MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

Udemy - A deep understanding of deep learning (with Python intro) 7-2023

磁力链接/BT种子名称

Udemy - A deep understanding of deep learning (with Python intro) 7-2023

磁力链接/BT种子简介

种子哈希:ca1ecaffafe6a30afa413d2399728a0d1cd7a426
文件大小: 16.04G
已经下载:1119次
下载速度:极快
收录时间:2024-02-15
最近下载:2025-06-15

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:CA1ECAFFAFE6A30AFA413D2399728A0D1CD7A426
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 TikTok成人版 PornHub 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

taylor+swift+-+discography 古装 野战 坐脸调教 信义赵又廷 ai+generated+patreon bos ienee-99201 soe441 幻世追踪. 15岁 egg jureka-del-mar start-257中文 udemy - trading 妖后 silent.night japanese black bbc 太牛 非常狗血打扮成新婚洞房万众期待的新娘秀禾服来了 halt-066 coreldraw+2022+v24 dldss-425 reacher hope 强 乳 1pondo 人妖 zenless+zone+zone ddb-264

文件列表

  • 19 - Understand and design CNNs/005 Examine feature map activations.mp4 263.6 MB
  • 22 - Style transfer/004 Transferring the screaming bathtub.mp4 220.6 MB
  • 19 - Understand and design CNNs/004 Classify Gaussian blurs.mp4 184.6 MB
  • 07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison.mp4 176.8 MB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation.mp4 174.7 MB
  • 18 - Convolution and transformations/003 Convolution in code.mp4 173.8 MB
  • 14 - FFN milestone projects/004 Project 2 My solution.mp4 163.3 MB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences.mp4 161.2 MB
  • 19 - Understand and design CNNs/002 CNN to classify MNIST digits.mp4 151.9 MB
  • 19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition).mp4 150.9 MB
  • 07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset).mp4 148.9 MB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum.mp4 148.5 MB
  • 16 - Autoencoders/004 AEs for occlusion.mp4 144.9 MB
  • 26 - Where to go from here/002 How to read academic DL papers.mp4 144.0 MB
  • 19 - Understand and design CNNs/011 Discover the Gaussian parameters.mp4 143.3 MB
  • 21 - Transfer learning/007 Pretraining with autoencoders.mp4 142.6 MB
  • 16 - Autoencoders/006 Autoencoder with tied weights.mp4 137.9 MB
  • 23 - Generative adversarial networks/004 CNN GAN with Gaussians.mp4 137.8 MB
  • 09 - Regularization/004 Dropout regularization in practice.mp4 137.1 MB
  • 07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties.mp4 136.7 MB
  • 19 - Understand and design CNNs/008 Do autoencoders clean Gaussians.mp4 135.1 MB
  • 21 - Transfer learning/005 Transfer learning with ResNet-18.mp4 134.5 MB
  • 18 - Convolution and transformations/011 Image transforms.mp4 130.7 MB
  • 10 - Metaparameters (activations, optimizers)/002 The wine quality dataset.mp4 130.7 MB
  • 23 - Generative adversarial networks/002 Linear GAN with MNIST.mp4 127.4 MB
  • 08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader.mp4 127.1 MB
  • 12 - More on data/003 CodeChallenge unbalanced data.mp4 123.6 MB
  • 16 - Autoencoders/005 The latent code of MNIST.mp4 123.5 MB
  • 11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits.mp4 123.0 MB
  • 07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth.mp4 120.5 MB
  • 12 - More on data/007 Data feature augmentation.mp4 119.9 MB
  • 19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters.mp4 119.2 MB
  • 15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming.mp4 114.8 MB
  • 21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model.mp4 114.2 MB
  • 15 - Weight inits and investigations/009 Learning-related changes in weights.mp4 113.2 MB
  • 08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn.mp4 111.0 MB
  • 07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN.mp4 110.4 MB
  • 09 - Regularization/003 Dropout regularization.mp4 108.7 MB
  • 10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset.mp4 108.6 MB
  • 13 - Measuring model performance/004 APRF example 1 wine quality.mp4 108.0 MB
  • 18 - Convolution and transformations/012 Creating and using custom DataLoaders.mp4 107.4 MB
  • 10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.mp4 106.7 MB
  • 07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes.mp4 106.0 MB
  • 12 - More on data/001 Anatomy of a torch dataset and dataloader.mp4 105.7 MB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM.mp4 105.2 MB
  • 16 - Autoencoders/003 CodeChallenge How many units.mp4 104.9 MB
  • 06 - Gradient descent/007 Parametric experiments on g.d.mp4 103.5 MB
  • 19 - Understand and design CNNs/010 CodeChallenge Custom loss functions.mp4 103.5 MB
  • 07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters.mp4 102.4 MB
  • 12 - More on data/002 Data size and network size.mp4 102.0 MB
  • 06 - Gradient descent/005 Gradient descent in 2D.mp4 101.1 MB
  • 15 - Weight inits and investigations/005 Xavier and Kaiming initializations.mp4 101.0 MB
  • 13 - Measuring model performance/005 APRF example 2 MNIST.mp4 99.1 MB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings.mp4 98.8 MB
  • 19 - Understand and design CNNs/007 CodeChallenge How wide the FC.mp4 95.0 MB
  • 11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth.mp4 94.8 MB
  • 12 - More on data/010 Save the best-performing model.mp4 94.5 MB
