MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCourseSite.com] Udemy - The Data Science Course 2022 Complete Data Science Bootcamp

磁力链接/BT种子名称

[FreeCourseSite.com] Udemy - The Data Science Course 2022 Complete Data Science Bootcamp

磁力链接/BT种子简介

种子哈希:c48c0fc3ac45de1341e3e6786f3a5e00b0561062
文件大小: 7.79G
已经下载:1801次
下载速度:极快
收录时间:2022-01-30
最近下载:2025-07-25

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:C48C0FC3AC45DE1341E3E6786F3A5E00B0561062
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 TikTok成人版 PornHub 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

知性眼镜 乳模 市来美保无码 吸吮大长屌 小电臀 带上一群单男轮奸两只小母狗,三个洞都被填满 李雅 人妻[中文字幕] flawless 1982 小黄人 小姨妈 皮肤白皙 ms 中学校 psycho. amari anne - assistance 颜值区 jur-273 【绿帽淫妻】 +泡良达人 ดูซีรีย์ปรปักษ์จํานนพากย์ไทยตอนที่19 南京约的42岁 窒息母狗 维修 提督定制 煞科 饼干姐姐 酒店约操丰满 一穴双 果冻传媒91制片厂

文件列表

  • 12 - Probability - Distributions/015 A Practical Example of Probability Distributions.mp4 145.0 MB
  • 11 - Probability - Bayesian Inference/012 A Practical Example of Bayesian Inference.mp4 131.6 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/001 Techniques for Working with Traditional Data.mp4 110.6 MB
  • 40 - Part 6_ Mathematics/011 Why is Linear Algebra Useful_.mp4 90.4 MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/001 Practical Example_ Linear Regression (Part 1).mp4 89.0 MB
  • 20 - Statistics - Hypothesis Testing/001 Null vs Alternative Hypothesis.mp4 84.8 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/007 Techniques for Working with Traditional Methods.mp4 78.4 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/004 Business Case_ Preprocessing.mp4 78.0 MB
  • 51 - Deep Learning - Business Case Example/004 Business Case_ Preprocessing the Data.mp4 77.4 MB
  • 56 - Software Integration/003 Taking a Closer Look at APIs.mp4 68.5 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/011 Obtaining Dummies from a Single Feature.mp4 66.9 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/010 Types of Machine Learning.mp4 64.8 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/003 Techniques for Working with Big Data.mp4 63.4 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/001 Business Case_ Getting Acquainted with the Dataset.mp4 63.2 MB
  • 56 - Software Integration/002 What are Data Connectivity, APIs, and Endpoints_.mp4 61.7 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/006 Creating a Data Provider.mp4 59.0 MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/001 Data Science and Business Buzzwords_ Why are there so Many_.mp4 57.4 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/003 Checking the Content of the Data Set.mp4 56.9 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/002 Confidence Intervals; Population Variance Known; Z-score.mp4 54.7 MB
  • 51 - Deep Learning - Business Case Example/001 Business Case_ Exploring the Dataset and Identifying Predictors.mp4 53.9 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/005 Business Intelligence (BI) Techniques.mp4 53.8 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/016 Classifying the Various Reasons for Absence.mp4 53.8 MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/008 Practical Example_ Linear Regression (Part 5).mp4 52.9 MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/003 Business Analytics, Data Analytics, and Data Science_ An Introduction.mp4 52.4 MB
  • 01 - Part 1_ Introduction/002 What Does the Course Cover.mp4 52.1 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/009 Machine Learning (ML) Techniques.mp4 50.1 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/009 Confidence intervals. Two means. Dependent samples.mp4 47.2 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/003 Logistic vs Logit Function.mp4 46.1 MB
  • 51 - Deep Learning - Business Case Example/009 Business Case_ Setting an Early Stopping Mechanism.mp4 45.9 MB
  • 62 - Appendix - Additional Python Tools/005 List Comprehensions.mp4 45.3 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/007 Business Case_ Model Outline.mp4 44.5 MB
  • 15 - Statistics - Descriptive Statistics/001 Types of Data.mp4 44.5 MB
  • 10 - Probability - Combinatorics/011 A Practical Example of Combinatorics.mp4 44.3 MB
  • 56 - Software Integration/005 Software Integration - Explained.mp4 44.0 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/007 Dropping a Column from a DataFrame in Python.mp4 43.3 MB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/004 Analyzing Reasons vs Probability in Tableau.mp4 42.2 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/026 Analyzing the Dates from the Initial Data Set.mp4 42.1 MB
  • 13 - Probability - Probability in Other Fields/001 Probability in Finance.mp4 41.6 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/027 Extracting the Month Value from the _Date_ Column.mp4 40.8 MB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Analyzing Age vs Probability in Tableau.mp4 40.6 MB
  • 20 - Statistics - Hypothesis Testing/003 Rejection Region and Significance Level.mp4 40.1 MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/009 MNIST_ Results and Testing.mp4 40.0 MB
  • 63 - Appendix - pandas Fundamentals/010 Data Selection in pandas DataFrames.mp4 39.1 MB
  • 16 - Statistics - Practical Example_ Descriptive Statistics/001 Practical Example_ Descriptive Statistics.mp4 39.0 MB
  • 20 - Statistics - Hypothesis Testing/005 Test for the Mean. Population Variance Known.mp4 38.8 MB
  • 15 - Statistics - Descriptive Statistics/003 Categorical Variables - Visualization Techniques.mp4 38.4 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/013 How is Clustering Useful_.mp4 38.3 MB
  • 09 - Part 2_ Probability/003 Frequency.mp4 38.2 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/005 Splitting the Data for Training and Testing.mp4 37.9 MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/004 Continuing with BI, ML, and AI.mp4 37.7 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/019 Train - Test Split Explained.mp4 37.3 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy.mp4 37.0 MB
  • 37 - Advanced Statistical Methods - Cluster Analysis/002 Some Examples of Clusters.mp4 36.8 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 Dealing with Categorical Data - Dummy Variables.mp4 36.8 MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/004 MNIST_ Model Outline.mp4 36.4 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/008 Interpreting the Coefficients for Our Problem.mp4 36.1 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Adjusted R-Squared.mp4 35.9 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/012 Market Segmentation with Cluster Analysis (Part 2).mp4 35.7 MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/005 A Breakdown of our Data Science Infographic.mp4 35.6 MB
  • 62 - Appendix - Additional Python Tools/006 Anonymous (Lambda) Functions.mp4 35.4 MB
  • 20 - Statistics - Hypothesis Testing/007 p-value.mp4 34.7 MB
  • 22 - Part 4_ Introduction to Python/004 Installing Python and Jupyter.mp4 34.5 MB
  • 20 - Statistics - Hypothesis Testing/010 Test for the Mean. Dependent Samples.mp4 34.4 MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/006 MNIST_ Preprocess the Data - Shuffle and Batch.mp4 34.3 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/002 Creating the Targets for the Logistic Regression.mp4 34.1 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Backward Elimination or How to Simplify Your Model.mp4 33.5 MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/002 Practical Example_ Linear Regression (Part 2).mp4 33.5 MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/008 MNIST_ Learning.mp4 33.4 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn.mp4 33.2 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/012 Testing the Model We Created.mp4 33.2 MB
  • 15 - Statistics - Descriptive Statistics/002 Levels of Measurement.mp4 33.0 MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/010 MNIST_ Learning.mp4 32.5 MB
  • 52 - Deep Learning - Conclusion/004 An overview of CNNs.mp4 31.9 MB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Basic NN Example (Part 4).mp4 31.5 MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/006 Practical Example_ Linear Regression (Part 4).mp4 31.3 MB
  • 63 - Appendix - pandas Fundamentals/009 pandas DataFrames - Common Attributes.mp4 31.2 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 First Regression in Python.mp4 31.1 MB
  • 09 - Part 2_ Probability/002 Computing Expected Values.mp4 30.7 MB
  • 09 - Part 2_ Probability/001 The Basic Probability Formula.mp4 30.5 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 30.3 MB
  • 12 - Probability - Distributions/008 Characteristics of Continuous Distributions.mp4 30.3 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/008 How to Interpret the Regression Table.mp4 30.1 MB
  • 12 - Probability - Distributions/002 Types of Probability Distributions.mp4 30.1 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/016 Preparing the Deployment of the Model through a Module.mp4 30.0 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/001 What are Confidence Intervals_.mp4 29.8 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 29.4 MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.mp4 29.4 MB
  • 51 - Deep Learning - Business Case Example/008 Business Case_ Learning and Interpreting the Result.mp4 29.1 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/010 Analyzing the Reasons for Absence.mp4 29.0 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/008 A3_ Normality and Homoscedasticity.mp4 28.7 MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/001 How to Install TensorFlow 2.0.mp4 28.7 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/015 Feature Selection through Standardization of Weights.mp4 28.5 MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/006 Outlining the Model with TensorFlow 2.mp4 28.3 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/007 Creating a Summary Table with the Coefficients and Intercept.mp4 28.3 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/008 Business Case_ Optimization.mp4 28.3 MB
  • 40 - Part 6_ Mathematics/010 Dot Product of Matrices.mp4 27.7 MB
  • 63 - Appendix - pandas Fundamentals/005 Using .unique() and .nunique().mp4 27.6 MB
  • 51 - Deep Learning - Business Case Example/003 Business Case_ Balancing the Dataset.mp4 27.5 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering.mp4 27.3 MB
  • 60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II.mp4 27.3 MB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps.mp4 27.0 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/013 Saving the Model and Preparing it for Deployment.mp4 26.8 MB
  • 12 - Probability - Distributions/006 Discrete Distributions_ The Binomial Distribution.mp4 26.2 MB
  • 28 - Python - Sequences/005 Dictionaries.mp4 26.1 MB
  • 20 - Statistics - Hypothesis Testing/014 Test for the mean. Independent Samples (Part 2).mp4 25.7 MB
  • 13 - Probability - Probability in Other Fields/003 Probability in Data Science.mp4 25.1 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation.mp4 24.8 MB
  • 29 - Python - Iterations/001 For Loops.mp4 24.7 MB
  • 63 - Appendix - pandas Fundamentals/011 pandas DataFrames - Indexing with .iloc[].mp4 24.7 MB
  • 28 - Python - Sequences/002 Using Methods.mp4 24.6 MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.mp4 24.0 MB
  • 17 - Statistics - Inferential Statistics Fundamentals/006 Central Limit Theorem.mp4 24.0 MB
  • 42 - Deep Learning - Introduction to Neural Networks/011 Optimization Algorithm_ 1-Parameter Gradient Descent.mp4 23.8 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/008 Margin of Error.mp4 23.8 MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/012 MNIST_ Testing the Model.mp4 23.7 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/011 Real Life Examples of Machine Learning (ML).mp4 23.5 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/010 What is the OLS_.mp4 23.5 MB
  • 63 - Appendix - pandas Fundamentals/001 Introduction to pandas Series.mp4 23.3 MB
  • 19 - Statistics - Practical Example_ Inferential Statistics/001 Practical Example_ Inferential Statistics.mp4 23.2 MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/008 MNIST_ Outline the Model.mp4 23.2 MB
  • 40 - Part 6_ Mathematics/006 Addition and Subtraction of Matrices.mp4 23.1 MB
  • 29 - Python - Iterations/004 Conditional Statements and Loops.mp4 23.0 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/002 A Simple Example in Python.mp4 23.0 MB
  • 03 - The Field of Data Science - Connecting the Data Science Disciplines/001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 22.8 MB
  • 62 - Appendix - Additional Python Tools/001 Using the .format() Method.mp4 22.7 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/015 Testing the Model.mp4 22.6 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/003 The Importance of Working with a Balanced Dataset.mp4 22.6 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/008 Real Life Examples of Traditional Methods.mp4 22.2 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/011 Market Segmentation with Cluster Analysis (Part 1).mp4 22.2 MB
  • 11 - Probability - Bayesian Inference/011 Bayes' Law.mp4 22.0 MB
  • 63 - Appendix - pandas Fundamentals/012 pandas DataFrames - Indexing with .loc[].mp4 21.7 MB
  • 12 - Probability - Distributions/010 Continuous Distributions_ The Standard Normal Distribution.mp4 21.7 MB
  • 28 - Python - Sequences/001 Lists.mp4 21.5 MB
  • 40 - Part 6_ Mathematics/008 Transpose of a Matrix.mp4 21.5 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/014 Feature Scaling (Standardization).mp4 21.4 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/012 Calculating the Accuracy of the Model.mp4 21.3 MB
  • 15 - Statistics - Descriptive Statistics/015 Variance.mp4 21.2 MB
  • 29 - Python - Iterations/002 While Loops and Incrementing.mp4 21.2 MB
  • 15 - Statistics - Descriptive Statistics/017 Standard Deviation and Coefficient of Variation.mp4 21.1 MB
  • 11 - Probability - Bayesian Inference/010 The Multiplication Law.mp4 20.8 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/006 How to Choose the Number of Clusters.mp4 20.8 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/017 Using .concat() in Python.mp4 20.7 MB
  • 23 - Python - Variables and Data Types/003 Python Strings.mp4 20.7 MB
  • 20 - Statistics - Hypothesis Testing/008 Test for the Mean. Population Variance Unknown.mp4 20.7 MB
  • 15 - Statistics - Descriptive Statistics/009 Cross Tables and Scatter Plots.mp4 20.7 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/031 Working on _Education_, _Children_, and _Pets_.mp4 20.6 MB
  • 12 - Probability - Distributions/009 Continuous Distributions_ The Normal Distribution.mp4 20.6 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/011 Business Case_ A Comment on the Homework.mp4 20.6 MB
  • 06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science.mp4 20.5 MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/007 Backpropagation.mp4 20.4 MB
  • 11 - Probability - Bayesian Inference/004 Union of Sets.mp4 20.4 MB
  • 62 - Appendix - Additional Python Tools/004 Triple Nested For Loops.mp4 20.3 MB
  • 15 - Statistics - Descriptive Statistics/021 Correlation Coefficient.mp4 20.3 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/006 Real Life Examples of Business Intelligence (BI).mp4 20.3 MB
  • 12 - Probability - Distributions/001 Fundamentals of Probability Distributions.mp4 20.2 MB
  • 28 - Python - Sequences/003 List Slicing.mp4 20.1 MB
  • 56 - Software Integration/001 What are Data, Servers, Clients, Requests, and Responses.mp4 20.1 MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/003 Digging into a Deep Net.mp4 20.1 MB
  • 11 - Probability - Bayesian Inference/002 Ways Sets Can Interact.mp4 19.9 MB
  • 40 - Part 6_ Mathematics/004 Arrays in Python - A Convenient Way To Represent Matrices.mp4 19.9 MB
  • 25 - Python - Other Python Operators/002 Logical and Identity Operators.mp4 19.9 MB
  • 10 - Probability - Combinatorics/006 Solving Combinations.mp4 19.9 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/009 Business Case_ Interpretation.mp4 19.5 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/004 Confidence Interval Clarifications.mp4 19.5 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/010 Binary Predictors in a Logistic Regression.mp4 19.4 MB
  • 15 - Statistics - Descriptive Statistics/019 Covariance.mp4 19.3 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/016 Predicting with the Standardized Coefficients.mp4 19.2 MB
  • 20 - Statistics - Hypothesis Testing/004 Type I Error and Type II Error.mp4 19.1 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/004 Introduction to Terms with Multiple Meanings.mp4 18.9 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/002 Importing the Absenteeism Data in Python.mp4 18.9 MB
  • 63 - Appendix - pandas Fundamentals/008 Introduction to pandas DataFrames - Part II.mp4 18.7 MB
  • 15 - Statistics - Descriptive Statistics/011 Mean, median and mode.mp4 18.4 MB
  • 11 - Probability - Bayesian Inference/001 Sets and Events.mp4 18.3 MB
  • 47 - Deep Learning - Initialization/001 What is Initialization_.mp4 18.3 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Creating Checkpoints while Coding in Jupyter.mp4 18.2 MB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/002 Dendrogram.mp4 18.2 MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/009 Basic NN Example with TF_ Model Output.mp4 17.9 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Final Remarks of this Section.mp4 17.9 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/008 Calculating the Adjusted R-Squared in sklearn.mp4 17.7 MB
