kB
  • Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.pt-BR.vtt 2.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.zh-CN.vtt 2.6 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/neww.png 2.6 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.en.vtt 2.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.en.vtt 2.6 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.en.vtt 2.6 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt 2.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.6 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt 2.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.en.vtt 2.6 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.pt-BR.vtt 2.6 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.zh-CN.vtt 2.6 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.en.vtt 2.6 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt 2.6 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.zh-CN.vtt 2.6 kB
  • Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.en.vtt 2.5 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.pt-BR.vtt 2.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.5 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.zh-CN.vtt 2.5 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.zh-CN.vtt 2.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.zh-CN.vtt 2.5 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt 2.5 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.en.vtt 2.5 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.pt-BR.vtt 2.5 kB
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.zh-CN.vtt 2.5 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.en-US.vtt 2.5 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.en.vtt 2.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.5 kB
  • Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.pt-BR.vtt 2.5 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.en.vtt 2.5 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.en.vtt 2.5 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.zh-CN.vtt 2.5 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.en.vtt 2.5 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.pt-BR.vtt 2.5 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt 2.5 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.pt-BR.vtt 2.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.4 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.pt-BR.vtt 2.4 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.pt-BR.vtt 2.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.4 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt 2.4 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.pt-BR.vtt 2.4 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.pt-BR.vtt 2.4 kB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.en.vtt 2.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.4 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.4 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.zh-CN.vtt 2.4 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.en.vtt 2.4 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.en.vtt 2.4 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt 2.4 kB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.zh-CN.vtt 2.4 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.en.vtt 2.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.zh-CN.vtt 2.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.4 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.en.vtt 2.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.3 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.pt-BR.vtt 2.3 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/newx-1n.png 2.3 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/codecogseqn-2.png 2.3 kB
  • Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt 2.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.zh-CN.vtt 2.3 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.zh-CN.vtt 2.3 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.en.vtt 2.3 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.en.vtt 2.3 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.en.vtt 2.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt 2.3 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.3 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.zh-CN.vtt 2.3 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-general.gif 2.3 kB
  • Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.zh-CN.vtt 2.2 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.pt-BR.vtt 2.2 kB
  • Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.zh-CN.vtt 2.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/21.png 2.2 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.en.vtt 2.2 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.pt-BR.vtt 2.2 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.pt-BR.vtt 2.2 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt 2.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/neuron-output.png 2.2 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.en.vtt 2.1 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.zh-CN.vtt 2.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif 2.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif 2.1 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.en-US.vtt 2.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.en.vtt 2.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt 2.1 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.en.vtt 2.1 kB
  • Part 08-Module 01-Lesson 02_Regression/img/codecogseqn-61.gif 2.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.1 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.zh-CN.vtt 2.1 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.en.vtt 2.1 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt 2.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.en.vtt 2.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.1 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.en.vtt 2.1 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/b-1byk.png 2.1 kB
  • Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.pt-BR.vtt 2.1 kB
  • Part 08-Module 01-Lesson 02_Regression/img/f1.gif 2.1 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.zh-CN.vtt 2.1 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.zh-CN.vtt 2.1 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.zh-CN.vtt 2.0 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.en.vtt 2.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 2.0 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.pt-BR.vtt 2.0 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.pt-BR.vtt 2.0 kB
  • Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt 2.0 kB
  • Part 08-Module 01-Lesson 02_Regression/img/f2.gif 1.9 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.zh-CN.vtt 1.9 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.pt-BR.vtt 1.9 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.pt-BR.vtt 1.9 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.zh-CN.vtt 1.9 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.en.vtt 1.9 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.en.vtt 1.9 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.zh-CN.vtt 1.9 kB
  • Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.zh-CN.vtt 1.9 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.9 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.zh-CN.vtt 1.9 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.pt-BR.vtt 1.8 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.en.vtt 1.8 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.pt-BR.vtt 1.8 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.pt-BR.vtt 1.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.en.vtt 1.8 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt 1.8 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-layer-weights.gif 1.8 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.pt-BR.vtt 1.8 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt 1.8 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt 1.8 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.pt-BR.vtt 1.8 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.en.vtt 1.8 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.zh-CN.vtt 1.8 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.pt-BR.vtt 1.8 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt 1.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.zh-CN.vtt 1.7 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.en.vtt 1.7 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-weight-update.gif 1.7 kB
  • Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt 1.7 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.pt-BR.vtt 1.7 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/12.png 1.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.en.vtt 1.7 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt 1.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.en.vtt 1.7 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.zh-CN.vtt 1.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.7 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.zh-CN.vtt 1.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.7 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.zh-CN.vtt 1.7 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.en.vtt 1.7 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.zh-CN.vtt 1.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.7 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.7 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.pt-BR.vtt 1.7 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.en.vtt 1.6 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.en.vtt 1.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.6 kB
  • Part 08-Module 01-Lesson 02_Regression/img/f6.gif 1.6 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en-US.vtt 1.6 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.6 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.6 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.en.vtt 1.6 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.pt-BR.vtt 1.6 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.en.vtt 1.6 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BrR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt 1.6 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.en.vtt 1.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.5 kB
  • Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt 1.5 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/z.png 1.5 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.en.vtt 1.5 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.pt-BR.vtt 1.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.zh-CN.vtt 1.5 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt 1.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.5 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.5 kB
  • Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt 1.5 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.zh-CN.vtt 1.5 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.zh-CN.vtt 1.5 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.en.vtt 1.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.5 kB
  • Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt 1.5 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.zh-CN.vtt 1.5 kB
  • Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.en.vtt 1.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.zh-CN.vtt 1.4 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt 1.4 kB
  • Part 08-Module 01-Lesson 02_Regression/img/y.gif 1.4 kB
  • Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.pt-BR.vtt 1.4 kB
  • Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt 1.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.en.vtt 1.4 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.zh-CN.vtt 1.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.en.vtt 1.4 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/l2.png 1.4 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.pt-BR.vtt 1.4 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.zh-CN.vtt 1.4 kB
  • Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt 1.4 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.en.vtt 1.4 kB
  • Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.zh-CN.vtt 1.4 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.en.vtt 1.4 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt 1.4 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.4 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt 1.4 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.en.vtt 1.4 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en.vtt 1.3 kB
  • Part 08-Module 01-Lesson 02_Regression/img/codecogseqn-62.gif 1.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.pt-BR.vtt 1.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.3 kB
  • Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.zh-CN.vtt 1.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.zh-CN.vtt 1.3 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.pt-BR.vtt 1.3 kB
  • Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.en.vtt 1.3 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2.png 1.3 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt 1.3 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.zh-CN.vtt 1.3 kB
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.pt-BR.vtt 1.3 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.en.vtt 1.3 kB
  • Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt 1.3 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.zh-CN.vtt 1.3 kB
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.zh-CN.vtt 1.3 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.3 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/img/linear-equation.gif 1.3 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.pt-BR.vtt 1.3 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.en.vtt 1.3 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.en.vtt 1.3 kB
  • Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt 1.2 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.en.vtt 1.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.en-US.vtt 1.2 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.pt-BR.vtt 1.2 kB
  • Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt 1.2 kB
  • Part 08-Module 01-Lesson 02_Regression/img/e.gif 1.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/newx.png 1.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt 1.2 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.pt-BR.vtt 1.2 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.zh-CN.vtt 1.2 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.en.vtt 1.2 kB
  • Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.zh-CN.vtt 1.2 kB
  • Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.en.vtt 1.2 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.2 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.2 kB
  • Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt 1.2 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/img/dcdl2.png 1.2 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.2 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.en.vtt 1.2 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.en.vtt 1.2 kB
  • Part 08-Module 01-Lesson 02_Regression/img/f4.gif 1.2 kB
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt 1.1 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.1 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.en.vtt 1.1 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.en.vtt 1.1 kB
  • Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.zh-CN.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt 1.1 kB
  • Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.zh-CN.vtt 1.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.en.vtt 1.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.pt-BR.vtt 1.1 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.1 kB
  • Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.pt-BR.vtt 1.1 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.pt-BR.vtt 1.1 kB
  • Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.zh-CN.vtt 1.1 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.en.vtt 1.1 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.1 kB
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.zh-CN.vtt 1.1 kB
  • Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.pt-BR.vtt 1.1 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt 1.1 kB
  • Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.en.vtt 1.1 kB
  • Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.en.vtt 1.1 kB
