MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCourseLab.com] Udemy - Deep Learning Advanced NLP and RNNs

磁力链接/BT种子名称

[FreeCourseLab.com] Udemy - Deep Learning Advanced NLP and RNNs

磁力链接/BT种子简介

种子哈希:c40f1f579e347f1c6ed6af07d470d5fb13a08680
文件大小: 3.01G
已经下载:1285次
下载速度:极快
收录时间:2021-03-26
最近下载:2025-06-01

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:C40F1F579E347F1C6ED6AF07D470D5FB13A08680
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 TikTok成人版 PornHub 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

左野由真 拍摄过程 dani daniels +onlyfans+ 巨 定⻛波 娇娇妻 双侠 从无到有 舞会 你懂 酒店新台流出 景甜 全景 厕 佟丽娅 换脸 你别录了 成人用品 hegre.com 传媒国产新作 车模 2025 真实轮 找爸爸 ◆fanbox◆ 乖乖女 大便 厕全景 约炮学生妹, 한국녀 webrip 2025 后生

文件列表

  • 8. Appendix/2. Windows-Focused Environment Setup 2018.mp4 202.6 MB
  • 8. Appendix/3. How to How to install Numpy, Theano, Tensorflow, etc....mp4 174.5 MB
  • 2. Review/6. CNN Code (part 1).mp4 155.8 MB
  • 8. Appendix/10. What order should I take your courses in (part 2).mp4 128.6 MB
  • 8. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 121.5 MB
  • 5. Attention/5. Attention Code 1.mp4 104.8 MB
  • 8. Appendix/9. What order should I take your courses in (part 1).mp4 92.3 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/7. Seq2Seq in Code 1.mp4 88.4 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/5. Poetry Revisited Code 1.mp4 86.6 MB
  • 8. Appendix/6. How to Code by Yourself (part 1).mp4 86.1 MB
  • 6. Memory Networks/3. Memory Networks Code 1.mp4 83.5 MB
  • 8. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp4 82.1 MB
  • 5. Attention/8. Building a Chatbot without any more Code.mp4 79.9 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/6. Poetry Revisited Code 2.mp4 69.8 MB
  • 7. Basics Review/2. (Review) Keras Neural Network in Code.mp4 69.3 MB
  • 2. Review/4. What is a CNN.mp4 65.0 MB
  • 5. Attention/2. Attention Theory.mp4 64.8 MB
  • 2. Review/7. CNN Code (part 2).mp4 62.2 MB
  • 2. Review/2. What is a word embedding.mp4 60.3 MB
  • 2. Review/10. Different Types of RNN Tasks.mp4 59.5 MB
  • 2. Review/8. What is an RNN.mp4 59.4 MB
  • 8. Appendix/7. How to Code by Yourself (part 2).mp4 59.0 MB
  • 2. Review/11. A Simple RNN Experiment.mp4 58.7 MB
  • 6. Memory Networks/5. Memory Networks Code 3.mp4 58.6 MB
  • 6. Memory Networks/4. Memory Networks Code 2.mp4 56.2 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/8. Seq2Seq in Code 2.mp4 53.0 MB
  • 2. Review/9. GRUs and LSTMs.mp4 52.0 MB
  • 3. Bidirectional RNNs/2. Bidirectional RNN Experiment.mp4 51.1 MB
  • 3. Bidirectional RNNs/5. Image Classification Code.mp4 51.0 MB
  • 5. Attention/6. Attention Code 2.mp4 43.6 MB
  • 5. Attention/4. Helpful Implementation Details.mp4 42.9 MB
  • 6. Memory Networks/1. Memory Networks Section Introduction.mp4 41.1 MB
  • 8. Appendix/5. How to Succeed in this Course (Long Version).mp4 40.9 MB
  • 7. Basics Review/3. (Review) Keras Functional API.mp4 40.5 MB
  • 3. Bidirectional RNNs/1. Bidirectional RNNs Motivation.mp4 35.0 MB
  • 3. Bidirectional RNNs/4. Image Classification with Bidirectional RNNs.mp4 34.4 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/1. Seq2Seq Theory.mp4 34.1 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/3. Decoding in Detail and Teacher Forcing.mp4 32.6 MB
  • 2. Review/12. RNN Code.mp4 32.6 MB
  • 6. Memory Networks/2. Memory Networks Theory.mp4 31.9 MB
  • 7. Basics Review/1. (Review) Keras Discussion.mp4 29.0 MB
  • 2. Review/5. Where to get the data.mp4 28.5 MB
  • 3. Bidirectional RNNs/3. Bidirectional RNN Code.mp4 23.8 MB
  • 2. Review/1. Review Section Introduction.mp4 21.8 MB
  • 2. Review/13. Review Section Summary.mp4 20.6 MB
  • 1. Welcome/3. Where to get the code.mp4 20.5 MB
  • 8. Appendix/11. Python 2 vs Python 3.mp4 19.7 MB
  • 2. Review/3. Using word embeddings.mp4 19.6 MB
  • 8. Appendix/1. What is the Appendix.mp4 18.5 MB
  • 1. Welcome/4. How to Succeed in this Course.mp4 18.3 MB
  • 1. Welcome/2. Outline.mp4 16.9 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/2. Seq2Seq Applications.mp4 16.9 MB
  • 6. Memory Networks/6. Memory Networks Section Summary.mp4 16.9 MB
  • 1. Welcome/1. Introduction.mp4 15.1 MB
  • 3. Bidirectional RNNs/6. Bidirectional RNNs Section Summary.mp4 14.7 MB
  • 5. Attention/9. Attention Section Summary.mp4 14.6 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/9. Seq2Seq Section Summary.mp4 14.3 MB