  • 17 - Statistics - Inferential Statistics Fundamentals/002 What is a Distribution.mp4 17.7 MB
  • 63 - Appendix - pandas Fundamentals/002 Working with Methods in Python - Part I.mp4 17.6 MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/008 Customizing a TensorFlow 2 Model.mp4 17.6 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/006 An Invaluable Coding Tip.mp4 17.6 MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/006 Calculating the Accuracy of the Model.mp4 17.5 MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/004 TensorFlow Intro.mp4 17.4 MB
  • 29 - Python - Iterations/006 How to Iterate over Dictionaries.mp4 17.3 MB
  • 08 - The Field of Data Science - Debunking Common Misconceptions/001 Debunking Common Misconceptions.mp4 17.2 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression.mp4 17.2 MB
  • 42 - Deep Learning - Introduction to Neural Networks/012 Optimization Algorithm_ n-Parameter Gradient Descent.mp4 17.1 MB
  • 11 - Probability - Bayesian Inference/007 The Conditional Probability Formula.mp4 17.1 MB
  • 21 - Statistics - Practical Example_ Hypothesis Testing/001 Practical Example_ Hypothesis Testing.mp4 17.1 MB
  • 42 - Deep Learning - Introduction to Neural Networks/006 The Linear model with Multiple Inputs and Multiple Outputs.mp4 17.0 MB
  • 10 - Probability - Combinatorics/009 Combinatorics in Real-Life_ The Lottery.mp4 16.9 MB
  • 17 - Statistics - Inferential Statistics Fundamentals/003 The Normal Distribution.mp4 16.9 MB
  • 17 - Statistics - Inferential Statistics Fundamentals/008 Estimators and Estimates.mp4 16.9 MB
  • 12 - Probability - Distributions/014 Continuous Distributions_ The Logistic Distribution.mp4 16.7 MB
  • 57 - Case Study - What's Next in the Course_/001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 16.6 MB
  • 12 - Probability - Distributions/013 Continuous Distributions_ The Exponential Distribution.mp4 16.5 MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/008 Basic NN Example with TF_ Loss Function and Gradient Descent.mp4 16.5 MB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Basic NN Example (Part 3).mp4 16.4 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/010 Feature Selection (F-regression).mp4 16.4 MB
  • 52 - Deep Learning - Conclusion/006 An Overview of non-NN Approaches.mp4 16.4 MB
  • 64 - Bonus Lecture/35215106-365-Data-Science-Data-Science-Interview-Questions-Guide.pdf 16.3 MB
  • 63 - Appendix - pandas Fundamentals/004 Parameters and Arguments in pandas.mp4 16.2 MB
  • 22 - Part 4_ Introduction to Python/006 Prerequisites for Coding in the Jupyter Notebooks.mp4 16.1 MB
  • 57 - Case Study - What's Next in the Course_/003 Introducing the Data Set.mp4 16.0 MB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Basic NN Example (Part 2).mp4 16.0 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/010 Interpreting the Coefficients of the Logistic Regression.mp4 16.0 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/004 Standardizing the Data.mp4 15.9 MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/003 TensorFlow 1 vs TensorFlow 2.mp4 15.7 MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/002 TensorFlow Outline and Comparison with Other Libraries.mp4 15.7 MB
  • 12 - Probability - Distributions/005 Discrete Distributions_ The Bernoulli Distribution.mp4 15.5 MB
  • 10 - Probability - Combinatorics/005 Solving Variations without Repetition.mp4 15.5 MB
  • 12 - Probability - Distributions/007 Discrete Distributions_ The Poisson Distribution.mp4 15.3 MB
  • 29 - Python - Iterations/003 Lists with the range() Function.mp4 15.2 MB
  • 22 - Part 4_ Introduction to Python/001 Introduction to Programming.mp4 15.0 MB
  • 13 - Probability - Probability in Other Fields/002 Probability in Statistics.mp4 15.0 MB
  • 26 - Python - Conditional Statements/003 The ELIF Statement.mp4 14.9 MB
  • 10 - Probability - Combinatorics/003 Simple Operations with Factorials.mp4 14.7 MB
  • 10 - Probability - Combinatorics/002 Permutations and How to Use Them.mp4 14.6 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/002 Real Life Examples of Traditional Data.mp4 14.6 MB
  • 51 - Deep Learning - Business Case Example/006 Business Case_ Load the Preprocessed Data.mp4 14.5 MB
  • 10 - Probability - Combinatorics/004 Solving Variations with Repetition.mp4 14.4 MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/007 Interpreting the Result and Extracting the Weights and Bias.mp4 14.3 MB
  • 40 - Part 6_ Mathematics/003 Linear Algebra and Geometry.mp4 14.2 MB
  • 46 - Deep Learning - Overfitting/002 Underfitting and Overfitting for Classification.mp4 14.2 MB
  • 10 - Probability - Combinatorics/007 Symmetry of Combinations.mp4 14.2 MB
  • 17 - Statistics - Inferential Statistics Fundamentals/007 Standard error.mp4 14.0 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/005 Student's T Distribution.mp4 14.0 MB
  • 63 - Appendix - pandas Fundamentals/006 Using .sort_values().mp4 13.8 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 The Linear Regression Model.mp4 13.8 MB
  • 01 - Part 1_ Introduction/001 A Practical Example_ What You Will Learn in This Course.mp4 13.7 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/013 Confidence intervals. Two means. Independent Samples (Part 2).mp4 13.7 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/007 Understanding Logistic Regression Tables.mp4 13.5 MB
  • 10 - Probability - Combinatorics/008 Solving Combinations with Separate Sample Spaces.mp4 13.5 MB
  • 15 - Statistics - Descriptive Statistics/005 Numerical Variables - Frequency Distribution Table.mp4 13.4 MB
  • 04 - The Field of Data Science - The Benefits of Each Discipline/001 The Reason Behind These Disciplines.mp4 13.0 MB
  • 62 - Appendix - Additional Python Tools/003 Introduction to Nested For Loops.mp4 12.9 MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/003 MNIST_ Importing the Relevant Packages and Loading the Data.mp4 12.8 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/030 Analyzing Several _Straightforward_ Columns for this Exercise.mp4 12.8 MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 12.6 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/011 Confidence intervals. Two means. Independent Samples (Part 1).mp4 12.6 MB
  • 10 - Probability - Combinatorics/010 A Recap of Combinatorics.mp4 12.6 MB
  • 11 - Probability - Bayesian Inference/006 Dependence and Independence of Sets.mp4 12.6 MB
  • 49 - Deep Learning - Preprocessing/003 Standardization.mp4 12.5 MB
  • 22 - Part 4_ Introduction to Python/002 Why Python_.mp4 12.3 MB
  • 40 - Part 6_ Mathematics/001 What is a Matrix_.mp4 12.3 MB
  • 40 - Part 6_ Mathematics/005 What is a Tensor_.mp4 12.2 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/006 Confidence Intervals; Population Variance Unknown; T-score.mp4 12.1 MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/005 MNIST_ Loss and Optimization Algorithm.mp4 12.1 MB
  • 09 - Part 2_ Probability/004 Events and Their Complements.mp4 12.0 MB
  • 11 - Probability - Bayesian Inference/008 The Law of Total Probability.mp4 11.9 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/009 What do the Odds Actually Mean.mp4 11.9 MB
  • 40 - Part 6_ Mathematics/009 Dot Product.mp4 11.9 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/001 Exploring the Problem with a Machine Learning Mindset.mp4 11.6 MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/002 What is a Deep Net_.mp4 11.6 MB
  • 12 - Probability - Distributions/012 Continuous Distributions_ The Chi-Squared Distribution.mp4 11.5 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering.mp4 11.5 MB
  • 11 - Probability - Bayesian Inference/009 The Additive Rule.mp4 11.4 MB
  • 14 - Part 3_ Statistics/001 Population and Sample.mp4 11.4 MB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/006 Analyzing Transportation Expense vs Probability in Tableau.mp4 11.4 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/011 R-Squared.mp4 11.3 MB
  • 37 - Advanced Statistical Methods - Cluster Analysis/001 Introduction to Cluster Analysis.mp4 11.2 MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/009 MNIST_ Select the Loss and the Optimizer.mp4 11.2 MB
  • 63 - Appendix - pandas Fundamentals/007 Introduction to pandas DataFrames - Part I.mp4 11.1 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/001 K-Means Clustering.mp4 11.0 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/009 To Standardize or not to Standardize.mp4 11.0 MB
  • 46 - Deep Learning - Overfitting/001 What is Overfitting_.mp4 11.0 MB
  • 42 - Deep Learning - Introduction to Neural Networks/001 Introduction to Neural Networks.mp4 10.9 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/004 Clustering Categorical Data.mp4 10.8 MB
  • 12 - Probability - Distributions/004 Discrete Distributions_ The Uniform Distribution.mp4 10.6 MB
  • 15 - Statistics - Descriptive Statistics/013 Skewness.mp4 10.4 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/006 Using a Statistical Approach towards the Solution to the Exercise.mp4 10.4 MB
  • 42 - Deep Learning - Introduction to Neural Networks/003 Types of Machine Learning.mp4 10.3 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn.mp4 10.3 MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/004 Non-Linearities and their Purpose.mp4 10.2 MB
  • 42 - Deep Learning - Introduction to Neural Networks/010 Common Objective Functions_ Cross-Entropy Loss.mp4 10.2 MB
  • 52 - Deep Learning - Conclusion/001 Summary on What You've Learned.mp4 10.1 MB
  • 37 - Advanced Statistical Methods - Cluster Analysis/003 Difference between Classification and Clustering.mp4 10.0 MB
  • 28 - Python - Sequences/004 Tuples.mp4 10.0 MB
  • 07 - The Field of Data Science - Careers in Data Science/001 Finding the Job - What to Expect and What to Look for.mp4 9.9 MB
  • 56 - Software Integration/004 Communication between Software Products through Text Files.mp4 9.7 MB
  • 12 - Probability - Distributions/003 Characteristics of Discrete Distributions.mp4 9.7 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/028 Extracting the Day of the Week from the _Date_ Column.mp4 9.6 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/007 A2_ No Endogeneity.mp4 9.4 MB
  • 49 - Deep Learning - Preprocessing/001 Preprocessing Introduction.mp4 9.4 MB
  • 23 - Python - Variables and Data Types/001 Variables.mp4 9.4 MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/006 Types of File Formats, supporting Tensors.mp4 9.3 MB
  • 11 - Probability - Bayesian Inference/003 Intersection of Sets.mp4 9.2 MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/007 MNIST_ Batching and Early Stopping.mp4 9.1 MB
  • 12 - Probability - Distributions/17971238-FIFA19.csv 9.1 MB
  • 12 - Probability - Distributions/17971248-FIFA19-post.csv 9.1 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/009 Decomposition of Variability.mp4 9.0 MB
  • 17 - Statistics - Inferential Statistics Fundamentals/004 The Standard Normal Distribution.mp4 9.0 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/004 Building a Logistic Regression.mp4 9.0 MB
  • 30 - Python - Advanced Python Tools/004 Importing Modules in Python.mp4 8.9 MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/005 Activation Functions.mp4 8.9 MB
  • 27 - Python - Python Functions/007 Built-in Functions in Python.mp4 8.9 MB
  • 46 - Deep Learning - Overfitting/006 Early Stopping or When to Stop Training.mp4 8.9 MB
  • 30 - Python - Advanced Python Tools/001 Object Oriented Programming.mp4 8.8 MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/006 Activation Functions_ Softmax Activation.mp4 8.8 MB
  • 40 - Part 6_ Mathematics/002 Scalars and Vectors.mp4 8.8 MB
  • 60 - Case Study - Loading the 'absenteeism_module'/002 Deploying the 'absenteeism_module' - Part I.mp4 8.8 MB
  • 49 - Deep Learning - Preprocessing/005 Binary and One-Hot Encoding.mp4 8.8 MB
  • 27 - Python - Python Functions/002 How to Create a Function with a Parameter.mp4 8.7 MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 8.6 MB
  • 51 - Deep Learning - Business Case Example/011 Business Case_ Testing the Model.mp4 8.6 MB
  • 46 - Deep Learning - Overfitting/003 What is Validation_.mp4 8.5 MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/002 What is the difference between Analysis and Analytics.mp4 8.4 MB
  • 22 - Part 4_ Introduction to Python/003 Why Jupyter_.mp4 8.4 MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/003 MNIST_ Relevant Packages.mp4 8.3 MB
  • 42 - Deep Learning - Introduction to Neural Networks/004 The Linear Model (Linear Algebraic Version).mp4 8.3 MB
  • 62 - Appendix - Additional Python Tools/002 Iterating Over Range Objects.mp4 8.2 MB
  • 42 - Deep Learning - Introduction to Neural Networks/005 The Linear Model with Multiple Inputs.mp4 8.1 MB
  • 46 - Deep Learning - Overfitting/004 Training, Validation, and Test Datasets.mp4 8.1 MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST.mp4 8.1 MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/008 Backpropagation Picture.mp4 8.1 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/009 A4_ No Autocorrelation.mp4 8.0 MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST.mp4 8.0 MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/001 Stochastic Gradient Descent.mp4 8.0 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/29545318-Absenteeism-Exercise-Preprocessing-LECTURES.ipynb 8.0 MB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/001 Types of Clustering.mp4 7.9 MB
  • 20 - Statistics - Hypothesis Testing/012 Test for the mean. Independent Samples (Part 1).mp4 7.9 MB
  • 42 - Deep Learning - Introduction to Neural Networks/002 Training the Model.mp4 7.9 MB
  • 41 - Part 7_ Deep Learning/001 What to Expect from this Part_.mp4 7.9 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/007 Using Seaborn for Graphs.mp4 7.7 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/010 A5_ No Multicollinearity.mp4 7.7 MB
  • 24 - Python - Basic Python Syntax/001 Using Arithmetic Operators in Python.mp4 7.6 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/014 Underfitting and Overfitting.mp4 7.6 MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/005 Types of File Formats Supporting TensorFlow.mp4 7.6 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/020 Reordering Columns in a Pandas DataFrame in Python.mp4 7.5 MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/13075166-365-DataScience.png 7.3 MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/13075168-365-DataScience.png 7.3 MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/004 Practical Example_ Linear Regression (Part 3).mp4 7.2 MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/007 Adam (Adaptive Moment Estimation).mp4 7.2 MB
  • 57 - Case Study - What's Next in the Course_/002 The Business Task.mp4 7.1 MB
  • 52 - Deep Learning - Conclusion/005 An Overview of RNNs.mp4 7.1 MB
  • 27 - Python - Python Functions/003 Defining a Function in Python - Part II.mp4 6.8 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/012 Creating a Summary Table with P-values.mp4 6.8 MB
  • 42 - Deep Learning - Introduction to Neural Networks/007 Graphical Representation of Simple Neural Networks.mp4 6.7 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages.mp4 6.5 MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/005 Actual Introduction to TensorFlow.mp4 6.5 MB
  • 27 - Python - Python Functions/005 Conditional Statements and Functions.mp4 6.3 MB
  • 42 - Deep Learning - Introduction to Neural Networks/008 What is the Objective Function_.mp4 6.3 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/004 Test for Significance of the Model (F-Test).mp4 6.2 MB
  • 63 - Appendix - pandas Fundamentals/003 Working with Methods in Python - Part II.mp4 6.1 MB
  • 47 - Deep Learning - Initialization/002 Types of Simple Initializations.mp4 6.0 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/018 Underfitting and Overfitting.mp4 6.0 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/001 Multiple Linear Regression.mp4 5.8 MB
  • 12 - Probability - Distributions/011 Continuous Distributions_ The Students' T Distribution.mp4 5.7 MB
  • 49 - Deep Learning - Preprocessing/004 Preprocessing Categorical Data.mp4 5.6 MB
  • 26 - Python - Conditional Statements/001 The IF Statement.mp4 5.6 MB
  • 11 - Probability - Bayesian Inference/005 Mutually Exclusive Sets.mp4 5.5 MB
  • 26 - Python - Conditional Statements/002 The ELSE Statement.mp4 5.5 MB
  • 46 - Deep Learning - Overfitting/005 N-Fold Cross Validation.mp4 5.4 MB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Basic NN Example (Part 1).mp4 5.4 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/005 OLS Assumptions.mp4 5.4 MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/003 Momentum.mp4 5.2 MB
  • 30 - Python - Advanced Python Tools/003 What is the Standard Library_.mp4 5.1 MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/003 Selecting the Inputs for the Logistic Regression.mp4 4.9 MB
  • 23 - Python - Variables and Data Types/002 Numbers and Boolean Values in Python.mp4 4.8 MB
  • 37 - Advanced Statistical Methods - Cluster Analysis/004 Math Prerequisites.mp4 4.7 MB
  • 42 - Deep Learning - Introduction to Neural Networks/009 Common Objective Functions_ L2-norm Loss.mp4 4.7 MB
