MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCourseLab.com] Udemy - Deep Learning Prerequisites Linear Regression in Python

磁力链接/BT种子名称

[FreeCourseLab.com] Udemy - Deep Learning Prerequisites Linear Regression in Python

磁力链接/BT种子简介

种子哈希:9eddd4119b64e840b18f625f301104cb21cce31f
文件大小:942.01M
已经下载:840次
下载速度:极快
收录时间:2021-03-23
最近下载:2025-07-07

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:9EDDD4119B64E840B18F625F301104CB21CCE31F
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 TikTok成人版 PornHub 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

七天复出 重度sm gate+1 the+office+-+season مستشفى+كليوباترا+6+اكتوبر +bryci+ 推油富婆 3+a.m+1975 8-13 the.wolverine.2013. paco 人妻 the gospel of john 2003 ipzz-586磁力 roxy.muray 肛塞丝袜 rs048 ssn snis uncensored 多女同 houseof 百万粉丝 yumi hunta-825 2160p uhd remux stocking.sex seduces the repairman for a creamy facial hawa 049 塞着跳蛋逛公园 各种人前露出,看看平时端庄高雅的人妻私下是什么样⚡绿帽淫妻大神分享娇妻 会喷水 the revenant 2015

文件列表

  • 6. Appendix/3. Windows-Focused Environment Setup 2018.mp4 195.3 MB
  • 6. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp4 82.1 MB
  • 1. Welcome/1. Welcome.mp4 52.1 MB
  • 6. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 46.1 MB
  • 6. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 40.9 MB
  • 6. Appendix/11. What order should I take your courses in (part 2).vtt 39.5 MB
  • 6. Appendix/11. What order should I take your courses in (part 2).mp4 39.4 MB
  • 3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.mp4 37.8 MB
  • 6. Appendix/10. What order should I take your courses in (part 1).mp4 30.7 MB
  • 2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.mp4 25.9 MB
  • 6. Appendix/5. How to Code by Yourself (part 1).mp4 25.7 MB
  • 4. Practical machine learning issues/11. Gradient Descent Tutorial.mp4 23.9 MB
  • 2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).mp4 20.3 MB
  • 6. Appendix/7. How to Succeed in this Course (Long Version).mp4 19.2 MB
  • 2. 1-D Linear Regression Theory and Code/7. Demonstrating Moore's Law in Code.mp4 18.3 MB
  • 4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.mp4 18.1 MB
  • 3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).mp4 17.2 MB
  • 3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.mp4 15.6 MB
  • 6. Appendix/6. How to Code by Yourself (part 2).mp4 15.5 MB
  • 2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.mp4 15.1 MB
  • 3. Multiple linear regression and polynomial regression/1. Define the multi-dimensional problem and derive the solution (Updated Version).mp4 15.1 MB
  • 3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.mp4 12.9 MB
  • 2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.mp4 11.9 MB
  • 4. Practical machine learning issues/1. What do all these letters mean.mp4 10.1 MB
  • 4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.mp4 8.9 MB
  • 1. Welcome/3. What is machine learning How does linear regression play a role.mp4 8.8 MB
  • 4. Practical machine learning issues/15. L1 Regularization - Code.mp4 8.7 MB
  • 4. Practical machine learning issues/5. Categorical inputs.mp4 8.6 MB
  • 4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.mp4 8.5 MB
  • 5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.mp4 8.5 MB
  • 4. Practical machine learning issues/9. L2 Regularization - Code.mp4 8.5 MB
  • 6. Appendix/12. Python 2 vs Python 3.mp4 8.2 MB
  • 5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.mp4 7.5 MB
  • 4. Practical machine learning issues/8. L2 Regularization - Theory.mp4 7.0 MB
  • 1. Welcome/2. Introduction and Outline.mp4 6.6 MB
  • 4. Practical machine learning issues/10. The Dummy Variable Trap.mp4 6.4 MB
  • 4. Practical machine learning issues/2. Interpreting the Weights.mp4 6.3 MB
  • 6. Appendix/1. What is the Appendix.mp4 5.7 MB
  • 4. Practical machine learning issues/16. L1 vs L2 Regularization.mp4 5.0 MB
  • 4. Practical machine learning issues/14. L1 Regularization - Theory.mp4 4.9 MB
  • 2. 1-D Linear Regression Theory and Code/6. R-squared in code.mp4 4.7 MB
  • 1. Welcome/4. Introduction to Moore's Law Problem.mp4 4.6 MB
  • 4. Practical machine learning issues/3. Generalization error, train and test sets.mp4 4.6 MB
  • 6. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4 4.2 MB