  • 11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning.mp4 94.0 MB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch.mp4 94.0 MB
  • 10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar.mp4 93.7 MB
  • 12 - More on data/005 Data oversampling in MNIST.mp4 93.6 MB
  • 11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset.mp4 93.0 MB
  • 18 - Convolution and transformations/001 Convolution concepts.mp4 92.7 MB
  • 15 - Weight inits and investigations/008 Freezing weights during learning.mp4 92.5 MB
  • 06 - Gradient descent/003 Gradient descent in 1D.mp4 92.1 MB
  • 03 - Concepts in deep learning/003 The role of DL in science and knowledge.mp4 92.0 MB
  • 16 - Autoencoders/002 Denoising MNIST.mp4 90.7 MB
  • 15 - Weight inits and investigations/002 A surprising demo of weight initializations.mp4 90.1 MB
  • 10 - Metaparameters (activations, optimizers)/009 Activation functions.mp4 89.0 MB
  • 21 - Transfer learning/003 CodeChallenge letters to numbers.mp4 89.0 MB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes.mp4 88.4 MB
  • 06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate.mp4 88.1 MB
  • 09 - Regularization/012 CodeChallenge Effects of mini-batch size.mp4 87.3 MB
  • 07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!.mp4 85.8 MB
  • 20 - CNN milestone projects/002 Project 1 My solution.mp4 85.2 MB
  • 19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians.mp4 82.4 MB
  • 09 - Regularization/007 L2 regularization in practice.mp4 82.3 MB
  • 21 - Transfer learning/002 Transfer learning MNIST - FMNIST.mp4 82.0 MB
  • 30 - Python intro Flow control/010 Function error checking and handling.mp4 80.7 MB
  • 20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs.mp4 80.2 MB
  • 09 - Regularization/010 Batch training in action.mp4 80.1 MB
  • 12 - More on data/006 Data noise augmentation (with devset+test).mp4 79.8 MB
  • 18 - Convolution and transformations/005 The Conv2 class in PyTorch.mp4 79.2 MB
  • 03 - Concepts in deep learning/004 Running experiments to understand DL.mp4 78.5 MB
  • 07 - ANNs (Artificial Neural Networks)/006 ANN for regression.mp4 77.8 MB
  • 15 - Weight inits and investigations/003 Theory Why and how to initialize weights.mp4 77.2 MB
  • 15 - Weight inits and investigations/004 CodeChallenge Weight variance inits.mp4 76.4 MB
  • 10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.mp4 75.4 MB
  • 31 - Python intro Text and plots/006 Images.mp4 74.5 MB
  • 11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization.mp4 74.4 MB
  • 09 - Regularization/008 L1 regularization in practice.mp4 74.4 MB
  • 19 - Understand and design CNNs/013 Dropout in CNNs.mp4 74.1 MB
  • 10 - Metaparameters (activations, optimizers)/011 Activation functions comparison.mp4 74.0 MB
  • 13 - Measuring model performance/007 Computation time.mp4 73.9 MB
  • 08 - Overfitting and cross-validation/004 Cross-validation -- manual separation.mp4 73.8 MB
  • 05 - Math, numpy, PyTorch/009 Softmax.mp4 73.6 MB
  • 14 - FFN milestone projects/002 Project 1 My solution.mp4 73.2 MB
  • 18 - Convolution and transformations/007 Transpose convolution.mp4 72.8 MB
  • 10 - Metaparameters (activations, optimizers)/023 Learning rate decay.mp4 72.4 MB
  • 10 - Metaparameters (activations, optimizers)/014 Loss functions.mp4 71.9 MB
  • 19 - Understand and design CNNs/015 CodeChallenge Varying number of channels.mp4 70.6 MB
  • 10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.mp4 70.3 MB
  • 22 - Style transfer/002 The Gram matrix (feature activation covariance).mp4 69.7 MB
  • 07 - ANNs (Artificial Neural Networks)/017 Defining models using sequential vs. class.mp4 69.0 MB
  • 15 - Weight inits and investigations/007 CodeChallenge Identically random weights.mp4 68.4 MB
  • 10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants.mp4 67.1 MB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning.mp4 67.0 MB
  • 13 - Measuring model performance/002 Accuracy, precision, recall, F1.mp4 66.8 MB
  • 10 - Metaparameters (activations, optimizers)/018 SGD with momentum.mp4 65.1 MB
  • 10 - Metaparameters (activations, optimizers)/020 Optimizers comparison.mp4 64.8 MB
  • 09 - Regularization/001 Regularization Concept and methods.mp4 64.5 MB
  • 25 - Ethics of deep learning/005 Accountability and making ethical AI.mp4 64.2 MB
  • 29 - Python intro Functions/003 Python libraries (pandas).mp4 63.8 MB
  • 29 - Python intro Functions/008 Classes and object-oriented programming.mp4 63.6 MB
  • 11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST.mp4 63.1 MB
  • 05 - Math, numpy, PyTorch/016 The t-test.mp4 62.6 MB
  • 15 - Weight inits and investigations/001 Explanation of weight matrix sizes.mp4 62.5 MB
  • 13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups.mp4 61.9 MB
  • 31 - Python intro Text and plots/004 Making the graphs look nicer.mp4 61.9 MB
  • 05 - Math, numpy, PyTorch/011 Entropy and cross-entropy.mp4 61.6 MB
  • 30 - Python intro Flow control/004 Enumerate and zip.mp4 61.4 MB
  • 23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST.mp4 61.4 MB
  • 25 - Ethics of deep learning/003 Some other possible ethical scenarios.mp4 61.1 MB