  • 36 - Advanced Statistical Methods - Logistic Regression/001 Introduction to Logistic Regression.mp4 4.6 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/010 Business Case_ Testing the Model.mp4 4.6 MB
  • 22 - Part 4_ Introduction to Python/005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4 4.6 MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/001 MNIST_ What is the MNIST Dataset_.mp4 4.4 MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/004 Real Life Examples of Big Data.mp4 4.4 MB
  • 47 - Deep Learning - Initialization/003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 4.4 MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/015 Confidence intervals. Two means. Independent Samples (Part 3).mp4 4.4 MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/001 MNIST_ The Dataset.mp4 4.3 MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section_.mp4 4.2 MB
  • 15 - Statistics - Descriptive Statistics/007 The Histogram.mp4 4.0 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/002 Correlation vs Regression.mp4 3.9 MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/002 How to Install TensorFlow 1.mp4 3.9 MB
  • 52 - Deep Learning - Conclusion/002 What's Further out there in terms of Machine Learning.mp4 3.9 MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/002 Problems with Gradient Descent.mp4 3.7 MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/001 What is a Layer_.mp4 3.6 MB
  • 40 - Part 6_ Mathematics/007 Errors when Adding Matrices.mp4 3.5 MB
  • 26 - Python - Conditional Statements/004 A Note on Boolean Values.mp4 3.4 MB
  • 27 - Python - Python Functions/004 How to Use a Function within a Function.mp4 3.4 MB
  • 27 - Python - Python Functions/001 Defining a Function in Python.mp4 3.4 MB
  • 10 - Probability - Combinatorics/001 Fundamentals of Combinatorics.mp4 3.4 MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/015 More on Dummy Variables_ A Statistical Perspective.mp4 3.3 MB
  • 25 - Python - Other Python Operators/001 Comparison Operators.mp4 3.3 MB
  • 17 - Statistics - Inferential Statistics Fundamentals/001 Introduction.mp4 3.1 MB
  • 31 - Part 5_ Advanced Statistical Methods in Python/001 Introduction to Regression Analysis.mp4 3.1 MB
  • 29 - Python - Iterations/005 Conditional Statements, Functions, and Loops.mp4 3.1 MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/002 Business Case_ Outlining the Solution.mp4 3.0 MB
  • 24 - Python - Basic Python Syntax/007 Structuring with Indentation.mp4 2.9 MB
  • 24 - Python - Basic Python Syntax/002 The Double Equality Sign.mp4 2.8 MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/006 A1_ Linearity.mp4 2.8 MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/010 Relationship between Clustering and Regression.mp4 2.5 MB
  • 24 - Python - Basic Python Syntax/004 Add Comments.mp4 2.5 MB
  • 49 - Deep Learning - Preprocessing/002 Types of Basic Preprocessing.mp4 2.5 MB
  • 24 - Python - Basic Python Syntax/006 Indexing Elements.mp4 2.5 MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/004 A Note on TensorFlow 2 Syntax.mp4 2.5 MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/005 Learning Rate Schedules Visualized.mp4 2.5 MB
  • 27 - Python - Python Functions/006 Functions Containing a Few Arguments.mp4 2.4 MB
  • 51 - Deep Learning - Business Case Example/002 Business Case_ Outlining the Solution.mp4 2.3 MB
  • 23 - Python - Variables and Data Types/15870664-Python-Introduction-Course-Notes.pdf 2.1 MB
  • 24 - Python - Basic Python Syntax/003 How to Reassign Values.mp4 2.0 MB
  • 19 - Statistics - Practical Example_ Inferential Statistics/17959058-3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.9 MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/003 Geometrical Representation of the Linear Regression Model.mp4 1.8 MB
  • 19 - Statistics - Practical Example_ Inferential Statistics/13056326-3.17.Practical-example.Confidence-intervals-lesson.xlsx 1.8 MB
  • 19 - Statistics - Practical Example_ Inferential Statistics/17959056-3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.8 MB
  • 30 - Python - Advanced Python Tools/002 Modules and Packages.mp4 1.8 MB
  • 20 - Statistics - Hypothesis Testing/16753580-Online-p-value-calculator.pdf 1.2 MB
  • 24 - Python - Basic Python Syntax/005 Understanding Line Continuation.mp4 1.0 MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/13070016-Course-Notes-Section-6.pdf 958.9 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/13070018-Course-Notes-Section-6.pdf 958.9 kB
  • 11 - Probability - Bayesian Inference/17970686-CDS-2017-2018-Hamilton.pdf 865.6 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588630-sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb 728.1 kB
  • 51 - Deep Learning - Business Case Example/19664156-Audiobooks-data.csv 727.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/13070978-Audiobooks-data.csv 727.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591716-Audiobooks-data.csv 727.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591732-Audiobooks-data.csv 727.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591808-Audiobooks-data.csv 727.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591842-Audiobooks-data.csv 727.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591940-Audiobooks-data.csv 727.8 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588626-sklearn-Linear-Regression-Practical-Example-Part-5.ipynb 715.1 kB
  • 20 - Statistics - Hypothesis Testing/22431075-Course-notes-hypothesis-testing.pdf 672.2 kB
  • 20 - Statistics - Hypothesis Testing/22431079-Course-notes-hypothesis-testing.pdf 672.2 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/13070602-Shortcuts-for-Jupyter.pdf 634.0 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/13070604-Shortcuts-for-Jupyter.pdf 634.0 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/13070608-Shortcuts-for-Jupyter.pdf 634.0 kB
  • 42 - Deep Learning - Introduction to Neural Networks/16752952-Course-Notes-Section-2.pdf 592.0 kB
  • 42 - Deep Learning - Introduction to Neural Networks/16752958-Course-Notes-Section-2.pdf 592.0 kB
  • 14 - Part 3_ Statistics/14812652-Course-notes-descriptive-statistics.pdf 493.8 kB
  • 15 - Statistics - Descriptive Statistics/14812660-Course-notes-descriptive-statistics.pdf 493.8 kB
  • 12 - Probability - Distributions/20945990-Course-Notes-Probability-Distributions.pdf 475.1 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588618-sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb 417.4 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588612-sklearn-Linear-Regression-Practical-Example-Part-4.ipynb 406.8 kB
  • 11 - Probability - Bayesian Inference/17431622-Course-Notes-Bayesian-Inference.pdf 395.3 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/13831264-Course-notes-inferential-statistics.pdf 391.5 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/13831266-Course-notes-inferential-statistics.pdf 391.5 kB
  • 09 - Part 2_ Probability/17431614-Course-Notes-Basic-Probability.pdf 380.0 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588602-sklearn-Dummies-and-VIF-Exercise-Solution.ipynb 379.1 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588558-sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb 359.9 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588604-sklearn-Dummies-and-VIF-Exercise.ipynb 352.9 kB
  • 12 - Probability - Distributions/17431628-Solving-Integrals.pdf 352.1 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588552-sklearn-Linear-Regression-Practical-Example-Part-3.ipynb 351.8 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588466-sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb 343.7 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/23412976-Course-Notes-Logistic-Regression.pdf 343.2 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/23413016-Course-Notes-Logistic-Regression.pdf 343.2 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588462-sklearn-Linear-Regression-Practical-Example-Part-2.ipynb 336.6 kB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/13075156-365-DataScience-Diagram.pdf 330.8 kB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/13075162-365-DataScience-Diagram.pdf 330.8 kB
  • 13 - Probability - Probability in Other Fields/23224540-Probability-Cheat-Sheet.pdf 328.0 kB
  • 31 - Part 5_ Advanced Statistical Methods in Python/22685780-Course-notes-regression-analysis.pdf 319.7 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/22685784-Course-notes-regression-analysis.pdf 319.7 kB
  • 01 - Part 1_ Introduction/16507136-FAQ-The-Data-Science-Course.pdf 313.4 kB
  • 15 - Statistics - Descriptive Statistics/16753694-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 296.1 kB
  • 15 - Statistics - Descriptive Statistics/16753696-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf 296.1 kB
  • 10 - Probability - Combinatorics/19540858-Additional-Exercises-Combinatorics-Solutions.pdf 251.6 kB
  • 10 - Probability - Combinatorics/17431618-Course-Notes-Combinatorics.pdf 231.5 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588446-1.04.Real-life-example.csv 225.1 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588460-1.04.Real-life-example.csv 225.1 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588598-1.04.Real-life-example.csv 225.1 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588606-1.04.Real-life-example.csv 225.1 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588624-1.04.Real-life-example.csv 225.1 kB
  • 37 - Advanced Statistical Methods - Cluster Analysis/23413656-Course-Notes-Cluster-Analysis.pdf 213.7 kB
  • 37 - Advanced Statistical Methods - Cluster Analysis/23413662-Course-Notes-Cluster-Analysis.pdf 213.7 kB
  • 10 - Probability - Combinatorics/17550452-Combinations-With-Repetition.pdf 212.4 kB
  • 13 - Probability - Probability in Other Fields/19327648-Probability-in-Finance-Solutions.pdf 188.9 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/21993772-Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 186.8 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588454-sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb 175.5 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588452-sklearn-Linear-Regression-Practical-Example-Part-1.ipynb 170.9 kB
  • 16 - Statistics - Practical Example_ Descriptive Statistics/13129220-2.13.Practical-example.Descriptive-statistics-lesson.xlsx 150.0 kB
  • 16 - Statistics - Practical Example_ Descriptive Statistics/19527576-2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx 149.9 kB
  • 12 - Probability - Distributions/17862366-Poisson-Expected-Value-and-Variance.pdf 149.5 kB
  • 12 - Probability - Distributions/17550252-Normal-Distribution-Exp-and-Var.pdf 147.5 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/15271322-data-preprocessing-homework.pdf 137.7 kB
  • 16 - Statistics - Practical Example_ Descriptive Statistics/19527574-2.13.Practical-example.Descriptive-statistics-exercise.xlsx 123.2 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588898-Testing-the-Model-Solution.ipynb 113.8 kB
  • 13 - Probability - Probability in Other Fields/19327638-Probability-in-Finance-Homework.pdf 113.3 kB
  • 10 - Probability - Combinatorics/17756226-Additional-Exercises-Combinatorics.pdf 109.1 kB
  • 10 - Probability - Combinatorics/17431624-Symmetry-Explained.pdf 87.1 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589836-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 86.5 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589288-Minimal-example-Exercise-3.d.Solution.ipynb 86.2 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589828-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 85.7 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589822-TensorFlow-Minimal-example-All-exercises.ipynb 85.6 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589808-TensorFlow-Minimal-example-complete-with-comments.ipynb 84.3 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588856-Calculating-the-Accuracy-of-the-Model-Solution.ipynb 83.2 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589834-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 79.4 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589804-TensorFlow-Minimal-example-complete.ipynb 78.7 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589788-TensorFlow-Minimal-example-Part3.ipynb 78.4 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589280-Minimal-example-Exercise-3.c.Solution.ipynb 71.8 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589266-Minimal-example-Exercise-1-Solution.ipynb 70.7 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589298-Minimal-example-Exercise-5-Solution.ipynb 70.5 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589274-Minimal-example-Exercise-3.a.Solution.ipynb 69.5 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589278-Minimal-example-Exercise-3.b.Solution.ipynb 69.3 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589294-Minimal-example-Exercise-4-Solution.ipynb 68.1 kB
  • 60 - Case Study - Loading the 'absenteeism_module'/29545372-Absenteeism-Exercise-Integration.ipynb 63.8 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589302-Minimal-example-Exercise-6.ipynb 63.2 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589304-Minimal-example-Exercise-6-Solution.ipynb 63.2 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589272-Minimal-example-Exercise-2-Solution.ipynb 62.9 kB
  • 21 - Statistics - Practical Example_ Hypothesis Testing/27047254-4.10.Hypothesis-testing-section-practical-example.xlsx 53.1 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591454-TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb 51.2 kB
  • 21 - Statistics - Practical Example_ Hypothesis Testing/27047334-4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx 45.3 kB
  • 21 - Statistics - Practical Example_ Hypothesis Testing/27047330-4.10.Hypothesis-testing-section-practical-example-exercise.xlsx 44.7 kB
  • 42 - Deep Learning - Introduction to Neural Networks/17187788-GD-function-example.xlsx 43.4 kB
  • 15 - Statistics - Descriptive Statistics/13055414-2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx 42.1 kB
  • 15 - Statistics - Descriptive Statistics/13055464-2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx 41.4 kB
  • 15 - Statistics - Descriptive Statistics/13055492-2.8.Skewness-lesson.xlsx 35.5 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/15271310-Absenteeism-data.csv 32.8 kB
  • 15 - Statistics - Descriptive Statistics/13055774-2.3.Categorical-variables.Visualization-techniques-lesson.xlsx 31.5 kB
  • 11 - Probability - Bayesian Inference/18886392-Bayesian-Homework-Solutions.pdf 31.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588416-sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb 30.5 kB
  • 15 - Statistics - Descriptive Statistics/13055824-2.11.Covariance-exercise-solution.xlsx 30.2 kB
  • 15 - Statistics - Descriptive Statistics/13055838-2.12.Correlation-exercise-solution.xlsx 30.2 kB
  • 15 - Statistics - Descriptive Statistics/13055834-2.12.Correlation-exercise.xlsx 30.0 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15364076-Absenteeism-preprocessed.csv 29.8 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/15271330-df-preprocessed.csv 29.8 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588208-sklearn-Simple-Linear-Regression-with-comments.ipynb 29.0 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589824-TensorFlow-Minimal-example-Exercise-1-Solution.ipynb 28.6 kB
  • 11 - Probability - Bayesian Inference/18886388-Bayesian-Homework.pdf 27.9 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591468-TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb 27.6 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591464-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb 27.4 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/33130186-Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb 27.2 kB
  • 15 - Statistics - Descriptive Statistics/13055456-2.6.Cross-table-and-scatter-plot.xlsx 26.7 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588206-sklearn-Simple-Linear-Regression.ipynb 26.7 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/16413674-3.9.The-z-table.xlsx 26.2 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/16413678-3.9.The-z-table.xlsx 26.2 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591442-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb 26.2 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591444-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb 26.1 kB
  • 62 - Appendix - Additional Python Tools/29535546-Additional-Python-Tools-Solutions.ipynb 26.1 kB
  • 62 - Appendix - Additional Python Tools/29535554-Additional-Python-Tools-Solutions.ipynb 26.1 kB
  • 15 - Statistics - Descriptive Statistics/13055814-2.11.Covariance-lesson.xlsx 25.5 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/14171118-3.4.Standard-normal-distribution-exercise-solution.xlsx 24.6 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591432-TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb 24.2 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588422-sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb 22.6 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591458-TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb 22.3 kB
  • 01 - Part 1_ Introduction/003 Download All Resources and Important FAQ.html 21.9 kB
