MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[UdemyCourseDownloader] Data Science and Machine Learning Bootcamp with R

磁力链接/BT种子名称

[UdemyCourseDownloader] Data Science and Machine Learning Bootcamp with R

磁力链接/BT种子简介

种子哈希:9b2727c349d063e5b9aa1caebd14d6385fd4e26f
文件大小: 2.39G
已经下载:205次
下载速度:极快
收录时间:2021-05-21
最近下载:2025-05-24

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:9B2727C349D063E5B9AA1CAEBD14D6385FD4E26F
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 她趣 TikTok成人版 PornHub 听泉鉴鲍 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

bbk1 付费完整福利 md-0183 主播调教 酒店与炮友 nia 【网曝门事件】 一群小妹妹[ 一堆00 【真真】 播报 housewives-and-black-boys-sex-party-1080p 站立式 学妹制止 台湾极品 很多女同 小桃红 julia ann 姨妈 妈妈吹 界头 国产真人 请让一让 getting over a breakup 1080p 绯色 甜甜 翻白眼 九儿 推特 极品丰满 侄女西西 里罩 钓妹

文件列表

  • 18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.mp4 57.1 MB
  • 19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.mp4 50.9 MB
  • 21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.mp4 50.1 MB
  • 23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.mp4 49.7 MB
  • 14. Data Manipulation with R/8. Guide to Using Tidyr.mp4 49.4 MB
  • 20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.mp4 49.2 MB
  • 33. Machine Learning with R - Neural Nets/2. Neural Nets with R.mp4 48.5 MB
  • 20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.mp4 48.2 MB
  • 15. Data Visualization with R/2. Histograms.mp4 47.8 MB
  • 01. Course Introduction/4.1 R-Course-HTML-Notes.zip.zip 47.8 MB
  • 06. Development Environment Overview/2.1 R-Course-HTML-Notes.zip.zip 47.8 MB
  • 22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.mp4 42.9 MB
  • 24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.mp4 42.4 MB
  • 22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.mp4 41.5 MB
  • 15. Data Visualization with R/3. Scatterplots.mp4 39.4 MB
  • 12. R Programming Basics/10. Functions Training Exercise - Solutions.mp4 38.5 MB
  • 32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.mp4 37.4 MB
  • 12. R Programming Basics/8. Functions.mp4 36.8 MB
  • 18. Capstone Data Project/1. Introduction to Capstone Project.mp4 36.7 MB
  • 09. R Data Frames/5. Overview of Data Frame Operations - Part 2.mp4 35.8 MB
  • 21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.mp4 35.3 MB
  • 17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.mp4 35.2 MB
  • 27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.mp4 35.1 MB
  • 28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.mp4 34.6 MB
  • 31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.mp4 34.6 MB
  • 23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.mp4 34.4 MB
  • 16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.mp4 34.2 MB
  • 23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.mp4 33.7 MB
  • 16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.mp4 33.7 MB
  • 09. R Data Frames/4. Overview of Data Frame Operations - Part 1.mp4 31.9 MB
  • 09. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.mp4 30.4 MB
  • 26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.mp4 30.2 MB
  • 06. Development Environment Overview/3. Guide to RStudio.mp4 29.7 MB
  • 13. Advanced R Programming/3. Apply.mp4 29.4 MB
  • 21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.mp4 27.3 MB
  • 15. Data Visualization with R/10. ggplot2 Exercise Solutions.mp4 27.3 MB
  • 12. R Programming Basics/3. if, else, and else if Statements.mp4 27.2 MB
  • 06. Development Environment Overview/2. Course Notes.mp4 27.0 MB
  • 11. Data Input and Output with R/4. SQL with R.mp4 26.7 MB
  • 25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.mp4 26.4 MB
  • 14. Data Manipulation with R/2. Guide to Using Dplyr.mp4 26.4 MB
  • 08. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.mp4 25.8 MB
  • 11. Data Input and Output with R/3. Excel Files with R.mp4 25.3 MB
  • 29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.mp4 25.3 MB
  • 15. Data Visualization with R/7. Coordinates and Faceting.mp4 25.2 MB
  • 13. Advanced R Programming/6. Dates and Timestamps.mp4 25.2 MB