  • Part 08-Module 01-Lesson 02_Regression/img/gif-1.gif 1.1 kB
  • Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.pt-BR.vtt 1.0 kB
  • Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.zh-CN.vtt 1.0 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.pt-BR.vtt 1.0 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.0 kB
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.pt-BR.vtt 1.0 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.en.vtt 1.0 kB
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.en.vtt 1.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1.0 kB
  • Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt 1.0 kB
  • Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt 1.0 kB
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1.0 kB
  • Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1.0 kB
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.zh-CN.vtt 996 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.zh-CN.vtt 995 Bytes
  • Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt 983 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.pt-BR.vtt 977 Bytes
  • Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt 970 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.zh-CN.vtt 965 Bytes
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt 959 Bytes
  • Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt 956 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.en.vtt 943 Bytes
  • Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.pt-BR.vtt 939 Bytes
  • Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.en.vtt 939 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.pt-BR.vtt 937 Bytes
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.en.vtt 937 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.zh-CN.vtt 920 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif 919 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt 918 Bytes
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.en.vtt 910 Bytes
  • Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.zh-CN.vtt 891 Bytes
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt 889 Bytes
  • Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.zh-CN.vtt 883 Bytes
  • Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.en.vtt 874 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.en.vtt 867 Bytes
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.pt-BR.vtt 866 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.pt-BR.vtt 857 Bytes
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.en.vtt 856 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.en.vtt 853 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.en.vtt 850 Bytes
  • Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.pt-BR.vtt 850 Bytes
  • Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840 Bytes
  • Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt 831 Bytes
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.en.vtt 830 Bytes
  • Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.en.vtt 824 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.zh-CN.vtt 823 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.zh-CN.vtt 822 Bytes
  • Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.zh-CN.vtt 822 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.zh-CN.vtt 810 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt 804 Bytes
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.zh-CN.vtt 804 Bytes
  • Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt 793 Bytes
  • Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.en.vtt 792 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.en.vtt 791 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt 790 Bytes
  • Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.zh-CN.vtt 787 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.pt-BR.vtt 772 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.zh-CN.vtt 766 Bytes
  • Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.zh-CN.vtt 764 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.pt-BR.vtt 754 Bytes
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.en.vtt 746 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt 739 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.zh-CN.vtt 734 Bytes
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.en.vtt 734 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.pt-BR.vtt 730 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.zh-CN.vtt 729 Bytes
  • Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.en.vtt 725 Bytes
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.pt-BR.vtt 720 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719 Bytes
  • Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.zh-CN.vtt 718 Bytes
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.en-US.vtt 716 Bytes
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en-US.vtt 701 Bytes
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.pt-BR.vtt 700 Bytes
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.en.vtt 694 Bytes
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.en.vtt 688 Bytes
  • Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.zh-CN.vtt 685 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.pt-BR.vtt 678 Bytes
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en.vtt 667 Bytes
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.pt.vtt 656 Bytes
  • Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.zh-CN.vtt 655 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.pt-BR.vtt 643 Bytes
  • Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.zh-CN.vtt 640 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633 Bytes
  • Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.zh-CN.vtt 632 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624 Bytes
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt 618 Bytes
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt 615 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt 607 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600 Bytes
  • Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt 599 Bytes
  • Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.pt-BR.vtt 590 Bytes
  • Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.en.vtt 586 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584 Bytes
  • Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.pt-BR.vtt 574 Bytes
  • Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.en.vtt 558 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545 Bytes
  • Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.zh-CN.vtt 540 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.pt-BR.vtt 538 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.en.vtt 526 Bytes
  • Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt 524 Bytes
  • [TGx]Downloaded from torrentgalaxy.org.txt 524 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.en.vtt 510 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.en.vtt 508 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.en.vtt 505 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt 495 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.zh-CN.vtt 487 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.pt-BR.vtt 482 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481 Bytes
  • Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.pt-BR.vtt 478 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.zh-CN.vtt 475 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.pt-BR.vtt 472 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.zh-CN.vtt 468 Bytes
  • Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.en.vtt 466 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.zh-CN.vtt 456 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420 Bytes
  • Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.pt-BR.vtt 420 Bytes
  • Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.zh-CN.vtt 419 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390 Bytes
  • Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364 Bytes
  • Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.pt-BR.vtt 91 Bytes
  • Torrent Downloaded From GloDls.to.txt 84 Bytes
  • Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.en-US.vtt 72 Bytes
  • Presented By SaM.txt 33 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!