  • 16 - Statistics - Practical Example_ Descriptive Statistics/001 Practical Example_ Descriptive Statistics__en.srt 21.4 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589934-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 21.1 kB
  • 12 - Probability - Distributions/015 A Practical Example of Probability Distributions__en.srt 20.8 kB
  • 14 - Part 3_ Statistics/15762096-Statistics-Glossary.xlsx 20.8 kB
  • 15 - Statistics - Descriptive Statistics/13055822-2.11.Covariance-exercise.xlsx 20.7 kB
  • 12 - Probability - Distributions/17971260-Daily-Views-post.xlsx 20.7 kB
  • 15 - Statistics - Descriptive Statistics/18029224-Glossary.xlsx 20.4 kB
  • 15 - Statistics - Descriptive Statistics/13055502-2.8.Skewness-exercise-solution.xlsx 20.2 kB
  • 11 - Probability - Bayesian Inference/012 A Practical Example of Bayesian Inference__en.srt 20.2 kB
  • 51 - Deep Learning - Business Case Example/29590002-TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb 20.2 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/15451889-Bank-data.csv 20.0 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/15451939-Bank-data.csv 20.0 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/15451967-Bank-data.csv 20.0 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/15452033-Bank-data.csv 20.0 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/13055898-3.2.What-is-a-distribution-lesson.xlsx 19.9 kB
  • 15 - Statistics - Descriptive Statistics/13055440-2.5.The-Histogram-lesson.xlsx 19.1 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588124-Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb 18.4 kB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/29589070-Heatmaps-with-comments.ipynb 18.1 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591694-TensorFlow-MNIST-around-98-percent-accuracy.ipynb 18.1 kB
  • 15 - Statistics - Descriptive Statistics/13055790-2.5.The-Histogram-exercise-solution.xlsx 17.5 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591654-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 17.2 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588412-SKLEAR-1.IPY 17.2 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589948-TensorFlow-MNIST-All-Exercises.ipynb 17.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588372-sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb 17.0 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588432-sklearn-Feature-Scaling-Exercise-Solution.ipynb 16.7 kB
  • 15 - Statistics - Descriptive Statistics/13055460-2.6.Cross-table-and-scatter-plot-exercise.xlsx 16.7 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056216-3.11.The-t-table.xlsx 16.2 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/21198408-3.11.The-t-table.xlsx 16.2 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589940-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 16.2 kB
  • 12 - Probability - Distributions/17971268-Customers-Membership-post.xlsx 16.0 kB
  • 15 - Statistics - Descriptive Statistics/13055786-2.5.The-Histogram-exercise.xlsx 15.9 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591622-TensorFlow-MNIST-Exercises-All.ipynb 15.8 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588380-sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb 15.8 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589904-2.TensorFlow-MNIST-Depth-Solution.ipynb 15.7 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589908-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb 15.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589056-Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb 15.7 kB
  • 15 - Statistics - Descriptive Statistics/13055412-2.3.Categorical-variables.Visualization-techniques-exercise.xlsx 15.6 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591690-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb 15.6 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589932-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 15.5 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589928-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 15.5 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589912-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 15.5 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589952-TensorFlow-MNIST-around-98-percent-accuracy.ipynb 15.4 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/001 Practical Example_ Linear Regression (Part 1)__en.srt 15.3 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588400-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb 15.3 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591650-2.TensorFlow-MNIST-Depth-Solution.ipynb 15.2 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589896-1.TensorFlow-MNIST-Width-Solution.ipynb 15.2 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589920-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 15.1 kB
  • 20 - Statistics - Hypothesis Testing/13737052-4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx 14.9 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589960-TensorFlow-MNIST-complete-with-comments.ipynb 14.9 kB
  • 20 - Statistics - Hypothesis Testing/13056718-4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx 14.7 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591812-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.7 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591844-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.7 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591658-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 14.7 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591668-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 14.6 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056252-3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx 14.6 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591682-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb 14.5 kB
  • 10 - Probability - Combinatorics/011 A Practical Example of Combinatorics__en.srt 14.4 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591686-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb 14.4 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591642-1.TensorFlow-MNIST-Width-Solution.ipynb 14.3 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591632-0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb 14.3 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591428-TensorFlow-Minimal-Example-All-Exercises.ipynb 14.3 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591660-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 14.3 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056246-3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx 14.1 kB
  • 19 - Statistics - Practical Example_ Inferential Statistics/001 Practical Example_ Inferential Statistics__en.srt 14.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588370-sklearn-Multiple-Linear-Regression-Summary-Table.ipynb 14.0 kB
  • 62 - Appendix - Additional Python Tools/29535536-Additional-Python-Tools-Lectures.ipynb 13.8 kB
  • 62 - Appendix - Additional Python Tools/29535548-Additional-Python-Tools-Lectures.ipynb 13.8 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588068-Multiple-Linear-Regression-Exercise-Solution.ipynb 13.7 kB
  • 15 - Statistics - Descriptive Statistics/23038654-2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx 13.5 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591550-12.9.TensorFlow-MNIST-with-comments.ipynb 13.3 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588342-sklearn-Feature-Selection-with-F-regression-with-comments.ipynb 13.3 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589260-Minimal-example-All-Exercises.ipynb 13.2 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588394-SKLEAR-1.IPY 13.2 kB
  • 20 - Statistics - Hypothesis Testing/13056716-4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx 13.1 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591892-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 13.0 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591900-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb 13.0 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588358-sklearn-How-to-properly-include-p-values.ipynb 13.0 kB
  • 20 - Statistics - Hypothesis Testing/17710210-4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx 12.9 kB
  • 15 - Statistics - Descriptive Statistics/19880123-2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx 12.9 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589892-TensorFlow-MNIST-Part6-with-comments.ipynb 12.8 kB
  • 40 - Part 6_ Mathematics/011 Why is Linear Algebra Useful___en.srt 12.7 kB
  • 62 - Appendix - Additional Python Tools/005 List Comprehensions__en.srt 12.6 kB
  • 62 - Appendix - Additional Python Tools/001 Using the .format() Method__en.srt 12.6 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591408-5.6.TensorFlow-Minimal-example-complete.ipynb 12.4 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/14171114-3.4.Standard-normal-distribution-exercise.xlsx 12.3 kB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/004 Continuing with BI, ML, and AI__en.srt 12.2 kB
  • 51 - Deep Learning - Business Case Example/29590012-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 12.2 kB
  • 51 - Deep Learning - Business Case Example/29590020-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb 12.2 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/006 Practical Example_ Linear Regression (Part 4)__en.srt 12.0 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/004 Business Case_ Preprocessing_en.vtt 12.0 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588392-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb 12.0 kB
  • 51 - Deep Learning - Business Case Example/004 Business Case_ Preprocessing the Data_en.vtt 12.0 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588842-Accuracy-with-comments.ipynb 12.0 kB
  • 15 - Statistics - Descriptive Statistics/19880121-2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx 11.9 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591538-12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb 11.8 kB
  • 15 - Statistics - Descriptive Statistics/14679830-2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx 11.7 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589236-Minimal-example-Part-4-Complete.ipynb 11.7 kB
  • 20 - Statistics - Hypothesis Testing/16190542-4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx 11.7 kB
  • 62 - Appendix - Additional Python Tools/29535540-Additional-Python-Tools-Exercises.ipynb 11.6 kB
  • 62 - Appendix - Additional Python Tools/29535552-Additional-Python-Tools-Exercises.ipynb 11.6 kB
  • 15 - Statistics - Descriptive Statistics/13055486-2.7.Mean-median-and-mode-exercise-solution.xlsx 11.6 kB
  • 20 - Statistics - Hypothesis Testing/13056708-4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx 11.6 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/007 Techniques for Working with Traditional Methods__en.srt 11.6 kB
  • 20 - Statistics - Hypothesis Testing/18041220-4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx 11.5 kB
  • 20 - Statistics - Hypothesis Testing/13056688-4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx 11.5 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056180-3.9.Population-variance-known-z-score-lesson.xlsx 11.5 kB
  • 51 - Deep Learning - Business Case Example/29589978-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.5 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591738-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.5 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591820-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.5 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591846-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb 11.5 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056200-3.9.Population-variance-known-z-score-exercise-solution.xlsx 11.4 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056228-3.11.Population-variance-unknown-t-score-exercise-solution.xlsx 11.4 kB
  • 15 - Statistics - Descriptive Statistics/13055520-2.9.Variance-exercise-solution.xlsx 11.3 kB
  • 20 - Statistics - Hypothesis Testing/13056684-4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx 11.3 kB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/003 Business Analytics, Data Analytics, and Data Science_ An Introduction__en.srt 11.3 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589888-TensorFlow-MNIST-Part5-with-comments.ipynb 11.2 kB
  • 15 - Statistics - Descriptive Statistics/13055800-2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx 11.2 kB
  • 20 - Statistics - Hypothesis Testing/13056520-4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx 11.2 kB
  • 15 - Statistics - Descriptive Statistics/13055484-2.7.Mean-median-and-mode-exercise.xlsx 11.1 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056196-3.9.Population-variance-known-z-score-exercise.xlsx 11.1 kB
  • 15 - Statistics - Descriptive Statistics/13055516-2.9.Variance-exercise.xlsx 11.1 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056212-3.11.Population-variance-unknown-t-score-lesson.xlsx 11.0 kB
  • 20 - Statistics - Hypothesis Testing/16200120-4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx 11.0 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589052-Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb 11.0 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/001 Techniques for Working with Traditional Data__en.srt 11.0 kB
  • 63 - Appendix - pandas Fundamentals/001 Introduction to pandas Series__en.srt 10.9 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591888-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.9 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591894-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb 10.9 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/001 Business Case_ Getting Acquainted with the Dataset__en.srt 10.9 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056226-3.11.Population-variance-unknown-t-score-exercise.xlsx 10.9 kB
  • 56 - Software Integration/003 Taking a Closer Look at APIs__en.srt 10.9 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Basic NN Example (Part 4)__en.srt 10.8 kB
  • 20 - Statistics - Hypothesis Testing/16190540-4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx 10.8 kB
  • 51 - Deep Learning - Business Case Example/001 Business Case_ Exploring the Dataset and Identifying Predictors__en.srt 10.8 kB
  • 15 - Statistics - Descriptive Statistics/13055474-2.7.Mean-median-and-mode-lesson.xlsx 10.7 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589884-TensorFlow-MNIST-Part4-with-comments.ipynb 10.7 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056236-3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx 10.7 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/010 Types of Machine Learning__en.srt 10.7 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588340-sklearn-Feature-Selection-with-F-regression.ipynb 10.7 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/008 Practical Example_ Linear Regression (Part 5)__en.srt 10.7 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588312-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb 10.7 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/13055942-3.4.Standard-normal-distribution-lesson.xlsx 10.6 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591910-TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb 10.6 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/15452987-Categorical.csv 10.6 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588324-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb 10.6 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/011 Obtaining Dummies from a Single Feature__en.srt 10.5 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/002 Confidence Intervals; Population Variance Known; Z-score__en.srt 10.5 kB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Analyzing Age vs Probability in Tableau__en.srt 10.5 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056292-3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx 10.4 kB
  • 15 - Statistics - Descriptive Statistics/13055510-2.9.Variance-lesson.xlsx 10.3 kB
  • 51 - Deep Learning - Business Case Example/29590006-TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb 10.3 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/016 Classifying the Various Reasons for Absence__en.srt 10.3 kB
  • 28 - Python - Sequences/001 Lists__en.srt 10.3 kB
  • 63 - Appendix - pandas Fundamentals/010 Data Selection in pandas DataFrames__en.srt 10.3 kB
  • 51 - Deep Learning - Business Case Example/29589992-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.3 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591948-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb 10.3 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/008 MNIST_ Learning__en.srt 10.2 kB
  • 62 - Appendix - Additional Python Tools/006 Anonymous (Lambda) Functions__en.srt 10.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588328-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb 10.1 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056280-3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx 10.1 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056290-3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx 10.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/019 Train - Test Split Explained__en.srt 10.1 kB