  • 12. R Programming Basics/7. For Loops.mp4 24.2 MB
  • 20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.mp4 23.9 MB
  • 12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.mp4 22.1 MB
  • 29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.mp4 22.1 MB
  • 04. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.mp4 21.9 MB
  • 34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.mp4 21.6 MB
  • 14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.mp4 21.5 MB
  • 15. Data Visualization with R/6. 2 Variable Plotting.mp4 21.4 MB
  • 22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.mp4 20.8 MB
  • 10. R Lists/1. List Basics.mp4 20.5 MB
  • 30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.mp4 20.1 MB
  • 08. R Matrices/2. Creating a Matrix.mp4 19.5 MB
  • 09. R Data Frames/2. Data Frame Basics.mp4 19.1 MB
  • 13. Advanced R Programming/2. Built-in R Features.mp4 18.9 MB
  • 03. Windows Installation Set-Up/1. Windows Installation Procedure.mp4 18.6 MB
  • 11. Data Input and Output with R/5. Web Scraping with R.mp4 18.2 MB
  • 09. R Data Frames/3. Data Frame Indexing and Selection.mp4 17.6 MB
  • 15. Data Visualization with R/4. Barplots.mp4 17.6 MB
  • 07. Introduction to R Basics/8. Vector Indexing and Slicing.mp4 16.8 MB
  • 08. R Matrices/6. Factor and Categorical Matrices.mp4 15.6 MB
  • 12. R Programming Basics/2. Logical Operators.mp4 15.2 MB
  • 15. Data Visualization with R/5. Boxplots.mp4 14.8 MB
  • 14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.vtt 14.5 MB
  • 14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.mp4 14.5 MB
  • 14. Data Manipulation with R/4. Pipe Operator.mp4 14.4 MB
  • 07. Introduction to R Basics/5. Vector Basics.mp4 14.3 MB
  • 07. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.mp4 13.4 MB
  • 01. Course Introduction/1. Introduction to Course.mp4 13.0 MB
  • 11. Data Input and Output with R/2. CSV Files with R.mp4 12.8 MB
  • 12. R Programming Basics/6. While Loops.mp4 12.6 MB
  • 15. Data Visualization with R/1. Overview of ggplot2.mp4 12.6 MB
  • 08. R Matrices/5. Matrix Selection and Indexing.mp4 12.4 MB
  • 25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.mp4 12.3 MB
  • 16. Data Visualization Project/1. Data Visualization Project.mp4 12.2 MB
  • 26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.mp4 11.8 MB
  • 15. Data Visualization with R/8. Themes.mp4 11.8 MB
  • 33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.mp4 11.8 MB
  • 08. R Matrices/4. Matrix Operations.mp4 11.3 MB
  • 07. Introduction to R Basics/7. Comparison Operators.mp4 11.2 MB
  • 32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.mp4 10.9 MB
  • 20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.mp4 10.7 MB
  • 23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.mp4 10.6 MB
  • 13. Advanced R Programming/5. Regular Expressions.mp4 10.2 MB
  • 29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.mp4 9.8 MB
  • 13. Advanced R Programming/4. Math Functions with R.mp4 9.7 MB
  • 27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.mp4 9.6 MB
  • 07. Introduction to R Basics/4. R Basic Data Types.mp4 9.5 MB
  • 07. Introduction to R Basics/3. Variables.mp4 9.4 MB
  • 30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.mp4 9.0 MB
  • 24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.mp4 8.9 MB
  • 27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.mp4 8.8 MB
  • 34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.mp4 8.8 MB
  • 28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.mp4 8.4 MB
  • 08. R Matrices/3. Matrix Arithmetic.mp4 8.2 MB
  • 07. Introduction to R Basics/2. Arithmetic in R.mp4 8.1 MB
  • 32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.mp4 7.9 MB
  • 07. Introduction to R Basics/6. Vector Operations.mp4 7.9 MB
  • 31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.mp4 7.6 MB
  • 01. Course Introduction/3. What is Data Science.mp4 7.4 MB
  • 15. Data Visualization with R/9. ggplot2 Exercises.mp4 7.0 MB