  • 4. Practical machine learning issues/6. One-Hot Encoding Quiz.mp4 4.0 MB
  • 4. Practical machine learning issues/12. Gradient Descent for Linear Regression.mp4 3.7 MB
  • 3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.mp4 3.7 MB
  • 1. Welcome/6. How to Succeed in this Course.mp4 3.5 MB
  • 3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.mp4 3.3 MB
  • 2. 1-D Linear Regression Theory and Code/8. R-squared Quiz 1.mp4 2.9 MB
  • 2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.mp4 1.1 MB
  • 6. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 28.4 kB
  • 6. Appendix/5. How to Code by Yourself (part 1).vtt 20.3 kB
  • 6. Appendix/3. Windows-Focused Environment Setup 2018.vtt 17.8 kB
  • 2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).vtt 14.7 kB
  • 6. Appendix/10. What order should I take your courses in (part 1).vtt 14.4 kB
  • 6. Appendix/7. How to Succeed in this Course (Long Version).vtt 13.1 kB
  • 6. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 12.7 kB
  • 6. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.vtt 12.5 kB
  • 6. Appendix/6. How to Code by Yourself (part 2).vtt 11.9 kB
  • 3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.vtt 11.6 kB
  • 3. Multiple linear regression and polynomial regression/1. Define the multi-dimensional problem and derive the solution (Updated Version).vtt 10.5 kB
  • 2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.vtt 9.8 kB
  • 4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.vtt 8.4 kB
  • 4. Practical machine learning issues/1. What do all these letters mean.vtt 7.2 kB
  • 2. 1-D Linear Regression Theory and Code/7. Demonstrating Moore's Law in Code.vtt 6.3 kB
  • 4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.vtt 5.8 kB
  • 6. Appendix/12. Python 2 vs Python 3.vtt 5.5 kB
  • 1. Welcome/2. Introduction and Outline.vtt 5.4 kB
  • 1. Welcome/3. What is machine learning How does linear regression play a role.vtt 5.4 kB
  • 5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.vtt 5.2 kB
  • 3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.vtt 5.0 kB
  • 2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.vtt 5.0 kB
  • 4. Practical machine learning issues/10. The Dummy Variable Trap.vtt 5.0 kB
  • 4. Practical machine learning issues/8. L2 Regularization - Theory.vtt 5.0 kB
  • 5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.vtt 4.9 kB
  • 4. Practical machine learning issues/11. Gradient Descent Tutorial.vtt 4.9 kB
  • 3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.vtt 4.6 kB
  • 4. Practical machine learning issues/5. Categorical inputs.vtt 4.4 kB
  • 3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).vtt 4.4 kB
  • 2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.vtt 4.2 kB
  • 1. Welcome/1. Welcome.vtt 4.1 kB
  • 4. Practical machine learning issues/16. L1 vs L2 Regularization.vtt 3.8 kB
  • 4. Practical machine learning issues/2. Interpreting the Weights.vtt 3.8 kB
  • 4. Practical machine learning issues/14. L1 Regularization - Theory.vtt 3.7 kB
  • 1. Welcome/6. How to Succeed in this Course.vtt 3.6 kB
  • 1. Welcome/4. Introduction to Moore's Law Problem.vtt 3.5 kB
  • 6. Appendix/1. What is the Appendix.vtt 3.4 kB
  • 4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.vtt 3.1 kB
  • 4. Practical machine learning issues/15. L1 Regularization - Code.vtt 3.1 kB
  • 6. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.vtt 3.1 kB
  • 4. Practical machine learning issues/9. L2 Regularization - Code.vtt 3.0 kB
  • 4. Practical machine learning issues/12. Gradient Descent for Linear Regression.vtt 2.8 kB
  • 4. Practical machine learning issues/3. Generalization error, train and test sets.vtt 2.6 kB
  • 3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.vtt 2.4 kB
  • 4. Practical machine learning issues/6. One-Hot Encoding Quiz.vtt 2.3 kB
  • 2. 1-D Linear Regression Theory and Code/8. R-squared Quiz 1.vtt 2.0 kB
  • 3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.vtt 1.9 kB
  • 2. 1-D Linear Regression Theory and Code/6. R-squared in code.vtt 1.5 kB
  • 2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.vtt 1.4 kB
  • 1. Welcome/5. What can linear regression be used for.html 143 Bytes
  • [FreeCourseLab.com].url 126 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!