MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCourseLab.com] Udemy - Deep Learning Advanced NLP and RNNs

磁力链接/BT种子名称

[FreeCourseLab.com] Udemy - Deep Learning Advanced NLP and RNNs

磁力链接/BT种子简介

种子哈希:c40f1f579e347f1c6ed6af07d470d5fb13a08680
文件大小: 3.01G
已经下载:1308次
下载速度:极快
收录时间:2021-03-26
最近下载:2025-09-05

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:C40F1F579E347F1C6ED6AF07D470D5FB13A08680
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 暗网Xvideo TikTok成人版 PornHub 听泉鉴鲍 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

小惜 Малина ariana marie 小巨巨乳 新游记 3645112 อาคารชุด+ทาวเวอร์+1+ออฟฟิศ 水木 spark fc2ppv+-+2671803 台北娜娜 儿子带着朋友和妈妈淫乱3p嗨皮 ipzz407 莫雪特 ▌茜茜▌ 表哥 山下沙和 娘と父親 fc2-ppv-4731382 jur-423 海员生活 黑美人 467 肛 李 真实睡奸 shinoda yuu uncensored 忠犬八公2023 真实空姐流出 万元定制

文件列表

  • 8. Appendix/2. Windows-Focused Environment Setup 2018.mp4 202.6 MB
  • 8. Appendix/3. How to How to install Numpy, Theano, Tensorflow, etc....mp4 174.5 MB
  • 2. Review/6. CNN Code (part 1).mp4 155.8 MB
  • 8. Appendix/10. What order should I take your courses in (part 2).mp4 128.6 MB
  • 8. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 121.5 MB
  • 5. Attention/5. Attention Code 1.mp4 104.8 MB
  • 8. Appendix/9. What order should I take your courses in (part 1).mp4 92.3 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/7. Seq2Seq in Code 1.mp4 88.4 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/5. Poetry Revisited Code 1.mp4 86.6 MB
  • 8. Appendix/6. How to Code by Yourself (part 1).mp4 86.1 MB
  • 6. Memory Networks/3. Memory Networks Code 1.mp4 83.5 MB
  • 8. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp4 82.1 MB
  • 5. Attention/8. Building a Chatbot without any more Code.mp4 79.9 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/6. Poetry Revisited Code 2.mp4 69.8 MB
  • 7. Basics Review/2. (Review) Keras Neural Network in Code.mp4 69.3 MB
  • 2. Review/4. What is a CNN.mp4 65.0 MB
  • 5. Attention/2. Attention Theory.mp4 64.8 MB
  • 2. Review/7. CNN Code (part 2).mp4 62.2 MB
  • 2. Review/2. What is a word embedding.mp4 60.3 MB
  • 2. Review/10. Different Types of RNN Tasks.mp4 59.5 MB
  • 2. Review/8. What is an RNN.mp4 59.4 MB
  • 8. Appendix/7. How to Code by Yourself (part 2).mp4 59.0 MB
  • 2. Review/11. A Simple RNN Experiment.mp4 58.7 MB
  • 6. Memory Networks/5. Memory Networks Code 3.mp4 58.6 MB
  • 6. Memory Networks/4. Memory Networks Code 2.mp4 56.2 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/8. Seq2Seq in Code 2.mp4 53.0 MB
  • 2. Review/9. GRUs and LSTMs.mp4 52.0 MB
  • 3. Bidirectional RNNs/2. Bidirectional RNN Experiment.mp4 51.1 MB
  • 3. Bidirectional RNNs/5. Image Classification Code.mp4 51.0 MB
  • 5. Attention/6. Attention Code 2.mp4 43.6 MB
  • 5. Attention/4. Helpful Implementation Details.mp4 42.9 MB
  • 6. Memory Networks/1. Memory Networks Section Introduction.mp4 41.1 MB
  • 8. Appendix/5. How to Succeed in this Course (Long Version).mp4 40.9 MB
  • 7. Basics Review/3. (Review) Keras Functional API.mp4 40.5 MB
  • 3. Bidirectional RNNs/1. Bidirectional RNNs Motivation.mp4 35.0 MB
  • 3. Bidirectional RNNs/4. Image Classification with Bidirectional RNNs.mp4 34.4 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/1. Seq2Seq Theory.mp4 34.1 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/3. Decoding in Detail and Teacher Forcing.mp4 32.6 MB
  • 2. Review/12. RNN Code.mp4 32.6 MB
  • 6. Memory Networks/2. Memory Networks Theory.mp4 31.9 MB
  • 7. Basics Review/1. (Review) Keras Discussion.mp4 29.0 MB
  • 2. Review/5. Where to get the data.mp4 28.5 MB
  • 3. Bidirectional RNNs/3. Bidirectional RNN Code.mp4 23.8 MB
  • 2. Review/1. Review Section Introduction.mp4 21.8 MB
  • 2. Review/13. Review Section Summary.mp4 20.6 MB
  • 1. Welcome/3. Where to get the code.mp4 20.5 MB
  • 8. Appendix/11. Python 2 vs Python 3.mp4 19.7 MB
  • 2. Review/3. Using word embeddings.mp4 19.6 MB
  • 8. Appendix/1. What is the Appendix.mp4 18.5 MB
  • 1. Welcome/4. How to Succeed in this Course.mp4 18.3 MB
  • 1. Welcome/2. Outline.mp4 16.9 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/2. Seq2Seq Applications.mp4 16.9 MB
  • 6. Memory Networks/6. Memory Networks Section Summary.mp4 16.9 MB
  • 1. Welcome/1. Introduction.mp4 15.1 MB
  • 3. Bidirectional RNNs/6. Bidirectional RNNs Section Summary.mp4 14.7 MB
  • 5. Attention/9. Attention Section Summary.mp4 14.6 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/9. Seq2Seq Section Summary.mp4 14.3 MB