  • 11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST.mp4 60.1 MB
  • 06 - Gradient descent/004 CodeChallenge unfortunate starting value.mp4 59.8 MB
  • 03 - Concepts in deep learning/005 Are artificial neurons like biological neurons.mp4 59.0 MB
  • 08 - Overfitting and cross-validation/007 Splitting data into train, devset, test.mp4 59.0 MB
  • 01 - Introduction/001 How to learn from this course.mp4 57.6 MB
  • 08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say.mp4 56.9 MB
  • 30 - Python intro Flow control/002 If-else statements, part 2.mp4 56.3 MB
  • 18 - Convolution and transformations/002 Feature maps and convolution kernels.mp4 56.2 MB
  • 11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7.mp4 56.0 MB
  • 14 - FFN milestone projects/006 Project 3 My solution.mp4 55.5 MB
  • 07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet.mp4 54.2 MB
  • 09 - Regularization/011 The importance of equal batch sizes.mp4 53.8 MB
  • 23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers.mp4 53.8 MB
  • 18 - Convolution and transformations/008 Maxmean pooling.mp4 53.7 MB
  • 22 - Style transfer/005 CodeChallenge Style transfer with AlexNet.mp4 53.4 MB
  • 17 - Running models on a GPU/001 What is a GPU and why use it.mp4 52.8 MB
  • 09 - Regularization/006 Weight regularization (L1L2) math.mp4 51.7 MB
  • 18 - Convolution and transformations/010 To pool or to stride.mp4 51.6 MB
  • 05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding.mp4 51.5 MB
  • 08 - Overfitting and cross-validation/002 Cross-validation.mp4 51.4 MB
  • 31 - Python intro Text and plots/003 Subplot geometry.mp4 51.1 MB
  • 30 - Python intro Flow control/008 while loops.mp4 50.5 MB
  • 10 - Metaparameters (activations, optimizers)/005 The importance of data normalization.mp4 50.1 MB
  • 31 - Python intro Text and plots/001 Printing and string interpolation.mp4 49.5 MB
  • 23 - Generative adversarial networks/006 CNN GAN with FMNIST.mp4 49.2 MB
  • 30 - Python intro Flow control/006 Initializing variables.mp4 48.7 MB
  • 27 - Python intro Data types/007 Booleans.mp4 48.3 MB
  • 05 - Math, numpy, PyTorch/012 Minmax and argminargmax.mp4 47.9 MB
  • 05 - Math, numpy, PyTorch/008 Matrix multiplication.mp4 47.7 MB
  • 10 - Metaparameters (activations, optimizers)/004 Data normalization.mp4 47.6 MB
  • 10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice.mp4 47.4 MB
  • 30 - Python intro Flow control/003 For loops.mp4 46.9 MB
  • 18 - Convolution and transformations/009 Pooling in PyTorch.mp4 46.4 MB
  • 30 - Python intro Flow control/007 Single-line loops (list comprehension).mp4 46.2 MB
  • 05 - Math, numpy, PyTorch/003 Spectral theories in mathematics.mp4 46.0 MB
  • 23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR.mp4 45.3 MB
  • 10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum).mp4 44.3 MB
  • 19 - Understand and design CNNs/003 CNN on shifted MNIST.mp4 43.4 MB
  • 05 - Math, numpy, PyTorch/014 Random sampling and sampling variability.mp4 43.3 MB
  • 27 - Python intro Data types/002 Variables.mp4 43.1 MB
  • 21 - Transfer learning/001 Transfer learning What, why, and when.mp4 42.4 MB
  • 29 - Python intro Functions/005 Creating functions.mp4 42.1 MB
  • 06 - Gradient descent/001 Overview of gradient descent.mp4 42.0 MB
  • 10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization.mp4 41.9 MB
  • 10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties.mp4 41.8 MB
  • 17 - Running models on a GPU/002 Implementation.mp4 41.6 MB
  • 29 - Python intro Functions/006 Global and local variable scopes.mp4 41.1 MB
  • 19 - Understand and design CNNs/014 CodeChallenge How low can you go.mp4 41.1 MB
  • 10 - Metaparameters (activations, optimizers)/006 Batch normalization.mp4 41.0 MB
  • 12 - More on data/009 Save and load trained models.mp4 40.6 MB
  • 23 - Generative adversarial networks/001 GAN What, why, and how.mp4 40.6 MB
  • 25 - Ethics of deep learning/002 Example case studies.mp4 40.3 MB
  • 13 - Measuring model performance/003 APRF in code.mp4 40.0 MB
  • 09 - Regularization/005 Dropout example 2.mp4 40.0 MB
  • 10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).mp4 39.9 MB
  • 31 - Python intro Text and plots/007 Export plots in low and high resolution.mp4 39.2 MB
  • 07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost).mp4 39.1 MB
  • 07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture.mp4 38.9 MB
  • 30 - Python intro Flow control/009 Broadcasting in numpy.mp4 38.9 MB
  • 17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU.mp4 38.7 MB
  • 07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems.mp4 38.5 MB
  • 20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10.mp4 38.4 MB
  • 10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something.mp4 38.3 MB
  • 07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class.mp4 38.3 MB
  • 27 - Python intro Data types/003 Math and printing.mp4 37.7 MB
  • 03 - Concepts in deep learning/002 How models learn.mp4 37.1 MB
  • 31 - Python intro Text and plots/005 Seaborn.mp4 36.0 MB
  • 25 - Ethics of deep learning/004 Will deep learning take our jobs.mp4 35.5 MB
  • 02 - Download all course materials/001 Downloading and using the code.mp4 35.3 MB