  • 13 - Probability - Probability in Other Fields/001 Probability in Finance__en.srt 10.0 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056318-3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx 10.0 kB
  • 20 - Statistics - Hypothesis Testing/13056712-4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx 10.0 kB
  • 12 - Probability - Distributions/002 Types of Probability Distributions__en.srt 10.0 kB
  • 12 - Probability - Distributions/17971264-Customers-Membership.xlsx 9.9 kB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/004 Analyzing Reasons vs Probability in Tableau__en.srt 9.9 kB
  • 20 - Statistics - Hypothesis Testing/13056720-4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx 9.9 kB
  • 40 - Part 6_ Mathematics/010 Dot Product of Matrices__en.srt 9.8 kB
  • 12 - Probability - Distributions/17971258-Daily-Views.xlsx 9.8 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056308-3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx 9.7 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/006 MNIST_ Preprocess the Data - Shuffle and Batch__en.srt 9.7 kB
  • 15 - Statistics - Descriptive Statistics/13055500-2.8.Skewness-exercise.xlsx 9.7 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588142-Making-predictions-with-comments.ipynb 9.6 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591906-TensorFlow-Audiobooks-Outlining-the-model.ipynb 9.6 kB
  • 20 - Statistics - Hypothesis Testing/13056726-4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx 9.5 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/012 Market Segmentation with Cluster Analysis (Part 2)__en.srt 9.5 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/13056316-3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx 9.4 kB
  • 03 - The Field of Data Science - Connecting the Data Science Disciplines/001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML__en.srt 9.4 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588310-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb 9.3 kB
  • 22 - Part 4_ Introduction to Python/004 Installing Python and Jupyter__en.srt 9.3 kB
  • 20 - Statistics - Hypothesis Testing/003 Rejection Region and Significance Level__en.srt 9.3 kB
  • 28 - Python - Sequences/005 Dictionaries__en.srt 9.3 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589782-TensorFlow-Minimal-example-Part2.ipynb 9.3 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588440-sklearn-Train-Test-Split-with-comments.ipynb 9.3 kB
  • 09 - Part 2_ Probability/001 The Basic Probability Formula__en.srt 9.3 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/004 MNIST_ Model Outline__en.srt 9.2 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/009 Machine Learning (ML) Techniques__en.srt 9.2 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/005 Business Intelligence (BI) Techniques__en.srt 9.1 kB
  • 12 - Probability - Distributions/008 Characteristics of Continuous Distributions__en.srt 9.1 kB
  • 42 - Deep Learning - Introduction to Neural Networks/011 Optimization Algorithm_ 1-Parameter Gradient Descent__en.srt 9.0 kB
  • 21 - Statistics - Practical Example_ Hypothesis Testing/001 Practical Example_ Hypothesis Testing__en.srt 8.9 kB
  • 12 - Probability - Distributions/006 Discrete Distributions_ The Binomial Distribution__en.srt 8.9 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588246-sklearn-Multiple-Linear-Regression-with-comments.ipynb 8.9 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591380-5.5.TensorFlow-Minimal-example-Part-3.ipynb 8.9 kB
  • 13 - Probability - Probability in Other Fields/002 Probability in Statistics__en.srt 8.8 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589878-TensorFlow-MNIST-Part3-with-comments.ipynb 8.8 kB
  • 51 - Deep Learning - Business Case Example/29589984-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591944-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb 8.8 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/002 Creating the Targets for the Logistic Regression__en.srt 8.8 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/026 Analyzing the Dates from the Initial Data Set__en.srt 8.8 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591520-12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb 8.7 kB
  • 56 - Software Integration/002 What are Data Connectivity, APIs, and Endpoints___en.srt 8.7 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/29545334-Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb 8.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589008-How-to-Choose-the-Number-of-Clusters-Solution.ipynb 8.7 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/005 Splitting the Data for Training and Testing__en.srt 8.7 kB
  • 28 - Python - Sequences/002 Using Methods__en.srt 8.6 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/009 MNIST_ Results and Testing__en.srt 8.5 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/29545316-Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb 8.5 kB
  • 20 - Statistics - Hypothesis Testing/005 Test for the Mean. Population Variance Known__en.srt 8.5 kB
  • 62 - Appendix - Additional Python Tools/003 Introduction to Nested For Loops__en.srt 8.5 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/15452035-Bank-data-testing.csv 8.5 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/15453017-Countries-exercise.csv 8.5 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588950-Countries-exercise.csv 8.5 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering_en.vtt 8.5 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/009 Confidence intervals. Two means. Dependent samples__en.srt 8.4 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 Dealing with Categorical Data - Dummy Variables__en.srt 8.4 kB
  • 63 - Appendix - pandas Fundamentals/011 pandas DataFrames - Indexing with .iloc[]__en.srt 8.3 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/008 Interpreting the Coefficients for Our Problem__en.srt 8.2 kB
  • 29 - Python - Iterations/003 Lists with the range() Function__en.srt 8.2 kB
  • 62 - Appendix - Additional Python Tools/004 Triple Nested For Loops__en.srt 8.2 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/006 Outlining the Model with TensorFlow 2__en.srt 8.2 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 First Regression in Python__en.srt 8.1 kB
  • 51 - Deep Learning - Business Case Example/009 Business Case_ Setting an Early Stopping Mechanism__en.srt 8.1 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/027 Extracting the Month Value from the _Date_ Column__en.srt 8.1 kB
  • 12 - Probability - Distributions/001 Fundamentals of Probability Distributions__en.srt 8.1 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591514-12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb 8.1 kB
  • 15 - Statistics - Descriptive Statistics/015 Variance__en.srt 8.1 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/010 MNIST_ Learning__en.srt 8.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588244-sklearn-Multiple-Linear-Regression.ipynb 8.0 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/014 Feature Scaling (Standardization)__en.srt 8.0 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/006 Creating a Data Provider__en.srt 8.0 kB
  • 42 - Deep Learning - Introduction to Neural Networks/012 Optimization Algorithm_ n-Parameter Gradient Descent__en.srt 7.9 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/007 Dropping a Column from a DataFrame in Python__en.srt 7.9 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/009 Basic NN Example with TF_ Model Output__en.srt 7.9 kB
  • 29 - Python - Iterations/004 Conditional Statements and Loops__en.srt 7.9 kB
  • 22 - Part 4_ Introduction to Python/006 Prerequisites for Coding in the Jupyter Notebooks__en.srt 7.8 kB
  • 63 - Appendix - pandas Fundamentals/008 Introduction to pandas DataFrames - Part II__en.srt 7.8 kB
  • 29 - Python - Iterations/006 How to Iterate over Dictionaries__en.srt 7.8 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Adjusted R-Squared__en.srt 7.8 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases__en.srt 7.7 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588876-Testing-the-model-with-comments.ipynb 7.7 kB
  • 23 - Python - Variables and Data Types/29544578-Strings-Lecture-Py3.ipynb 7.7 kB
  • 11 - Probability - Bayesian Inference/011 Bayes' Law__en.srt 7.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589000-Selecting-the-number-of-clusters-with-comments.ipynb 7.7 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/015 Feature Selection through Standardization of Weights__en.srt 7.6 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/006 How to Choose the Number of Clusters__en.srt 7.6 kB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/006 Analyzing Transportation Expense vs Probability in Tableau__en.srt 7.5 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589048-Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb 7.5 kB
  • 06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science__en.srt 7.5 kB
  • 20 - Statistics - Hypothesis Testing/001 Null vs Alternative Hypothesis__en.srt 7.5 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/29545314-Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb 7.5 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/011 Market Segmentation with Cluster Analysis (Part 1)__en.srt 7.5 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591504-12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb 7.5 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/010 Interpreting the Coefficients of the Logistic Regression__en.srt 7.5 kB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/002 Dendrogram__en.srt 7.5 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/008 MNIST_ Outline the Model__en.srt 7.4 kB
  • 28 - Python - Sequences/004 Tuples__en.srt 7.4 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588436-sklearn-Train-Test-Split.ipynb 7.4 kB
  • 09 - Part 2_ Probability/004 Events and Their Complements__en.srt 7.3 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/003 Checking the Content of the Data Set__en.srt 7.3 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/002 Practical Example_ Linear Regression (Part 2)_en.vtt 7.3 kB
  • 23 - Python - Variables and Data Types/003 Python Strings__en.srt 7.3 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588120-Dummy-variables-with-comments.ipynb 7.3 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/007 Business Case_ Model Outline__en.srt 7.3 kB
  • 63 - Appendix - pandas Fundamentals/007 Introduction to pandas DataFrames - Part I__en.srt 7.2 kB
  • 22 - Part 4_ Introduction to Python/001 Introduction to Programming__en.srt 7.1 kB
  • 63 - Appendix - pandas Fundamentals/002 Working with Methods in Python - Part I__en.srt 7.1 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Basic NN Example (Part 2)__en.srt 7.1 kB
  • 56 - Software Integration/005 Software Integration - Explained__en.srt 7.0 kB
  • 22 - Part 4_ Introduction to Python/002 Why Python___en.srt 7.0 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 The Linear Regression Model__en.srt 7.0 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589038-Market-segmentation-example-Part2-with-comments.ipynb 7.0 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589230-Minimal-example-Part-3.ipynb 7.0 kB
  • 46 - Deep Learning - Overfitting/006 Early Stopping or When to Stop Training__en.srt 7.0 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588894-Testing-the-Model-Exercise.ipynb 7.0 kB
  • 20 - Statistics - Hypothesis Testing/010 Test for the Mean. Dependent Samples__en.srt 6.9 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589956-TensorFlow-MNIST-complete.ipynb 6.9 kB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/001 Data Science and Business Buzzwords_ Why are there so Many___en.srt 6.9 kB
  • 60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II_en.vtt 6.9 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/003 Digging into a Deep Net__en.srt 6.9 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/010 Feature Selection (F-regression)__en.srt 6.9 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/011 R-Squared__en.srt 6.9 kB
  • 09 - Part 2_ Probability/002 Computing Expected Values__en.srt 6.9 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn_en.vtt 6.9 kB
  • 52 - Deep Learning - Conclusion/004 An overview of CNNs__en.srt 6.9 kB
  • 15 - Statistics - Descriptive Statistics/009 Cross Tables and Scatter Plots__en.srt 6.9 kB
  • 29 - Python - Iterations/001 For Loops__en.srt 6.9 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/007 Creating a Summary Table with the Coefficients and Intercept__en.srt 6.8 kB
  • 13 - Probability - Probability in Other Fields/003 Probability in Data Science__en.srt 6.8 kB
  • 15 - Statistics - Descriptive Statistics/017 Standard Deviation and Coefficient of Variation__en.srt 6.8 kB
  • 60 - Case Study - Loading the 'absenteeism_module'/29545374-absenteeism-module.py 6.8 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It__en.srt 6.8 kB
  • 26 - Python - Conditional Statements/003 The ELIF Statement__en.srt 6.8 kB
  • 12 - Probability - Distributions/007 Discrete Distributions_ The Poisson Distribution__en.srt 6.8 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/008 Calculating the Adjusted R-Squared in sklearn__en.srt 6.8 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/008 A3_ Normality and Homoscedasticity__en.srt 6.7 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/008 How to Interpret the Regression Table__en.srt 6.7 kB
  • 04 - The Field of Data Science - The Benefits of Each Discipline/001 The Reason Behind These Disciplines__en.srt 6.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/013 How is Clustering Useful___en.srt 6.7 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/001 How to Install TensorFlow 2.0__en.srt 6.7 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/012 Testing the Model We Created__en.srt 6.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/001 K-Means Clustering__en.srt 6.6 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/008 Business Case_ Optimization__en.srt 6.6 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/015 Testing the Model__en.srt 6.6 kB
  • 15 - Statistics - Descriptive Statistics/003 Categorical Variables - Visualization Techniques__en.srt 6.6 kB
  • 01 - Part 1_ Introduction/001 A Practical Example_ What You Will Learn in This Course__en.srt 6.6 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589876-TensorFlow-MNIST-Part2-with-comments.ipynb 6.5 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy_en.vtt 6.5 kB
  • 09 - Part 2_ Probability/003 Frequency__en.srt 6.4 kB
  • 51 - Deep Learning - Business Case Example/008 Business Case_ Learning and Interpreting the Result__en.srt 6.4 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/008 Margin of Error__en.srt 6.4 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/007 Interpreting the Result and Extracting the Weights and Bias__en.srt 6.4 kB
  • 63 - Appendix - pandas Fundamentals/009 pandas DataFrames - Common Attributes__en.srt 6.4 kB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps__en.srt 6.4 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/15451783-Example-bank-data.csv 6.4 kB
  • 49 - Deep Learning - Preprocessing/003 Standardization__en.srt 6.4 kB
  • 20 - Statistics - Hypothesis Testing/008 Test for the Mean. Population Variance Unknown__en.srt 6.3 kB
  • 37 - Advanced Statistical Methods - Cluster Analysis/002 Some Examples of Clusters__en.srt 6.3 kB
  • 29 - Python - Iterations/002 While Loops and Incrementing__en.srt 6.3 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/010 Analyzing the Reasons for Absence__en.srt 6.3 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29590046-5.4.TensorFlow-Minimal-example-Part-2.ipynb 6.3 kB
  • 28 - Python - Sequences/29544994-Dictionaries-Solution-Py3.ipynb 6.3 kB
  • 15 - Statistics - Descriptive Statistics/001 Types of Data__en.srt 6.3 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/002 What is a Distribution__en.srt 6.3 kB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate__en.srt 6.3 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591494-12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb 6.2 kB
  • 30 - Python - Advanced Python Tools/001 Object Oriented Programming__en.srt 6.2 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/011 Confidence intervals. Two means. Independent Samples (Part 1)__en.srt 6.2 kB
  • 42 - Deep Learning - Introduction to Neural Networks/001 Introduction to Neural Networks__en.srt 6.2 kB
  • 11 - Probability - Bayesian Inference/004 Union of Sets__en.srt 6.2 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.vtt 6.2 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/009 To Standardize or not to Standardize__en.srt 6.2 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588434-sklearn-Feature-Scaling-Exercise.ipynb 6.2 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/012 MNIST_ Testing the Model__en.srt 6.2 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588166-sklearn-Simple-Linear-Regression-with-comments.ipynb 6.2 kB
  • 62 - Appendix - Additional Python Tools/002 Iterating Over Range Objects__en.srt 6.2 kB
  • 40 - Part 6_ Mathematics/004 Arrays in Python - A Convenient Way To Represent Matrices__en.srt 6.2 kB
  • 15 - Statistics - Descriptive Statistics/011 Mean, median and mode__en.srt 6.1 kB
  • 25 - Python - Other Python Operators/002 Logical and Identity Operators__en.srt 6.1 kB