  • 8. Appendix/12. BONUS Where to get discount coupons and FREE deep learning material.mp4 13.7 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/4. Poetry Revisited.mp4 13.1 MB
  • 5. Attention/7. Visualizing Attention.mp4 10.9 MB
  • 5. Attention/1. Attention Section Introduction.mp4 8.8 MB
  • 5. Attention/3. Teacher Forcing.mp4 7.5 MB
  • 8. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 28.6 kB
  • 5. Attention/2. Attention Theory.vtt 21.4 kB
  • 8. Appendix/10. What order should I take your courses in (part 2).vtt 20.8 kB
  • 8. Appendix/6. How to Code by Yourself (part 1).vtt 20.1 kB
  • 2. Review/6. CNN Code (part 1).vtt 17.9 kB
  • 8. Appendix/2. Windows-Focused Environment Setup 2018.vtt 17.8 kB
  • 2. Review/2. What is a word embedding.vtt 17.1 kB
  • 2. Review/4. What is a CNN.vtt 16.1 kB
  • 2. Review/8. What is an RNN.vtt 15.5 kB
  • 8. Appendix/9. What order should I take your courses in (part 1).vtt 14.5 kB
  • 2. Review/10. Different Types of RNN Tasks.vtt 13.8 kB
  • 5. Attention/4. Helpful Implementation Details.vtt 13.4 kB
  • 8. Appendix/5. How to Succeed in this Course (Long Version).vtt 13.1 kB
  • 8. Appendix/3. How to How to install Numpy, Theano, Tensorflow, etc....vtt 12.7 kB
  • 8. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.vtt 12.5 kB
  • 2. Review/9. GRUs and LSTMs.vtt 12.4 kB
  • 8. Appendix/7. How to Code by Yourself (part 2).vtt 11.9 kB
  • 6. Memory Networks/1. Memory Networks Section Introduction.vtt 11.3 kB
  • 6. Memory Networks/2. Memory Networks Theory.vtt 11.0 kB
  • 5. Attention/5. Attention Code 1.vtt 10.5 kB
  • 5. Attention/8. Building a Chatbot without any more Code.vtt 10.3 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/5. Poetry Revisited Code 1.vtt 9.7 kB
  • 3. Bidirectional RNNs/1. Bidirectional RNNs Motivation.vtt 9.5 kB
  • 6. Memory Networks/3. Memory Networks Code 1.vtt 8.6 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/7. Seq2Seq in Code 1.vtt 8.5 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/1. Seq2Seq Theory.vtt 8.3 kB
  • 7. Basics Review/1. (Review) Keras Discussion.vtt 8.2 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/3. Decoding in Detail and Teacher Forcing.vtt 7.7 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/6. Poetry Revisited Code 2.vtt 7.6 kB
  • 2. Review/7. CNN Code (part 2).vtt 7.1 kB
  • 3. Bidirectional RNNs/4. Image Classification with Bidirectional RNNs.vtt 6.9 kB
  • 2. Review/11. A Simple RNN Experiment.vtt 6.8 kB
  • 7. Basics Review/2. (Review) Keras Neural Network in Code.vtt 6.6 kB
  • 6. Memory Networks/5. Memory Networks Code 3.vtt 6.3 kB
  • 3. Bidirectional RNNs/5. Image Classification Code.vtt 6.0 kB
  • 1. Welcome/3. Where to get the code.vtt 5.9 kB
  • 2. Review/5. Where to get the data.vtt 5.8 kB
  • 2. Review/13. Review Section Summary.vtt 5.7 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/8. Seq2Seq in Code 2.vtt 5.5 kB
  • 2. Review/3. Using word embeddings.vtt 5.5 kB
  • 8. Appendix/11. Python 2 vs Python 3.vtt 5.5 kB
  • 2. Review/1. Review Section Introduction.vtt 5.4 kB
  • 1. Welcome/2. Outline.vtt 5.3 kB
  • 6. Memory Networks/4. Memory Networks Code 2.vtt 5.3 kB
  • 3. Bidirectional RNNs/2. Bidirectional RNN Experiment.vtt 5.3 kB
  • 7. Basics Review/3. (Review) Keras Functional API.vtt 4.8 kB
  • 6. Memory Networks/6. Memory Networks Section Summary.vtt 4.5 kB
  • 5. Attention/9. Attention Section Summary.vtt 4.0 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/2. Seq2Seq Applications.vtt 3.9 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/4. Poetry Revisited.vtt 3.8 kB
  • 2. Review/12. RNN Code.vtt 3.8 kB
  • 5. Attention/6. Attention Code 2.vtt 3.8 kB
  • 1. Welcome/4. How to Succeed in this Course.vtt 3.6 kB
  • 1. Welcome/1. Introduction.vtt 3.4 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/9. Seq2Seq Section Summary.vtt 3.4 kB
  • 8. Appendix/1. What is the Appendix.vtt 3.4 kB
  • 8. Appendix/12. BONUS Where to get discount coupons and FREE deep learning material.vtt 3.1 kB
  • 5. Attention/7. Visualizing Attention.vtt 2.8 kB
  • 3. Bidirectional RNNs/6. Bidirectional RNNs Section Summary.vtt 2.7 kB
  • 5. Attention/1. Attention Section Introduction.vtt 2.7 kB
  • 3. Bidirectional RNNs/3. Bidirectional RNN Code.vtt 2.5 kB
  • 5. Attention/3. Teacher Forcing.vtt 2.3 kB
  • [FreeCourseLab.com].url 126 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!