  • 11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST.mp4 34.8 MB
  • 05 - Math, numpy, PyTorch/013 Mean and variance.mp4 34.5 MB
  • 07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop).mp4 34.4 MB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work.mp4 34.2 MB
  • 05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials.mp4 33.7 MB
  • 12 - More on data/008 Getting data into colab.mp4 33.5 MB
  • 07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units.mp4 33.4 MB
  • 30 - Python intro Flow control/001 If-else statements.mp4 31.6 MB
  • 07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs.mp4 31.3 MB
  • 03 - Concepts in deep learning/001 What is an artificial neural network.mp4 30.8 MB
  • 20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder.mp4 30.7 MB
  • 28 - Python intro Indexing, slicing/002 Slicing.mp4 30.4 MB
  • 31 - Python intro Text and plots/002 Plotting dots and lines.mp4 30.3 MB
  • 11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images.mp4 30.1 MB
  • 12 - More on data/011 Where to find online datasets.mp4 29.8 MB
  • 07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop).mp4 29.3 MB
  • 29 - Python intro Functions/002 Python libraries (numpy).mp4 29.3 MB
  • 06 - Gradient descent/006 CodeChallenge 2D gradient ascent.mp4 29.2 MB
  • 18 - Convolution and transformations/004 Convolution parameters (stride, padding).mp4 28.7 MB
  • 22 - Style transfer/003 The style transfer algorithm.mp4 28.0 MB
  • 08 - Overfitting and cross-validation/008 Cross-validation on regression.mp4 27.6 MB
  • 14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine.mp4 27.2 MB
  • 05 - Math, numpy, PyTorch/019 Derivatives product and chain rules.mp4 27.1 MB
  • 01 - Introduction/002 Using Udemy like a pro.mp4 26.9 MB
  • 06 - Gradient descent/002 What about local minima.mp4 26.9 MB
  • 10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.mp4 26.8 MB
  • 27 - Python intro Data types/004 Lists (1 of 2).mp4 26.1 MB
  • 29 - Python intro Functions/004 Getting help on functions.mp4 26.0 MB
  • 11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem.mp4 25.4 MB
  • 09 - Regularization/009 Training in mini-batches.mp4 25.3 MB
  • 25 - Ethics of deep learning/001 Will AI save us or destroy us.mp4 25.0 MB
  • 19 - Understand and design CNNs/001 The canonical CNN architecture.mp4 25.0 MB
  • 14 - FFN milestone projects/003 Project 2 Predicting heart disease.mp4 24.8 MB
  • 27 - Python intro Data types/005 Lists (2 of 2).mp4 24.7 MB
  • 28 - Python intro Indexing, slicing/001 Indexing.mp4 24.5 MB
  • 27 - Python intro Data types/008 Dictionaries.mp4 24.4 MB
  • 06 - Gradient descent/009 Vanishing and exploding gradients.mp4 23.4 MB
  • 21 - Transfer learning/004 Famous CNN architectures.mp4 23.3 MB
  • 16 - Autoencoders/001 What are autoencoders and what do they do.mp4 22.2 MB
  • 05 - Math, numpy, PyTorch/010 Logarithms.mp4 21.9 MB
  • 21 - Transfer learning/006 CodeChallenge VGG-16.mp4 21.3 MB
  • 05 - Math, numpy, PyTorch/007 OMG it's the dot product!.mp4 20.8 MB
  • 14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation.mp4 20.6 MB
  • 20 - CNN milestone projects/004 Project 3 FMNIST.mp4 20.4 MB
  • 07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist.mp4 20.2 MB
  • 18 - Convolution and transformations/006 CodeChallenge Choose the parameters.mp4 19.9 MB
  • 13 - Measuring model performance/001 Two perspectives of the world.mp4 19.8 MB
  • 12 - More on data/004 What to do about unbalanced designs.mp4 19.7 MB
  • 05 - Math, numpy, PyTorch/018 Derivatives find minima.mp4 19.6 MB
  • 13 - Measuring model performance/008 Better performance in test than train.mp4 19.1 MB
  • 05 - Math, numpy, PyTorch/006 Vector and matrix transpose.mp4 18.7 MB
  • 26 - Where to go from here/001 How to learn topic _X_ in deep learning.mp4 18.3 MB
  • 22 - Style transfer/001 What is style transfer and how does it work.mp4 17.6 MB
  • 05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers.mp4 16.6 MB
  • 09 - Regularization/002 train() and eval() modes.mp4 16.4 MB
  • 27 - Python intro Data types/006 Tuples.mp4 16.1 MB
  • 06 - Gradient descent/010 Tangent Notebook revision history.mp4 15.5 MB
  • 30 - Python intro Flow control/005 Continue.mp4 15.0 MB
  • 29 - Python intro Functions/001 Inputs and outputs.mp4 14.1 MB
  • 05 - Math, numpy, PyTorch/005 Converting reality to numbers.mp4 14.1 MB
  • 08 - Overfitting and cross-validation/003 Generalization.mp4 13.9 MB
  • 11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks.mp4 13.3 MB
  • 10 - Metaparameters (activations, optimizers)/001 What are metaparameters.mp4 13.0 MB
  • 27 - Python intro Data types/001 How to learn from the Python tutorial.mp4 12.9 MB
  • 15 - Weight inits and investigations/010 Use default inits or apply your own.mp4 11.5 MB
  • 29 - Python intro Functions/007 Copies and referents of variables.mp4 11.2 MB
  • 04 - About the Python tutorial/001 Should you watch the Python tutorial.mp4 9.8 MB
  • 19 - Understand and design CNNs/016 So many possibilities! How to create a CNN.mp4 9.7 MB
  • 05 - Math, numpy, PyTorch/002 Introduction to this section.mp4 4.7 MB