  • 56 - Software Integration/001 What are Data, Servers, Clients, Requests, and Responses__en.srt 6.1 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/002 A Simple Example in Python__en.srt 6.0 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589022-Market-segmentation-example-with-comments.ipynb 6.0 kB
  • 25 - Python - Other Python Operators/29544754-Logical-and-Identity-Operators-Lecture-Py3.ipynb 6.0 kB
  • 25 - Python - Other Python Operators/29544770-Logical-and-Identity-Operators-Lecture-Py3.ipynb 6.0 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/016 Predicting with the Standardized Coefficients__en.srt 6.0 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/004 Confidence Interval Clarifications__en.srt 5.9 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588940-Country-clusters-with-comments.ipynb 5.9 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588138-Making-predictions.ipynb 5.9 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588864-Testing-the-model.ipynb 5.9 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/003 Techniques for Working with Big Data__en.srt 5.9 kB
  • 46 - Deep Learning - Overfitting/001 What is Overfitting___en.srt 5.9 kB
  • 10 - Probability - Combinatorics/006 Solving Combinations__en.srt 5.9 kB
  • 40 - Part 6_ Mathematics/008 Transpose of a Matrix__en.srt 5.8 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/010 Binary Predictors in a Logistic Regression__en.srt 5.8 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/006 Central Limit Theorem__en.srt 5.8 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588382-sklearn-Multiple-Linear-Regression-Exercise.ipynb 5.8 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/006 Confidence Intervals; Population Variance Unknown; T-score__en.srt 5.8 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/031 Working on _Education_, _Children_, and _Pets___en.srt 5.8 kB
  • 42 - Deep Learning - Introduction to Neural Networks/010 Common Objective Functions_ Cross-Entropy Loss__en.srt 5.8 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588968-Categorical-data-with-comments.ipynb 5.8 kB
  • 14 - Part 3_ Statistics/001 Population and Sample__en.srt 5.7 kB
  • 63 - Appendix - pandas Fundamentals/005 Using .unique() and .nunique()__en.srt 5.7 kB
  • 51 - Deep Learning - Business Case Example/29589970-TensorFlow-Audiobooks-Preprocessing.ipynb 5.7 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591734-TensorFlow-Audiobooks-Preprocessing.ipynb 5.7 kB
  • 20 - Statistics - Hypothesis Testing/012 Test for the mean. Independent Samples (Part 1)__en.srt 5.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589006-How-to-Choose-the-Number-of-Clusters-Exercise.ipynb 5.7 kB
  • 63 - Appendix - pandas Fundamentals/006 Using .sort_values()__en.srt 5.7 kB
  • 57 - Case Study - What's Next in the Course_/001 Game Plan for this Python, SQL, and Tableau Business Exercise__en.srt 5.7 kB
  • 27 - Python - Python Functions/29544926-Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb 5.7 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/007 Understanding Logistic Regression Tables__en.srt 5.7 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/016 Preparing the Deployment of the Model through a Module__en.srt 5.6 kB
  • 63 - Appendix - pandas Fundamentals/012 pandas DataFrames - Indexing with .loc[]__en.srt 5.6 kB
  • 56 - Software Integration/004 Communication between Software Products through Text Files__en.srt 5.6 kB
  • 63 - Appendix - pandas Fundamentals/004 Parameters and Arguments in pandas__en.srt 5.6 kB
  • 20 - Statistics - Hypothesis Testing/014 Test for the mean. Independent Samples (Part 2)__en.srt 5.6 kB
  • 23 - Python - Variables and Data Types/29544586-Strings-Solution-Py3.ipynb 5.6 kB
  • 08 - The Field of Data Science - Debunking Common Misconceptions/001 Debunking Common Misconceptions__en.srt 5.6 kB
  • 12 - Probability - Distributions/014 Continuous Distributions_ The Logistic Distribution__en.srt 5.5 kB
  • 42 - Deep Learning - Introduction to Neural Networks/006 The Linear model with Multiple Inputs and Multiple Outputs__en.srt 5.5 kB
  • 12 - Probability - Distributions/010 Continuous Distributions_ The Standard Normal Distribution__en.srt 5.5 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588854-Calculating-the-Accuracy-of-the-Model-Exercise.ipynb 5.5 kB
  • 11 - Probability - Bayesian Inference/001 Sets and Events__en.srt 5.5 kB
  • 20 - Statistics - Hypothesis Testing/007 p-value__en.srt 5.5 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/006 Calculating the Accuracy of the Model__en.srt 5.5 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/005 Activation Functions__en.srt 5.5 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588644-Admittance-with-comments.ipynb 5.4 kB
  • 42 - Deep Learning - Introduction to Neural Networks/003 Types of Machine Learning__en.srt 5.4 kB
  • 52 - Deep Learning - Conclusion/006 An Overview of non-NN Approaches__en.srt 5.4 kB
  • 11 - Probability - Bayesian Inference/007 The Conditional Probability Formula__en.srt 5.4 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/007 A2_ No Endogeneity__en.srt 5.4 kB
  • 20 - Statistics - Hypothesis Testing/004 Type I Error and Type II Error__en.srt 5.4 kB
  • 52 - Deep Learning - Conclusion/001 Summary on What You've Learned__en.srt 5.4 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/017 Using .concat() in Python__en.srt 5.4 kB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )__en.srt 5.3 kB
  • 28 - Python - Sequences/003 List Slicing__en.srt 5.3 kB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/005 A Breakdown of our Data Science Infographic__en.srt 5.3 kB
  • 01 - Part 1_ Introduction/002 What Does the Course Cover__en.srt 5.2 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/009 What do the Odds Actually Mean__en.srt 5.2 kB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/002 What is the difference between Analysis and Analytics__en.srt 5.2 kB
  • 28 - Python - Sequences/29544952-List-Slicing-Lecture-Py3.ipynb 5.1 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/003 The Normal Distribution__en.srt 5.1 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/002 Practical Example_ Linear Regression (Part 2)__en.srt 5.1 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/009 Standardizing only the Numerical Variables (Creating a Custom Scaler)__en.srt 5.1 kB
  • 15 - Statistics - Descriptive Statistics/019 Covariance__en.srt 5.1 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/013 Saving the Model and Preparing it for Deployment_en.vtt 5.1 kB
  • 12 - Probability - Distributions/009 Continuous Distributions_ The Normal Distribution__en.srt 5.0 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588164-sklearn-Simple-Linear-Regression.ipynb 5.0 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588986-Clustering-Categorical-Data-Solution.ipynb 5.0 kB
  • 46 - Deep Learning - Overfitting/003 What is Validation___en.srt 5.0 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/003 Logistic vs Logit Function__en.srt 5.0 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/014 Underfitting and Overfitting__en.srt 5.0 kB
  • 60 - Case Study - Loading the 'absenteeism_module'/002 Deploying the 'absenteeism_module' - Part I__en.srt 5.0 kB
  • 51 - Deep Learning - Business Case Example/006 Business Case_ Load the Preprocessed Data__en.srt 4.9 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/009 A4_ No Autocorrelation__en.srt 4.9 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/29545298-Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb 4.9 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/011 Business Case_ A Comment on the Homework__en.srt 4.9 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/013 Confidence intervals. Two means. Independent Samples (Part 2)__en.srt 4.9 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588700-Understanding-Logistic-Regression-Tables-Solution.ipynb 4.9 kB
  • 49 - Deep Learning - Preprocessing/005 Binary and One-Hot Encoding__en.srt 4.9 kB
  • 37 - Advanced Statistical Methods - Cluster Analysis/001 Introduction to Cluster Analysis__en.srt 4.9 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/008 Basic NN Example with TF_ Loss Function and Gradient Descent__en.srt 4.9 kB
  • 15 - Statistics - Descriptive Statistics/021 Correlation Coefficient__en.srt 4.9 kB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/001 Types of Clustering__en.srt 4.9 kB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/001 Stochastic Gradient Descent__en.srt 4.9 kB
  • 10 - Probability - Combinatorics/005 Solving Variations without Repetition__en.srt 4.9 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation_en.vtt 4.9 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/002 TensorFlow Outline and Comparison with Other Libraries_en.vtt 4.8 kB
  • 51 - Deep Learning - Business Case Example/003 Business Case_ Balancing the Dataset__en.srt 4.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/003 The Importance of Working with a Balanced Dataset__en.srt 4.8 kB
  • 15 - Statistics - Descriptive Statistics/002 Levels of Measurement__en.srt 4.8 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/010 A5_ No Multicollinearity__en.srt 4.8 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589036-Market-segmentation-example-Part2.ipynb 4.8 kB
  • 11 - Probability - Bayesian Inference/010 The Multiplication Law__en.srt 4.8 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588954-A-Simple-Example-of-Clustering-Solution.ipynb 4.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/011 Business Case_ A Comment on the Homework_en.vtt 4.8 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/001 Exploring the Problem with a Machine Learning Mindset__en.srt 4.7 kB
  • 22 - Part 4_ Introduction to Python/003 Why Jupyter___en.srt 4.7 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588094-Dummy-Variables.ipynb 4.7 kB
  • 51 - Deep Learning - Business Case Example/29590000-TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb 4.7 kB
  • 41 - Part 7_ Deep Learning/001 What to Expect from this Part___en.srt 4.7 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/004 TensorFlow Intro_en.vtt 4.7 kB
  • 28 - Python - Sequences/29544978-Tuples-Solution-Py3.ipynb 4.7 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Backward Elimination or How to Simplify Your Model_en.vtt 4.7 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation__en.srt 4.7 kB
  • 40 - Part 6_ Mathematics/29589122-Scalars-Vectors-and-Matrices.ipynb 4.7 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression__en.srt 4.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588998-Selecting-the-number-of-clusters.ipynb 4.6 kB
  • 23 - Python - Variables and Data Types/001 Variables__en.srt 4.6 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Basic NN Example (Part 1)__en.srt 4.6 kB
  • 27 - Python - Python Functions/29544922-Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb 4.6 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/006 Activation Functions_ Softmax Activation__en.srt 4.6 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588832-Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb 4.6 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/007 Backpropagation__en.srt 4.6 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589044-Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb 4.6 kB
  • 30 - Python - Advanced Python Tools/004 Importing Modules in Python__en.srt 4.6 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588678-Building-a-Logistic-Regression-Solution.ipynb 4.5 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/030 Analyzing Several _Straightforward_ Columns for this Exercise__en.srt 4.5 kB
  • 40 - Part 6_ Mathematics/001 What is a Matrix___en.srt 4.5 kB
  • 42 - Deep Learning - Introduction to Neural Networks/002 Training the Model__en.srt 4.5 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/012 Calculating the Accuracy of the Model__en.srt 4.5 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/028 Extracting the Day of the Week from the _Date_ Column__en.srt 4.5 kB
  • 11 - Probability - Bayesian Inference/002 Ways Sets Can Interact__en.srt 4.5 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Basic NN Example (Part 3)__en.srt 4.5 kB
  • 28 - Python - Sequences/29544938-Help-Yourself-with-Methods-Lecture-Py3.ipynb 4.5 kB
  • 15 - Statistics - Descriptive Statistics/005 Numerical Variables - Frequency Distribution Table__en.srt 4.5 kB
  • 28 - Python - Sequences/29544988-Dictionaries-Lecture-Py3.ipynb 4.5 kB
  • 07 - The Field of Data Science - Careers in Data Science/001 Finding the Job - What to Expect and What to Look for__en.srt 4.4 kB
  • 40 - Part 6_ Mathematics/009 Dot Product__en.srt 4.4 kB
  • 27 - Python - Python Functions/002 How to Create a Function with a Parameter__en.srt 4.4 kB
  • 12 - Probability - Distributions/005 Discrete Distributions_ The Bernoulli Distribution__en.srt 4.4 kB
  • 27 - Python - Python Functions/007 Built-in Functions in Python__en.srt 4.4 kB
  • 46 - Deep Learning - Overfitting/005 N-Fold Cross Validation__en.srt 4.4 kB
  • 24 - Python - Basic Python Syntax/001 Using Arithmetic Operators in Python__en.srt 4.4 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/008 Backpropagation Picture__en.srt 4.4 kB
  • 28 - Python - Sequences/29544960-List-Slicing-Solution-Py3.ipynb 4.4 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/005 Student's T Distribution__en.srt 4.3 kB
  • 24 - Python - Basic Python Syntax/29544620-Arithmetic-Operators-Solution-Py3.ipynb 4.3 kB
  • 10 - Probability - Combinatorics/002 Permutations and How to Use Them__en.srt 4.3 kB
  • 10 - Probability - Combinatorics/007 Symmetry of Combinations__en.srt 4.3 kB
  • 12 - Probability - Distributions/013 Continuous Distributions_ The Exponential Distribution__en.srt 4.3 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/009 Decomposition of Variability__en.srt 4.3 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/008 Customizing a TensorFlow 2 Model__en.srt 4.3 kB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/004 Practical Example_ Linear Regression (Part 3)__en.srt 4.3 kB
  • 37 - Advanced Statistical Methods - Cluster Analysis/004 Math Prerequisites__en.srt 4.3 kB
  • 10 - Probability - Combinatorics/009 Combinatorics in Real-Life_ The Lottery__en.srt 4.3 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/004 Standardizing the Data__en.srt 4.3 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/004 The Standard Normal Distribution__en.srt 4.2 kB
  • 57 - Case Study - What's Next in the Course_/003 Introducing the Data Set__en.srt 4.2 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/29545338-Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb 4.2 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588660-Admittance-regression-tables-fixed-error.ipynb 4.2 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/004 Introduction to Terms with Multiple Meanings__en.srt 4.2 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/33130182-Simple-Linear-Regression-with-sklearn-Exercise.ipynb 4.2 kB
  • 40 - Part 6_ Mathematics/003 Linear Algebra and Geometry__en.srt 4.2 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering_en.vtt 4.2 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/29588016-Simple-linear-regression-with-comments.ipynb 4.2 kB
  • 40 - Part 6_ Mathematics/006 Addition and Subtraction of Matrices__en.srt 4.1 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/29589868-TensorFlow-MNIST-Part1-with-comments.ipynb 4.1 kB
  • 42 - Deep Learning - Introduction to Neural Networks/004 The Linear Model (Linear Algebraic Version)__en.srt 4.0 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591484-12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb 4.0 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/002 Importing the Absenteeism Data in Python__en.srt 4.0 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/008 Estimators and Estimates__en.srt 4.0 kB
  • 40 - Part 6_ Mathematics/002 Scalars and Vectors__en.srt 3.9 kB
  • 47 - Deep Learning - Initialization/002 Types of Simple Initializations__en.srt 3.9 kB
  • 10 - Probability - Combinatorics/008 Solving Combinations with Separate Sample Spaces__en.srt 3.9 kB
  • 49 - Deep Learning - Preprocessing/001 Preprocessing Introduction__en.srt 3.9 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn_en.vtt 3.9 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589020-Market-segmentation-example.ipynb 3.9 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/010 What is the OLS___en.srt 3.9 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/004 Non-Linearities and their Purpose__en.srt 3.9 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/29587976-Simple-linear-regression.ipynb 3.9 kB
  • 23 - Python - Variables and Data Types/29544612-Variables-Solution-Py3.ipynb 3.9 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588982-Clustering-Categorical-Data-Exercise.ipynb 3.9 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST__en.srt 3.9 kB
  • 52 - Deep Learning - Conclusion/005 An Overview of RNNs__en.srt 3.9 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/003 TensorFlow 1 vs TensorFlow 2__en.srt 3.8 kB
  • 10 - Probability - Combinatorics/010 A Recap of Combinatorics__en.srt 3.8 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST__en.srt 3.8 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Creating Checkpoints while Coding in Jupyter__en.srt 3.8 kB