  • 8. Appendix/12. BONUS Where to get discount coupons and FREE deep learning material.mp4 13.7 MB
  • 4. Sequence-to-sequence models (Seq2Seq)/4. Poetry Revisited.mp4 13.1 MB
  • 5. Attention/7. Visualizing Attention.mp4 10.9 MB
  • 5. Attention/1. Attention Section Introduction.mp4 8.8 MB
  • 5. Attention/3. Teacher Forcing.mp4 7.5 MB
  • 8. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 28.6 kB
  • 5. Attention/2. Attention Theory.vtt 21.4 kB
  • 8. Appendix/10. What order should I take your courses in (part 2).vtt 20.8 kB
  • 8. Appendix/6. How to Code by Yourself (part 1).vtt 20.1 kB
  • 2. Review/6. CNN Code (part 1).vtt 17.9 kB
  • 8. Appendix/2. Windows-Focused Environment Setup 2018.vtt 17.8 kB
  • 2. Review/2. What is a word embedding.vtt 17.1 kB
  • 2. Review/4. What is a CNN.vtt 16.1 kB
  • 2. Review/8. What is an RNN.vtt 15.5 kB
  • 8. Appendix/9. What order should I take your courses in (part 1).vtt 14.5 kB
  • 2. Review/10. Different Types of RNN Tasks.vtt 13.8 kB
  • 5. Attention/4. Helpful Implementation Details.vtt 13.4 kB
  • 8. Appendix/5. How to Succeed in this Course (Long Version).vtt 13.1 kB
  • 8. Appendix/3. How to How to install Numpy, Theano, Tensorflow, etc....vtt 12.7 kB
  • 8. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.vtt 12.5 kB
  • 2. Review/9. GRUs and LSTMs.vtt 12.4 kB
  • 8. Appendix/7. How to Code by Yourself (part 2).vtt 11.9 kB
  • 6. Memory Networks/1. Memory Networks Section Introduction.vtt 11.3 kB
  • 6. Memory Networks/2. Memory Networks Theory.vtt 11.0 kB
  • 5. Attention/5. Attention Code 1.vtt 10.5 kB
  • 5. Attention/8. Building a Chatbot without any more Code.vtt 10.3 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/5. Poetry Revisited Code 1.vtt 9.7 kB
  • 3. Bidirectional RNNs/1. Bidirectional RNNs Motivation.vtt 9.5 kB
  • 6. Memory Networks/3. Memory Networks Code 1.vtt 8.6 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/7. Seq2Seq in Code 1.vtt 8.5 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/1. Seq2Seq Theory.vtt 8.3 kB
  • 7. Basics Review/1. (Review) Keras Discussion.vtt 8.2 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/3. Decoding in Detail and Teacher Forcing.vtt 7.7 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/6. Poetry Revisited Code 2.vtt 7.6 kB
  • 2. Review/7. CNN Code (part 2).vtt 7.1 kB
  • 3. Bidirectional RNNs/4. Image Classification with Bidirectional RNNs.vtt 6.9 kB
  • 2. Review/11. A Simple RNN Experiment.vtt 6.8 kB
  • 7. Basics Review/2. (Review) Keras Neural Network in Code.vtt 6.6 kB
  • 6. Memory Networks/5. Memory Networks Code 3.vtt 6.3 kB
  • 3. Bidirectional RNNs/5. Image Classification Code.vtt 6.0 kB
  • 1. Welcome/3. Where to get the code.vtt 5.9 kB
  • 2. Review/5. Where to get the data.vtt 5.8 kB
  • 2. Review/13. Review Section Summary.vtt 5.7 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/8. Seq2Seq in Code 2.vtt 5.5 kB
  • 2. Review/3. Using word embeddings.vtt 5.5 kB
  • 8. Appendix/11. Python 2 vs Python 3.vtt 5.5 kB
  • 2. Review/1. Review Section Introduction.vtt 5.4 kB
  • 1. Welcome/2. Outline.vtt 5.3 kB
  • 6. Memory Networks/4. Memory Networks Code 2.vtt 5.3 kB
  • 3. Bidirectional RNNs/2. Bidirectional RNN Experiment.vtt 5.3 kB
  • 7. Basics Review/3. (Review) Keras Functional API.vtt 4.8 kB
  • 6. Memory Networks/6. Memory Networks Section Summary.vtt 4.5 kB
  • 5. Attention/9. Attention Section Summary.vtt 4.0 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/2. Seq2Seq Applications.vtt 3.9 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/4. Poetry Revisited.vtt 3.8 kB
  • 2. Review/12. RNN Code.vtt 3.8 kB
  • 5. Attention/6. Attention Code 2.vtt 3.8 kB
  • 1. Welcome/4. How to Succeed in this Course.vtt 3.6 kB
  • 1. Welcome/1. Introduction.vtt 3.4 kB
  • 4. Sequence-to-sequence models (Seq2Seq)/9. Seq2Seq Section Summary.vtt 3.4 kB
  • 8. Appendix/1. What is the Appendix.vtt 3.4 kB
  • 8. Appendix/12. BONUS Where to get discount coupons and FREE deep learning material.vtt 3.1 kB
  • 5. Attention/7. Visualizing Attention.vtt 2.8 kB
  • 3. Bidirectional RNNs/6. Bidirectional RNNs Section Summary.vtt 2.7 kB
  • 5. Attention/1. Attention Section Introduction.vtt 2.7 kB
  • 3. Bidirectional RNNs/3. Bidirectional RNN Code.vtt 2.5 kB
  • 5. Attention/3. Teacher Forcing.vtt 2.3 kB
  • [FreeCourseLab.com].url 126 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!