  • 02 - Download all course materials/002 My policy on code-sharing.mp4 4.1 MB
  • 02 - Download all course materials/001 DUDL-PythonCode.zip 1.4 MB
  • 19 - Understand and design CNNs/005 Examine feature map activations_en.srt 39.9 kB
  • 07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset)_en.srt 39.6 kB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation_en.srt 38.9 kB
  • 19 - Understand and design CNNs/002 CNN to classify MNIST digits_en.srt 37.5 kB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum_en.srt 36.9 kB
  • 07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison_en.srt 35.7 kB
  • 19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition)_en.srt 35.6 kB
  • 07 - ANNs (Artificial Neural Networks)/006 ANN for regression_en.srt 35.3 kB
  • 16 - Autoencoders/006 Autoencoder with tied weights_en.srt 34.3 kB
  • 07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties_en.srt 34.1 kB
  • 19 - Understand and design CNNs/004 Classify Gaussian blurs_en.srt 33.8 kB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM_en.srt 32.9 kB
  • 09 - Regularization/004 Dropout regularization in practice_en.srt 32.9 kB
  • 11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits_en.srt 32.4 kB
  • 15 - Weight inits and investigations/009 Learning-related changes in weights_en.srt 32.3 kB
  • 18 - Convolution and transformations/001 Convolution concepts_en.srt 31.9 kB
  • 22 - Style transfer/004 Transferring the screaming bathtub_en.srt 31.8 kB
  • 09 - Regularization/003 Dropout regularization_en.srt 31.1 kB
  • 16 - Autoencoders/005 The latent code of MNIST_en.srt 30.9 kB
  • 07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth_en.srt 30.4 kB
  • 29 - Python intro Functions/005 Creating functions_en.srt 30.4 kB
  • 18 - Convolution and transformations/003 Convolution in code_en.srt 30.1 kB
  • 08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn_en.srt 30.0 kB
  • 19 - Understand and design CNNs/010 CodeChallenge Custom loss functions_en.srt 29.5 kB
  • 07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN_en.srt 29.0 kB
  • 12 - More on data/003 CodeChallenge unbalanced data_en.srt 28.9 kB
  • 08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader_en.srt 28.5 kB
  • 16 - Autoencoders/003 CodeChallenge How many units_en.srt 28.5 kB
  • 27 - Python intro Data types/007 Booleans_en.srt 28.4 kB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences_en.srt 28.4 kB
  • 21 - Transfer learning/007 Pretraining with autoencoders_en.srt 28.4 kB
  • 12 - More on data/007 Data feature augmentation_en.srt 28.2 kB
  • 07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes_en.srt 27.9 kB
  • 07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture_en.srt 27.6 kB
  • 30 - Python intro Flow control/008 while loops_en.srt 27.5 kB
  • 05 - Math, numpy, PyTorch/009 Softmax_en.srt 27.4 kB
  • 14 - FFN milestone projects/004 Project 2 My solution_en.srt 27.3 kB
  • 10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum)_en.srt 27.0 kB
  • 27 - Python intro Data types/002 Variables_en.srt 26.8 kB
  • 06 - Gradient descent/007 Parametric experiments on g.d_en.srt 26.8 kB
  • 09 - Regularization/006 Weight regularization (L1L2) math_en.srt 26.7 kB
  • 31 - Python intro Text and plots/004 Making the graphs look nicer_en.srt 26.6 kB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch_en.srt 26.6 kB
  • 10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch_en.srt 26.5 kB
  • 27 - Python intro Data types/003 Math and printing_en.srt 26.4 kB
  • 18 - Convolution and transformations/008 Maxmean pooling_en.srt 26.3 kB
  • 29 - Python intro Functions/008 Classes and object-oriented programming_en.srt 26.2 kB
  • 10 - Metaparameters (activations, optimizers)/009 Activation functions_en.srt 26.1 kB
  • 12 - More on data/001 Anatomy of a torch dataset and dataloader_en.srt 26.0 kB
  • 18 - Convolution and transformations/012 Creating and using custom DataLoaders_en.srt 26.0 kB
  • 16 - Autoencoders/004 AEs for occlusion_en.srt 25.5 kB
  • 21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model_en.srt 25.5 kB
  • 10 - Metaparameters (activations, optimizers)/002 The wine quality dataset_en.srt 25.4 kB
  • 31 - Python intro Text and plots/006 Images_en.srt 25.4 kB
  • 07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters_en.srt 25.3 kB
  • 30 - Python intro Flow control/006 Initializing variables_en.srt 25.2 kB
  • 26 - Where to go from here/002 How to read academic DL papers_en.srt 25.1 kB
  • 05 - Math, numpy, PyTorch/011 Entropy and cross-entropy_en.srt 25.0 kB
  • 30 - Python intro Flow control/010 Function error checking and handling_en.srt 25.0 kB
  • 30 - Python intro Flow control/003 For loops_en.srt 24.9 kB
  • 19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters_en.srt 24.8 kB
  • 10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar_en.srt 24.6 kB
  • 08 - Overfitting and cross-validation/002 Cross-validation_en.srt 24.6 kB
  • 21 - Transfer learning/001 Transfer learning What, why, and when_en.srt 24.4 kB
  • 06 - Gradient descent/003 Gradient descent in 1D_en.srt 24.3 kB
  • 15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming_en.srt 24.3 kB