  • 57 - Case Study - What's Next in the Course_/002 The Business Task__en.srt 3.8 kB
  • 22 - Part 4_ Introduction to Python/005 Understanding Jupyter's Interface - the Notebook Dashboard__en.srt 3.8 kB
  • 40 - Part 6_ Mathematics/005 What is a Tensor___en.srt 3.8 kB
  • 47 - Deep Learning - Initialization/003 State-of-the-Art Method - (Xavier) Glorot Initialization__en.srt 3.8 kB
  • 30 - Python - Advanced Python Tools/003 What is the Standard Library___en.srt 3.7 kB
  • 27 - Python - Python Functions/29544924-Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb 3.7 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589218-Minimal-example-Part-2.ipynb 3.7 kB
  • 10 - Probability - Combinatorics/004 Solving Variations with Repetition__en.srt 3.7 kB
  • 15 - Statistics - Descriptive Statistics/013 Skewness__en.srt 3.7 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588838-Accuracy.ipynb 3.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/15453059-iris-with-answers.csv 3.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588952-A-Simple-Example-of-Clustering-Exercise.ipynb 3.7 kB
  • 23 - Python - Variables and Data Types/002 Numbers and Boolean Values in Python__en.srt 3.7 kB
  • 27 - Python - Python Functions/005 Conditional Statements and Functions__en.srt 3.7 kB
  • 23 - Python - Variables and Data Types/29544526-Variables-Lecture-Py3.ipynb 3.7 kB
  • 40 - Part 6_ Mathematics/29589194-Dot-product-Part-2.ipynb 3.7 kB
  • 63 - Appendix - pandas Fundamentals/003 Working with Methods in Python - Part II__en.srt 3.7 kB
  • 47 - Deep Learning - Initialization/001 What is Initialization___en.srt 3.7 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/005 MNIST_ Loss and Optimization Algorithm__en.srt 3.7 kB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/003 Momentum__en.srt 3.7 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/29588024-Simple-Linear-Regression-Exercise-Solution.ipynb 3.7 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/005 Types of File Formats Supporting TensorFlow__en.srt 3.6 kB
  • 10 - Probability - Combinatorics/003 Simple Operations with Factorials__en.srt 3.6 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588642-Admittance.ipynb 3.6 kB
  • 26 - Python - Conditional Statements/001 The IF Statement__en.srt 3.6 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/008 Real Life Examples of Traditional Methods__en.srt 3.6 kB
  • 24 - Python - Basic Python Syntax/29544616-Arithmetic-Operators-Lecture-Py3.ipynb 3.6 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/001 MNIST_ What is the MNIST Dataset___en.srt 3.6 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/001 MNIST_ The Dataset__en.srt 3.6 kB
  • 11 - Probability - Bayesian Inference/006 Dependence and Independence of Sets__en.srt 3.5 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/018 Underfitting and Overfitting__en.srt 3.5 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/004 Building a Logistic Regression__en.srt 3.5 kB
  • 25 - Python - Other Python Operators/29544776-Logical-and-Identity-Operators-Solution-Py3.ipynb 3.5 kB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/007 Adam (Adaptive Moment Estimation)__en.srt 3.5 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/003 Selecting the Inputs for the Logistic Regression__en.srt 3.5 kB
  • 46 - Deep Learning - Overfitting/004 Training, Validation, and Test Datasets__en.srt 3.5 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588130-real-estate-price-size-year-view.csv 3.5 kB
  • 11 - Probability - Bayesian Inference/008 The Law of Total Probability__en.srt 3.5 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages__en.srt 3.5 kB
  • 23 - Python - Variables and Data Types/29544572-Numbers-and-Boolean-Values-Lecture-Py3.ipynb 3.4 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29590038-5.3.TensorFlow-Minimal-example-Part-1.ipynb 3.4 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588960-Categorical-data.ipynb 3.4 kB
  • 37 - Advanced Statistical Methods - Cluster Analysis/003 Difference between Classification and Clustering__en.srt 3.4 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/004 Clustering Categorical Data__en.srt 3.4 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/001 Multiple Linear Regression__en.srt 3.4 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588936-Country-clusters.ipynb 3.4 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/002 What is a Deep Net___en.srt 3.4 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/006 Types of File Formats, supporting Tensors__en.srt 3.4 kB
  • 27 - Python - Python Functions/29544866-Another-Way-to-Define-a-Function-Lecture-Py3.ipynb 3.4 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/001 What are Confidence Intervals___en.srt 3.4 kB
  • 26 - Python - Conditional Statements/29544814-Else-If-for-Brief-Elif-Lecture-Py3.ipynb 3.3 kB
  • 23 - Python - Variables and Data Types/29544594-Numbers-and-Boolean-Values-Solution-Py3.ipynb 3.3 kB
  • 40 - Part 6_ Mathematics/29589134-Adding-and-subtracting-matrices.ipynb 3.3 kB
  • 42 - Deep Learning - Introduction to Neural Networks/005 The Linear Model with Multiple Inputs__en.srt 3.3 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/009 MNIST_ Select the Loss and the Optimizer__en.srt 3.3 kB
  • 28 - Python - Sequences/29544932-Lists-Solution-Py3.ipynb 3.3 kB
  • 40 - Part 6_ Mathematics/29589174-Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb 3.2 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588694-Understanding-Logistic-Regression-Tables-Exercise.ipynb 3.2 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/006 An Invaluable Coding Tip__en.srt 3.2 kB
  • 15 - Statistics - Descriptive Statistics/007 The Histogram__en.srt 3.2 kB
  • 26 - Python - Conditional Statements/002 The ELSE Statement__en.srt 3.2 kB
  • 24 - Python - Basic Python Syntax/29544648-Reassign-Values-Lecture-Py3.ipynb 3.2 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/012 Creating a Summary Table with P-values__en.srt 3.1 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588128-Multiple-Linear-Regression-with-Dummies-Exercise.ipynb 3.1 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/003 MNIST_ Importing the Relevant Packages and Loading the Data__en.srt 3.1 kB
  • 12 - Probability - Distributions/011 Continuous Distributions_ The Students' T Distribution__en.srt 3.0 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/005 OLS Assumptions__en.srt 3.0 kB
  • 29 - Python - Iterations/29545074-Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb 3.0 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/011 Real Life Examples of Machine Learning (ML)__en.srt 3.0 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/006 Using a Statistical Approach towards the Solution to the Exercise__en.srt 3.0 kB
  • 28 - Python - Sequences/29544992-Dictionaries-Exercise-Py3.ipynb 3.0 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588676-Building-a-Logistic-Regression-Exercise.ipynb 3.0 kB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/002 Problems with Gradient Descent__en.srt 3.0 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/009 Business Case_ Interpretation__en.srt 3.0 kB
  • 26 - Python - Conditional Statements/004 A Note on Boolean Values__en.srt 3.0 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/002 How to Install TensorFlow 1_en.vtt 3.0 kB
  • 28 - Python - Sequences/29544972-Tuples-Lecture-Py3.ipynb 3.0 kB
  • 12 - Probability - Distributions/012 Continuous Distributions_ The Chi-Squared Distribution__en.srt 3.0 kB
  • 40 - Part 6_ Mathematics/29589180-Tranpose-of-a-matrix.ipynb 3.0 kB
  • 27 - Python - Python Functions/003 Defining a Function in Python - Part II__en.srt 2.9 kB
  • 29 - Python - Iterations/29545120-Iterating-over-Dictionaries-Solution-Py3.ipynb 2.9 kB
  • 49 - Deep Learning - Preprocessing/004 Preprocessing Categorical Data__en.srt 2.9 kB
  • 64 - Bonus Lecture/001 Bonus Lecture_ Next Steps.html 2.9 kB
  • 12 - Probability - Distributions/004 Discrete Distributions_ The Uniform Distribution__en.srt 2.9 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/007 MNIST_ Batching and Early Stopping__en.srt 2.9 kB
  • 42 - Deep Learning - Introduction to Neural Networks/007 Graphical Representation of Simple Neural Networks__en.srt 2.9 kB
  • 28 - Python - Sequences/29544946-Help-Yourself-with-Methods-Solution-Py3.ipynb 2.9 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/005 What's Regression Analysis - a Quick Refresher.html 2.9 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588066-Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb 2.9 kB
  • 11 - Probability - Bayesian Inference/009 The Additive Rule__en.srt 2.9 kB
  • 28 - Python - Sequences/29544956-List-Slicing-Exercise-Py3.ipynb 2.9 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/29588026-Simple-Linear-Regression-Exercise.ipynb 2.8 kB
  • 42 - Deep Learning - Introduction to Neural Networks/009 Common Objective Functions_ L2-norm Loss__en.srt 2.8 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/002 How to Install TensorFlow 1__en.srt 2.8 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/010 Business Case_ Testing the Model__en.srt 2.8 kB
  • 28 - Python - Sequences/29544928-Lists-Lecture-Py3.ipynb 2.8 kB
  • 46 - Deep Learning - Overfitting/002 Underfitting and Overfitting for Classification__en.srt 2.8 kB
  • 11 - Probability - Bayesian Inference/005 Mutually Exclusive Sets__en.srt 2.7 kB
  • 52 - Deep Learning - Conclusion/002 What's Further out there in terms of Machine Learning__en.srt 2.7 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering__en.srt 2.7 kB
  • 24 - Python - Basic Python Syntax/29544618-Arithmetic-Operators-Exercise-Py3.ipynb 2.7 kB
  • 23 - Python - Variables and Data Types/29544582-Strings-Exercise-Py3.ipynb 2.7 kB
  • 40 - Part 6_ Mathematics/007 Errors when Adding Matrices__en.srt 2.7 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/004 Test for Significance of the Model (F-Test)__en.srt 2.6 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section__en.vtt 2.6 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588712-2.02.Binary-predictors.csv 2.6 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588826-Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb 2.6 kB
  • 25 - Python - Other Python Operators/29544734-Comparison-Operators-Lecture-Py3.ipynb 2.6 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Final Remarks of this Section__en.srt 2.6 kB
  • 12 - Probability - Distributions/003 Characteristics of Discrete Distributions__en.srt 2.6 kB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/002 Business Case_ Outlining the Solution__en.srt 2.6 kB
  • 25 - Python - Other Python Operators/001 Comparison Operators__en.srt 2.6 kB
  • 11 - Probability - Bayesian Inference/003 Intersection of Sets__en.srt 2.5 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588668-Admittance-regression-summary-error.ipynb 2.5 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588072-Multiple-Linear-Regression-Exercise.ipynb 2.5 kB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/001 What is a Layer___en.srt 2.5 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/001 What to Expect from the Following Sections_.html 2.5 kB
  • 27 - Python - Python Functions/001 Defining a Function in Python__en.srt 2.5 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588716-Binary-predictors.ipynb 2.5 kB
  • 25 - Python - Other Python Operators/29544744-Comparison-Operators-Solution-Py3.ipynb 2.5 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/15453029-iris-dataset.csv 2.5 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/15453055-iris-dataset.csv 2.5 kB
  • 26 - Python - Conditional Statements/29544822-Else-If-for-Brief-Elif-Solution-Py3.ipynb 2.5 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/006 A1_ Linearity__en.srt 2.4 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588076-real-estate-price-size-year.csv 2.4 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588378-real-estate-price-size-year.csv 2.4 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588430-real-estate-price-size-year.csv 2.4 kB
  • 29 - Python - Iterations/005 Conditional Statements, Functions, and Loops__en.srt 2.4 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/014 Dropping a Dummy Variable from the Data Set.html 2.4 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/005 Actual Introduction to TensorFlow__en.srt 2.3 kB
  • 23 - Python - Variables and Data Types/29544590-Numbers-and-Boolean-Values-Exercise-Py3.ipynb 2.3 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/003 A Note on Installing Packages in Anaconda.html 2.3 kB
  • 29 - Python - Iterations/29545048-Create-Lists-with-the-range-Function-Solution-Py3.ipynb 2.3 kB
  • 38 - Advanced Statistical Methods - K-Means Clustering/010 Relationship between Clustering and Regression__en.srt 2.3 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/003 MNIST_ Relevant Packages__en.srt 2.3 kB
  • 20 - Statistics - Hypothesis Testing/002 Further Reading on Null and Alternative Hypothesis.html 2.3 kB
  • 23 - Python - Variables and Data Types/29544602-Variables-Exercise-Py3.ipynb 2.3 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/011 MNIST_ Solutions.html 2.3 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/002 Real Life Examples of Traditional Data__en.srt 2.3 kB
  • 31 - Part 5_ Advanced Statistical Methods in Python/001 Introduction to Regression Analysis__en.srt 2.3 kB
  • 51 - Deep Learning - Business Case Example/011 Business Case_ Testing the Model__en.srt 2.3 kB
  • 26 - Python - Conditional Statements/29544792-Introduction-to-the-If-Statement-Solution-Py3.ipynb 2.2 kB
  • 29 - Python - Iterations/29545118-Iterating-over-Dictionaries-Exercise-Py3.ipynb 2.2 kB
  • 24 - Python - Basic Python Syntax/007 Structuring with Indentation__en.srt 2.2 kB
  • 24 - Python - Basic Python Syntax/29544694-Indexing-Elements-Solution-Py3.ipynb 2.2 kB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/010 MNIST_ Exercises.html 2.2 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588064-Multiple-linear-regression-and-Adjusted-R-squared.ipynb 2.2 kB
  • 28 - Python - Sequences/29544930-Lists-Exercise-Py3.ipynb 2.2 kB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/005 Learning Rate Schedules Visualized__en.srt 2.2 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/006 Real Life Examples of Business Intelligence (BI)__en.srt 2.2 kB
  • 42 - Deep Learning - Introduction to Neural Networks/008 What is the Objective Function___en.srt 2.2 kB
  • 40 - Part 6_ Mathematics/29589188-Dot-product.ipynb 2.2 kB
  • 24 - Python - Basic Python Syntax/29544658-Reassign-Values-Solution-Py3.ipynb 2.2 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/014 ARTICLE - A Note on 'pickling'.html 2.2 kB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/24453624-Absenteeism-predictions.csv 2.2 kB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/29545266-Absenteeism-predictions.csv 2.2 kB
  • 29 - Python - Iterations/29545070-Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb 2.1 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588666-Admittance-regression.ipynb 2.1 kB
  • 40 - Part 6_ Mathematics/29589126-Tensors.ipynb 2.1 kB
  • 27 - Python - Python Functions/004 How to Use a Function within a Function__en.srt 2.1 kB
  • 28 - Python - Sequences/29544976-Tuples-Exercise-Py3.ipynb 2.1 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/002 Correlation vs Regression__en.srt 2.1 kB
  • 27 - Python - Python Functions/29544874-Another-Way-to-Define-a-Function-Solution-Py3.ipynb 2.0 kB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/011 MNIST - Exercises.html 2.0 kB
  • 29 - Python - Iterations/29545058-Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb 2.0 kB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/015 Confidence intervals. Two means. Independent Samples (Part 3)__en.srt 2.0 kB
  • 51 - Deep Learning - Business Case Example/002 Business Case_ Outlining the Solution__en.srt 2.0 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/007 Standard error__en.srt 2.0 kB
  • 28 - Python - Sequences/29544942-Help-Yourself-with-Methods-Exercise-Py3.ipynb 2.0 kB
  • 05 - The Field of Data Science - Popular Data Science Techniques/004 Real Life Examples of Big Data__en.srt 1.9 kB
  • 29 - Python - Iterations/29545102-All-In-Solution-Py3.ipynb 1.9 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/020 Reordering Columns in a Pandas DataFrame in Python__en.srt 1.9 kB
  • 60 - Case Study - Loading the 'absenteeism_module'/29545382-Absenteeism-new-data.csv 1.9 kB
  • 60 - Case Study - Loading the 'absenteeism_module'/29545388-scaler 1.9 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/29588022-real-estate-price-size.csv 1.9 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/33130180-real-estate-price-size.csv 1.9 kB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/29589066-Heatmaps.ipynb 1.9 kB
  • 29 - Python - Iterations/29545018-For-Loops-Solution-Py3.ipynb 1.8 kB
  • 24 - Python - Basic Python Syntax/004 Add Comments__en.srt 1.8 kB
  • 27 - Python - Python Functions/29544850-Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb 1.8 kB
  • 24 - Python - Basic Python Syntax/002 The Double Equality Sign__en.srt 1.8 kB
  • 26 - Python - Conditional Statements/29544796-Add-an-Else-Statement-Lecture-Py3.ipynb 1.8 kB