  • 21 - Transfer learning/005 Transfer learning with ResNet-18_en.srt 24.2 kB
  • 11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization_en.srt 24.1 kB
  • 19 - Understand and design CNNs/008 Do autoencoders clean Gaussians_en.srt 24.1 kB
  • 05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials_en.srt 24.0 kB
  • 10 - Metaparameters (activations, optimizers)/014 Loss functions_en.srt 24.0 kB
  • 31 - Python intro Text and plots/001 Printing and string interpolation_en.srt 24.0 kB
  • 03 - Concepts in deep learning/005 Are artificial neurons like biological neurons_en.srt 23.8 kB
  • 12 - More on data/005 Data oversampling in MNIST_en.srt 23.8 kB
  • 30 - Python intro Flow control/002 If-else statements, part 2_en.srt 23.7 kB
  • 15 - Weight inits and investigations/002 A surprising demo of weight initializations_en.srt 23.6 kB
  • 18 - Convolution and transformations/011 Image transforms_en.srt 23.4 kB
  • 23 - Generative adversarial networks/001 GAN What, why, and how_en.srt 23.2 kB
  • 06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate_en.srt 23.1 kB
  • 12 - More on data/002 Data size and network size_en.srt 23.1 kB
  • 03 - Concepts in deep learning/003 The role of DL in science and knowledge_en.srt 23.0 kB
  • 19 - Understand and design CNNs/011 Discover the Gaussian parameters_en.srt 22.9 kB
  • 31 - Python intro Text and plots/003 Subplot geometry_en.srt 22.8 kB
  • 10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset_en.srt 22.8 kB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings_en.srt 22.6 kB
  • 16 - Autoencoders/002 Denoising MNIST_en.srt 22.5 kB
  • 05 - Math, numpy, PyTorch/013 Mean and variance_en.srt 22.3 kB
  • 15 - Weight inits and investigations/005 Xavier and Kaiming initializations_en.srt 22.2 kB
  • 17 - Running models on a GPU/001 What is a GPU and why use it_en.srt 22.1 kB
  • 07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop)_en.srt 21.9 kB
  • 23 - Generative adversarial networks/004 CNN GAN with Gaussians_en.srt 21.8 kB
  • 10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam)_en.srt 21.8 kB
  • 12 - More on data/010 Save the best-performing model_en.srt 21.7 kB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work_en.srt 21.5 kB
  • 11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning_en.srt 21.4 kB
  • 30 - Python intro Flow control/007 Single-line loops (list comprehension)_en.srt 21.4 kB
  • 30 - Python intro Flow control/001 If-else statements_en.srt 21.3 kB
  • 21 - Transfer learning/003 CodeChallenge letters to numbers_en.srt 21.3 kB
  • 06 - Gradient descent/005 Gradient descent in 2D_en.srt 21.2 kB
  • 03 - Concepts in deep learning/001 What is an artificial neural network_en.srt 21.1 kB
  • 30 - Python intro Flow control/009 Broadcasting in numpy_en.srt 21.0 kB
  • 06 - Gradient descent/001 Overview of gradient descent_en.srt 20.6 kB
  • 05 - Math, numpy, PyTorch/008 Matrix multiplication_en.srt 20.3 kB
  • 27 - Python intro Data types/004 Lists (1 of 2)_en.srt 20.1 kB
  • 10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs_en.srt 20.0 kB
  • 29 - Python intro Functions/003 Python libraries (pandas)_en.srt 20.0 kB
  • 18 - Convolution and transformations/009 Pooling in PyTorch_en.srt 19.8 kB
  • 29 - Python intro Functions/002 Python libraries (numpy)_en.srt 19.7 kB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes_en.srt 19.7 kB
  • 18 - Convolution and transformations/007 Transpose convolution_en.srt 19.6 kB
  • 10 - Metaparameters (activations, optimizers)/004 Data normalization_en.srt 19.4 kB
  • 19 - Understand and design CNNs/015 CodeChallenge Varying number of channels_en.srt 19.4 kB
  • 29 - Python intro Functions/006 Global and local variable scopes_en.srt 19.4 kB
  • 07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs_en.srt 19.2 kB
  • 05 - Math, numpy, PyTorch/016 The t-test_en.srt 19.1 kB
  • 15 - Weight inits and investigations/008 Freezing weights during learning_en.srt 19.0 kB
  • 13 - Measuring model performance/004 APRF example 1 wine quality_en.srt 19.0 kB
  • 03 - Concepts in deep learning/004 Running experiments to understand DL_en.srt 18.9 kB
  • 09 - Regularization/001 Regularization Concept and methods_en.srt 18.8 kB
  • 09 - Regularization/007 L2 regularization in practice_en.srt 18.7 kB
  • 18 - Convolution and transformations/005 The Conv2 class in PyTorch_en.srt 18.7 kB
  • 24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning_en.srt 18.6 kB
  • 03 - Concepts in deep learning/002 How models learn_en.srt 18.5 kB
  • 10 - Metaparameters (activations, optimizers)/006 Batch normalization_en.srt 18.4 kB
  • 12 - More on data/006 Data noise augmentation (with devset+test)_en.srt 18.4 kB
  • 08 - Overfitting and cross-validation/004 Cross-validation -- manual separation_en.srt 18.3 kB
  • 15 - Weight inits and investigations/004 CodeChallenge Weight variance inits_en.srt 18.2 kB
  • 11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset_en.srt 18.1 kB
  • 15 - Weight inits and investigations/003 Theory Why and how to initialize weights_en.srt 18.0 kB
  • 05 - Math, numpy, PyTorch/012 Minmax and argminargmax_en.srt 17.9 kB
  • 09 - Regularization/012 CodeChallenge Effects of mini-batch size_en.srt 17.8 kB
  • 18 - Convolution and transformations/004 Convolution parameters (stride, padding)_en.srt 17.8 kB
  • 08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say_en.srt 17.8 kB
  • 28 - Python intro Indexing, slicing/001 Indexing_en.srt 17.8 kB
  • 13 - Measuring model performance/002 Accuracy, precision, recall, F1_en.srt 17.7 kB
  • 15 - Weight inits and investigations/007 CodeChallenge Identically random weights_en.srt 17.7 kB
  • 31 - Python intro Text and plots/002 Plotting dots and lines_en.srt 17.7 kB
  • 10 - Metaparameters (activations, optimizers)/023 Learning rate decay_en.srt 17.6 kB
  • 07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!_en.srt 17.5 kB
  • 11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth_en.srt 17.5 kB
  • 09 - Regularization/008 L1 regularization in practice_en.srt 17.2 kB
  • 20 - CNN milestone projects/002 Project 1 My solution_en.srt 17.0 kB
  • 15 - Weight inits and investigations/001 Explanation of weight matrix sizes_en.srt 17.0 kB
  • 06 - Gradient descent/002 What about local minima_en.srt 16.9 kB
  • 13 - Measuring model performance/005 APRF example 2 MNIST_en.srt 16.9 kB
  • 27 - Python intro Data types/008 Dictionaries_en.srt 16.8 kB
  • 10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch_en.srt 16.7 kB
  • 19 - Understand and design CNNs/007 CodeChallenge How wide the FC_en.srt 16.7 kB
  • 14 - FFN milestone projects/002 Project 1 My solution_en.srt 16.7 kB
  • 16 - Autoencoders/001 What are autoencoders and what do they do_en.srt 16.7 kB
  • 20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs_en.srt 16.7 kB
  • 10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters_en.srt 16.6 kB
  • 09 - Regularization/009 Training in mini-batches_en.srt 16.6 kB
  • 22 - Style transfer/002 The Gram matrix (feature activation covariance)_en.srt 16.6 kB
  • 11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST_en.srt 16.5 kB
  • 25 - Ethics of deep learning/005 Accountability and making ethical AI_en.srt 16.5 kB
  • 05 - Math, numpy, PyTorch/014 Random sampling and sampling variability_en.srt 16.1 kB
  • 30 - Python intro Flow control/004 Enumerate and zip_en.srt 15.8 kB
  • 06 - Gradient descent/004 CodeChallenge unfortunate starting value_en.srt 15.7 kB
  • 31 - Python intro Text and plots/005 Seaborn_en.srt 15.7 kB
  • 11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7_en.srt 15.5 kB
  • 19 - Understand and design CNNs/001 The canonical CNN architecture_en.srt 15.5 kB
  • 09 - Regularization/010 Batch training in action_en.srt 15.4 kB
  • 07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop)_en.srt 15.1 kB
  • 25 - Ethics of deep learning/003 Some other possible ethical scenarios_en.srt 15.0 kB
  • 10 - Metaparameters (activations, optimizers)/020 Optimizers comparison_en.srt 14.6 kB
  • 17 - Running models on a GPU/002 Implementation_en.srt 14.6 kB
  • 07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units_en.srt 14.4 kB
  • 21 - Transfer learning/002 Transfer learning MNIST - FMNIST_en.srt 14.4 kB
  • 18 - Convolution and transformations/010 To pool or to stride_en.srt 14.3 kB
  • 27 - Python intro Data types/005 Lists (2 of 2)_en.srt 14.3 kB
  • 14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation_en.srt 14.2 kB
  • 25 - Ethics of deep learning/001 Will AI save us or destroy us_en.srt 14.2 kB
  • 13 - Measuring model performance/007 Computation time_en.srt 14.1 kB
  • 19 - Understand and design CNNs/013 Dropout in CNNs_en.srt 14.0 kB
  • 05 - Math, numpy, PyTorch/019 Derivatives product and chain rules_en.srt 13.9 kB
  • 19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians_en.srt 13.8 kB
  • 18 - Convolution and transformations/002 Feature maps and convolution kernels_en.srt 13.8 kB
  • 05 - Math, numpy, PyTorch/007 OMG it's the dot product!_en.srt 13.8 kB
  • 23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST_en.srt 13.7 kB
  • 07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost)_en.srt 13.7 kB
  • 08 - Overfitting and cross-validation/007 Splitting data into train, devset, test_en.srt 13.6 kB
  • 10 - Metaparameters (activations, optimizers)/005 The importance of data normalization_en.srt 13.6 kB
  • 10 - Metaparameters (activations, optimizers)/011 Activation functions comparison_en.srt 13.4 kB
  • 05 - Math, numpy, PyTorch/003 Spectral theories in mathematics_en.srt 13.4 kB
  • 01 - Introduction/001 How to learn from this course_en.srt 12.8 kB
  • 13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups_en.srt 12.8 kB
  • 07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet_en.srt 12.4 kB
  • 26 - Where to go from here/001 How to learn topic _X_ in deep learning_en.srt 12.2 kB
  • 05 - Math, numpy, PyTorch/018 Derivatives find minima_en.srt 12.1 kB
  • 01 - Introduction/002 Using Udemy like a pro_en.srt 12.1 kB
  • 07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems_en.srt 12.0 kB
  • 19 - Understand and design CNNs/003 CNN on shifted MNIST_en.srt 11.9 kB
  • 27 - Python intro Data types/006 Tuples_en.srt 11.8 kB
  • 13 - Measuring model performance/008 Better performance in test than train_en.srt 11.8 kB