  • 26 - Python - Conditional Statements/29544818-Else-If-for-Brief-Elif-Exercise-Py3.ipynb 1.8 kB
  • 29 - Python - Iterations/29545032-While-Loops-and-Incrementing-Solution-Py3.ipynb 1.8 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/015 More on Dummy Variables_ A Statistical Perspective__en.srt 1.8 kB
  • 27 - Python - Python Functions/29544920-Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb 1.8 kB
  • 49 - Deep Learning - Preprocessing/002 Types of Basic Preprocessing__en.srt 1.8 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/001 Introduction to Logistic Regression__en.srt 1.7 kB
  • 24 - Python - Basic Python Syntax/29544656-Reassign-Values-Exercise-Py3.ipynb 1.7 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/29589774-TensorFlow-Minimal-example-Part1.ipynb 1.7 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/003 Geometrical Representation of the Linear Regression Model__en.srt 1.7 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Basic NN Example Exercises.html 1.7 kB
  • 27 - Python - Python Functions/29544910-Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb 1.7 kB
  • 24 - Python - Basic Python Syntax/006 Indexing Elements__en.srt 1.7 kB
  • 17 - Statistics - Inferential Statistics Fundamentals/001 Introduction__en.srt 1.7 kB
  • 29 - Python - Iterations/29545092-All-In-Lecture-Py3.ipynb 1.7 kB
  • 25 - Python - Other Python Operators/29544738-Comparison-Operators-Exercise-Py3.ipynb 1.6 kB
  • 27 - Python - Python Functions/29544890-0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb 1.6 kB
  • 27 - Python - Python Functions/29544846-Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb 1.6 kB
  • 36 - Advanced Statistical Methods - Logistic Regression/29588638-2.01.Admittance.csv 1.6 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/010 Basic NN Example with TF Exercises.html 1.6 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section___en.srt 1.6 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/007 Using Seaborn for Graphs__en.srt 1.6 kB
  • 26 - Python - Conditional Statements/29544788-Introduction-to-the-If-Statement-Exercise-Py3.ipynb 1.6 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/002 TensorFlow Outline and Comparison with Other Libraries__en.srt 1.5 kB
  • 24 - Python - Basic Python Syntax/29544716-Line-Continuation-Solution-Py3.ipynb 1.5 kB
  • 24 - Python - Basic Python Syntax/29544728-Structure-Your-Code-with-Indentation-Solution-Py3.ipynb 1.5 kB
  • 29 - Python - Iterations/29545046-Create-Lists-with-the-range-Function-Exercise-Py3.ipynb 1.5 kB
  • 24 - Python - Basic Python Syntax/29544624-The-Double-Equality-Sign-Lecture-Py3.ipynb 1.5 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/004 A Note on TensorFlow 2 Syntax__en.srt 1.4 kB
  • 26 - Python - Conditional Statements/29544804-Add-an-Else-Statement-Solution-Py3.ipynb 1.4 kB
  • 24 - Python - Basic Python Syntax/003 How to Reassign Values__en.srt 1.4 kB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/004 TensorFlow Intro__en.srt 1.4 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy__en.srt 1.4 kB
  • 10 - Probability - Combinatorics/001 Fundamentals of Combinatorics__en.srt 1.4 kB
  • 24 - Python - Basic Python Syntax/29544684-Indexing-Elements-Exercise-Py3.ipynb 1.4 kB
  • 30 - Python - Advanced Python Tools/002 Modules and Packages__en.srt 1.4 kB
  • 29 - Python - Iterations/29545042-Create-Lists-with-the-range-Function-Lecture-Py3.ipynb 1.4 kB
  • 27 - Python - Python Functions/006 Functions Containing a Few Arguments__en.srt 1.4 kB
  • 24 - Python - Basic Python Syntax/29544682-Indexing-Elements-Lecture-Py3.ipynb 1.3 kB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/006 First Regression in Python Exercise.html 1.3 kB
  • 29 - Python - Iterations/29545100-All-In-Exercise-Py3.ipynb 1.3 kB
  • 27 - Python - Python Functions/29544904-Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb 1.3 kB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/009 Basic NN with TensorFlow_ Exercises.html 1.3 kB
  • 29 - Python - Iterations/29545010-For-Loops-Exercise-Py3.ipynb 1.3 kB
  • 29 - Python - Iterations/29545008-For-Loops-Lecture-Py3.ipynb 1.3 kB
  • 27 - Python - Python Functions/29544868-Another-Way-to-Define-a-Function-Exercise-Py3.ipynb 1.3 kB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/013 Saving the Model and Preparing it for Deployment__en.srt 1.3 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588090-1.03.Dummies.csv 1.2 kB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589208-Minimal-example-Part-1.ipynb 1.2 kB
  • 27 - Python - Python Functions/29544848-Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb 1.2 kB
  • 24 - Python - Basic Python Syntax/005 Understanding Line Continuation__en.srt 1.2 kB
  • 26 - Python - Conditional Statements/29544784-Introduction-to-the-If-Statement-Lecture-Py3.ipynb 1.2 kB
  • 24 - Python - Basic Python Syntax/29544632-The-Double-Equality-Sign-Solution-Py3.ipynb 1.2 kB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/029 EXERCISE - Removing the _Date_ Column.html 1.2 kB
  • 24 - Python - Basic Python Syntax/29544714-Line-Continuation-Exercise-Py3.ipynb 1.2 kB
  • 29 - Python - Iterations/29545030-While-Loops-and-Incrementing-Exercise-Py3.ipynb 1.1 kB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588058-1.02.Multiple-linear-regression.csv 1.1 kB
  • 29 - Python - Iterations/29545028-While-Loops-and-Incrementing-Lecture-Py3.ipynb 1.1 kB
  • 29 - Python - Iterations/29545116-Iterating-over-Dictionaries-Lecture-Py3.ipynb 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588240-1.02.Multiple-linear-regression.csv 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588306-1.02.Multiple-linear-regression.csv 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588320-1.02.Multiple-linear-regression.csv 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588334-1.02.Multiple-linear-regression.csv 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588350-1.02.Multiple-linear-regression.csv 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588366-1.02.Multiple-linear-regression.csv 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588388-1.02.Multiple-linear-regression.csv 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588398-1.02.Multiple-linear-regression.csv 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588414-1.02.Multiple-linear-regression.csv 1.1 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn__en.srt 1.1 kB
  • 27 - Python - Python Functions/29544906-Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb 1.1 kB
  • 27 - Python - Python Functions/29544888-0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb 1.1 kB
  • 52 - Deep Learning - Conclusion/003 DeepMind and Deep Learning.html 1.1 kB
  • 24 - Python - Basic Python Syntax/29544678-Add-Comments-Lecture-Py3.ipynb 1.1 kB
  • 26 - Python - Conditional Statements/29544802-Add-an-Else-Statement-Exercise-Py3.ipynb 1.0 kB
  • 60 - Case Study - Loading the 'absenteeism_module'/29545384-model 1.0 kB
  • 27 - Python - Python Functions/29544880-0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb 1.0 kB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn__en.srt 1.0 kB
  • 60 - Case Study - Loading the 'absenteeism_module'/29545348-Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb 973 Bytes
  • 60 - Case Study - Loading the 'absenteeism_module'/004 Exporting the Obtained Data Set as a _.csv.html 964 Bytes
  • 24 - Python - Basic Python Syntax/29544720-Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb 958 Bytes
  • 24 - Python - Basic Python Syntax/29544724-Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb 956 Bytes
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Backward Elimination or How to Simplify Your Model__en.srt 925 Bytes
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/29587970-1.01.Simple-linear-regression.csv 922 Bytes
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588160-1.01.Simple-linear-regression.csv 922 Bytes
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/29588200-1.01.Simple-linear-regression.csv 922 Bytes
  • 38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering__en.srt 902 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/033 A Note on Exporting Your Data as a _.csv File.html 880 Bytes
  • 27 - Python - Python Functions/29544842-Defining-a-Function-in-Python-Lecture-Py3.ipynb 868 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/008 EXERCISE - Dropping a Column from a DataFrame in Python.html 864 Bytes
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/003 A Note on Multicollinearity.html 849 Bytes
  • 24 - Python - Basic Python Syntax/29544630-The-Double-Equality-Sign-Exercise-Py3.ipynb 838 Bytes
  • 26 - Python - Conditional Statements/29544828-A-Note-on-Boolean-Values-Lecture-Py3.ipynb 791 Bytes
  • 24 - Python - Basic Python Syntax/29544712-Line-Continuation-Lecture-Py3.ipynb 779 Bytes
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/external-assets-links.txt 774 Bytes
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/005 A Note on Normalization.html 729 Bytes
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/007 Dummy Variables - Exercise.html 705 Bytes
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/001 READ ME____.html 564 Bytes
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/009 Backpropagation - A Peek into the Mathematics of Optimization.html 539 Bytes
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/005 EXERCISE - Transportation Expense vs Probability.html 529 Bytes
  • 15 - Statistics - Descriptive Statistics/016 Variance Exercise.html 522 Bytes
  • 60 - Case Study - Loading the 'absenteeism_module'/001 Are You Sure You're All Set_.html 513 Bytes
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/009 Linear Regression - Exercise.html 497 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 478 Bytes
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/012 Business Case_ Final Exercise.html 441 Bytes
  • 51 - Deep Learning - Business Case Example/012 Business Case_ Final Exercise.html 433 Bytes
  • 60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II__en.srt 429 Bytes
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/003 EXERCISE - Reasons vs Probability.html 385 Bytes
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/005 Business Case_ Preprocessing Exercise.html 379 Bytes
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/011 A Note on Calculation of P-values with sklearn.html 370 Bytes
  • 51 - Deep Learning - Business Case Example/005 Business Case_ Preprocessing the Data - Exercise.html 370 Bytes
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/001 EXERCISE - Age vs Probability.html 367 Bytes
  • 51 - Deep Learning - Business Case Example/004 Business Case_ Preprocessing the Data__en.srt 348 Bytes
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/004 Business Case_ Preprocessing__en.srt 348 Bytes
  • 36 - Advanced Statistical Methods - Logistic Regression/29588872-2.03.Test-dataset.csv 322 Bytes
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/015 EXERCISE - Saving the Model (and Scaler).html 284 Bytes
  • 38 - Advanced Statistical Methods - K-Means Clustering/29589028-3.12.Example.csv 283 Bytes
  • 39 - Advanced Statistical Methods - Other Types of Clustering/29589074-Country-clusters-standardized.csv 244 Bytes
  • 38 - Advanced Statistical Methods - K-Means Clustering/29588934-3.01.Country-clusters.csv 200 Bytes
  • 51 - Deep Learning - Business Case Example/010 Setting an Early Stopping Mechanism - Exercise.html 192 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/018 EXERCISE - Using .concat() in Python.html 189 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 161 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/019 SOLUTION - Using .concat() in Python.html 143 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137 Bytes
  • 0. Websites you may like/[FCS Forum].url 133 Bytes
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/external-assets-links.txt 130 Bytes
  • 0. Websites you may like/[FreeCourseSite.com].url 127 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/012 EXERCISE - Obtaining Dummies from a Single Feature.html 123 Bytes
  • 0. Websites you may like/[CourseClub.ME].url 122 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html 118 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/013 SOLUTION - Obtaining Dummies from a Single Feature.html 117 Bytes
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/009 SOLUTION - Dropping a Column from a DataFrame in Python.html 114 Bytes
  • 01 - Part 1_ Introduction/external-assets-links.txt 101 Bytes
  • 36 - Advanced Statistical Methods - Logistic Regression/005 Building a Logistic Regression - Exercise.html 87 Bytes
  • 36 - Advanced Statistical Methods - Logistic Regression/008 Understanding Logistic Regression Tables - Exercise.html 87 Bytes
  • 36 - Advanced Statistical Methods - Logistic Regression/011 Binary Predictors in a Logistic Regression - Exercise.html 87 Bytes
  • 36 - Advanced Statistical Methods - Logistic Regression/013 Calculating the Accuracy of the Model.html 87 Bytes
  • 36 - Advanced Statistical Methods - Logistic Regression/016 Testing the Model - Exercise.html 87 Bytes
  • 38 - Advanced Statistical Methods - K-Means Clustering/003 A Simple Example of Clustering - Exercise.html 87 Bytes
  • 38 - Advanced Statistical Methods - K-Means Clustering/005 Clustering Categorical Data - Exercise.html 87 Bytes
  • 38 - Advanced Statistical Methods - K-Means Clustering/007 How to Choose the Number of Clusters - Exercise.html 87 Bytes
  • 38 - Advanced Statistical Methods - K-Means Clustering/014 EXERCISE_ Species Segmentation with Cluster Analysis (Part 1).html 87 Bytes
  • 38 - Advanced Statistical Methods - K-Means Clustering/015 EXERCISE_ Species Segmentation with Cluster Analysis (Part 2).html 87 Bytes
  • 15 - Statistics - Descriptive Statistics/004 Categorical Variables Exercise.html 81 Bytes
  • 15 - Statistics - Descriptive Statistics/006 Numerical Variables Exercise.html 81 Bytes
  • 15 - Statistics - Descriptive Statistics/008 Histogram Exercise.html 81 Bytes
  • 15 - Statistics - Descriptive Statistics/010 Cross Tables and Scatter Plots Exercise.html 81 Bytes
  • 15 - Statistics - Descriptive Statistics/012 Mean, Median and Mode Exercise.html 81 Bytes
  • 15 - Statistics - Descriptive Statistics/014 Skewness Exercise.html 81 Bytes
  • 15 - Statistics - Descriptive Statistics/018 Standard Deviation and Coefficient of Variation Exercise.html 81 Bytes
  • 15 - Statistics - Descriptive Statistics/020 Covariance Exercise.html 81 Bytes
  • 15 - Statistics - Descriptive Statistics/022 Correlation Coefficient Exercise.html 81 Bytes
  • 16 - Statistics - Practical Example_ Descriptive Statistics/002 Practical Example_ Descriptive Statistics Exercise.html 81 Bytes
  • 17 - Statistics - Inferential Statistics Fundamentals/005 The Standard Normal Distribution Exercise.html 81 Bytes
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html 81 Bytes
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html 81 Bytes
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/010 Confidence intervals. Two means. Dependent samples Exercise.html 81 Bytes
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html 81 Bytes
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html 81 Bytes
  • 19 - Statistics - Practical Example_ Inferential Statistics/002 Practical Example_ Inferential Statistics Exercise.html 81 Bytes
  • 20 - Statistics - Hypothesis Testing/006 Test for the Mean. Population Variance Known Exercise.html 81 Bytes
  • 20 - Statistics - Hypothesis Testing/009 Test for the Mean. Population Variance Unknown Exercise.html 81 Bytes
  • 20 - Statistics - Hypothesis Testing/011 Test for the Mean. Dependent Samples Exercise.html 81 Bytes
  • 20 - Statistics - Hypothesis Testing/013 Test for the mean. Independent Samples (Part 1). Exercise.html 81 Bytes
  • 20 - Statistics - Hypothesis Testing/015 Test for the mean. Independent Samples (Part 2). Exercise.html 81 Bytes
  • 21 - Statistics - Practical Example_ Hypothesis Testing/002 Practical Example_ Hypothesis Testing Exercise.html 81 Bytes
  • 50 - Deep Learning - Classifying on the MNIST Dataset/005 MNIST_ Preprocess the Data - Scale the Test Data - Exercise.html 79 Bytes
  • 50 - Deep Learning - Classifying on the MNIST Dataset/007 MNIST_ Preprocess the Data - Shuffle and Batch - Exercise.html 79 Bytes
  • 51 - Deep Learning - Business Case Example/007 Business Case_ Load the Preprocessed Data - Exercise.html 79 Bytes
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/003 Multiple Linear Regression Exercise.html 76 Bytes
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/012 Dealing with Categorical Data - Dummy Variables.html 76 Bytes
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/006 Simple Linear Regression with sklearn - Exercise.html 76 Bytes
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/009 Calculating the Adjusted R-Squared in sklearn - Exercise.html 76 Bytes
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/013 Multiple Linear Regression - Exercise.html 76 Bytes
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/017 Feature Scaling (Standardization) - Exercise.html 76 Bytes
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/005 Dummies and Variance Inflation Factor - Exercise.html 76 Bytes
  • 0. Websites you may like/[GigaCourse.Com].url 49 Bytes
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table__en.srt 0 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!