  • 08 - Overfitting and cross-validation/008 Cross-validation on regression_en.srt 11.8 kB
  • 14 - FFN milestone projects/006 Project 3 My solution_en.srt 11.7 kB
  • 05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding_en.srt 11.6 kB
  • 11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem_en.srt 11.5 kB
  • 23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR_en.srt 11.5 kB
  • 10 - Metaparameters (activations, optimizers)/018 SGD with momentum_en.srt 11.4 kB
  • 10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice_en.srt 11.4 kB
  • 05 - Math, numpy, PyTorch/010 Logarithms_en.srt 11.3 kB
  • 31 - Python intro Text and plots/007 Export plots in low and high resolution_en.srt 11.2 kB
  • 10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants_en.srt 11.1 kB
  • 11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST_en.srt 11.0 kB
  • 12 - More on data/004 What to do about unbalanced designs_en.srt 11.0 kB
  • 29 - Python intro Functions/004 Getting help on functions_en.srt 10.9 kB
  • 14 - FFN milestone projects/003 Project 2 Predicting heart disease_en.srt 10.8 kB
  • 14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine_en.srt 10.6 kB
  • 05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers_en.srt 10.5 kB
  • 20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10_en.srt 10.5 kB
  • 29 - Python intro Functions/001 Inputs and outputs_en.srt 10.4 kB
  • 22 - Style transfer/005 CodeChallenge Style transfer with AlexNet_en.srt 10.3 kB
  • 10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization_en.srt 10.2 kB
  • 13 - Measuring model performance/001 Two perspectives of the world_en.srt 10.2 kB
  • 09 - Regularization/002 train() and eval() modes_en.srt 10.1 kB
  • 18 - Convolution and transformations/006 CodeChallenge Choose the parameters_en.srt 10.0 kB
  • 30 - Python intro Flow control/005 Continue_en.srt 9.9 kB
  • 05 - Math, numpy, PyTorch/006 Vector and matrix transpose_en.srt 9.9 kB
  • 19 - Understand and design CNNs/014 CodeChallenge How low can you go_en.srt 9.8 kB
  • 11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST_en.srt 9.8 kB
  • 17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU_en.srt 9.7 kB
  • 07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class_en.srt 9.6 kB
  • 10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something_en.srt 9.4 kB
  • 05 - Math, numpy, PyTorch/005 Converting reality to numbers_en.srt 9.4 kB
  • 09 - Regularization/011 The importance of equal batch sizes_en.srt 9.3 kB
  • 02 - Download all course materials/001 Downloading and using the code_en.srt 9.3 kB
  • 13 - Measuring model performance/003 APRF in code_en.srt 9.2 kB
  • 23 - Generative adversarial networks/006 CNN GAN with FMNIST_en.srt 9.1 kB
  • 07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist_en.srt 9.1 kB
  • 06 - Gradient descent/009 Vanishing and exploding gradients_en.srt 9.1 kB
  • 09 - Regularization/005 Dropout example 2_en.srt 9.0 kB
  • 25 - Ethics of deep learning/002 Example case studies_en.srt 9.0 kB
  • 12 - More on data/009 Save and load trained models_en.srt 8.8 kB
  • 23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers_en.srt 8.8 kB
  • 12 - More on data/008 Getting data into colab_en.srt 8.8 kB
  • 08 - Overfitting and cross-validation/003 Generalization_en.srt 8.7 kB
  • 21 - Transfer learning/004 Famous CNN architectures_en.srt 8.6 kB
  • 12 - More on data/011 Where to find online datasets_en.srt 8.3 kB
  • 06 - Gradient descent/006 CodeChallenge 2D gradient ascent_en.srt 7.4 kB
  • 10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties_en.srt 7.4 kB
  • 11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images_en.srt 7.3 kB
  • 10 - Metaparameters (activations, optimizers)/001 What are metaparameters_en.srt 7.3 kB
  • 29 - Python intro Functions/007 Copies and referents of variables_en.srt 7.1 kB
  • 20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder_en.srt 6.9 kB
  • 11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks_en.srt 6.9 kB
  • 19 - Understand and design CNNs/016 So many possibilities! How to create a CNN_en.srt 6.4 kB
  • 15 - Weight inits and investigations/010 Use default inits or apply your own_en.srt 6.3 kB
  • 22 - Style transfer/001 What is style transfer and how does it work_en.srt 6.3 kB
  • 04 - About the Python tutorial/001 Should you watch the Python tutorial_en.srt 6.1 kB
  • 20 - CNN milestone projects/004 Project 3 FMNIST_en.srt 5.1 kB
  • 21 - Transfer learning/006 CodeChallenge VGG-16_en.srt 5.0 kB
  • 32 - Bonus section/001 Bonus content.html 4.7 kB
  • 05 - Math, numpy, PyTorch/002 Introduction to this section_en.srt 2.9 kB
  • 06 - Gradient descent/010 Tangent Notebook revision history_en.srt 2.7 kB
  • 02 - Download all course materials/002 My policy on code-sharing_en.srt 2.5 kB
  • 05 - Math, numpy, PyTorch/001 PyTorch or TensorFlow.html 1.1 kB
  • 07 - ANNs (Artificial Neural Networks)/020 Diversity of ANN visual representations.html 517 Bytes
  • Readme.txt 144 Bytes
  • 02 - Download all course materials/external-links.txt 93 Bytes
  • 02 - Download all course materials/001 Code-on-my-github-site.url 85 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!