  • 12. R Programming Basics/9. Functions Training Exercise.mp4 7.0 MB
  • 01. Course Introduction/2. Course Curriculum.mp4 6.0 MB
  • 07. Introduction to R Basics/9. Getting Help with R and RStudio.mp4 5.9 MB
  • 07. Introduction to R Basics/1. Introduction to R Basics.mp4 5.9 MB
  • 07. Introduction to R Basics/10. R Basics Training Exercise.mp4 5.6 MB
  • 09. R Data Frames/6. Data Frame Training Exercise.mp4 4.5 MB
  • 12. R Programming Basics/4. Conditional Statements Training Exercise.mp4 3.6 MB
  • 08. R Matrices/7. Matrix Training Exercise.mp4 3.4 MB
  • 19. Introduction to Machine Learning with R/2.1 Machine Learning Slides.zip.zip 3.0 MB
  • 14. Data Manipulation with R/6. Dplyr Training Exercise.mp4 2.8 MB
  • 12. R Programming Basics/1. Introduction to Programming Basics.mp4 1.8 MB
  • 13. Advanced R Programming/1. Introduction to Advanced R Programming.mp4 1.7 MB
  • 08. R Matrices/1. Introduction to R Matrices.mp4 1.5 MB
  • 09. R Data Frames/1. Introduction to R Data Frames.mp4 1.4 MB
  • 14. Data Manipulation with R/1. Data Manipulation Overview.mp4 1.2 MB
  • 06. Development Environment Overview/1. Development Environment Overview.mp4 891.2 kB
  • 11. Data Input and Output with R/1. Introduction to Data Input and Output with R.mp4 890.6 kB
  • 33. Machine Learning with R - Neural Nets/2. Neural Nets with R.vtt 28.8 kB
  • 20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.vtt 27.4 kB
  • 18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.vtt 26.9 kB
  • 21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.vtt 26.7 kB
  • 12. R Programming Basics/10. Functions Training Exercise - Solutions.vtt 26.0 kB
  • 20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.vtt 25.7 kB
  • 22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.vtt 25.5 kB
  • 14. Data Manipulation with R/8. Guide to Using Tidyr.vtt 25.5 kB
  • 15. Data Visualization with R/2. Histograms.vtt 25.4 kB
  • 23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.vtt 25.3 kB
  • 19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.vtt 24.9 kB
  • 09. R Data Frames/5. Overview of Data Frame Operations - Part 2.vtt 24.4 kB
  • 12. R Programming Basics/8. Functions.vtt 23.8 kB
  • 24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.vtt 23.1 kB
  • 22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.vtt 22.7 kB
  • 09. R Data Frames/4. Overview of Data Frame Operations - Part 1.vtt 22.3 kB
  • 15. Data Visualization with R/3. Scatterplots.vtt 21.8 kB
  • 31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.vtt 21.4 kB
  • 27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.vtt 20.8 kB
  • 23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.vtt 19.8 kB
  • 28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.vtt 19.0 kB
  • 09. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.vtt 18.9 kB
  • 32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.vtt 18.5 kB
  • 13. Advanced R Programming/3. Apply.vtt 18.4 kB
  • 12. R Programming Basics/3. if, else, and else if Statements.vtt 18.1 kB
  • 23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.vtt 17.6 kB
  • 15. Data Visualization with R/10. ggplot2 Exercise Solutions.vtt 17.5 kB
  • 06. Development Environment Overview/3. Guide to RStudio.vtt 17.4 kB
  • 08. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.vtt 17.4 kB
  • 12. R Programming Basics/7. For Loops.vtt 16.4 kB
  • 14. Data Manipulation with R/2. Guide to Using Dplyr.vtt 16.3 kB
  • 11. Data Input and Output with R/3. Excel Files with R.vtt 16.1 kB
  • 12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.vtt 15.8 kB
  • 26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.vtt 15.6 kB
  • 22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.vtt 15.6 kB
  • 13. Advanced R Programming/6. Dates and Timestamps.vtt 15.2 kB
  • 16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.vtt 15.1 kB
  • 16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.vtt 15.0 kB
  • 11. Data Input and Output with R/4. SQL with R.vtt 14.8 kB
  • 20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.vtt 14.3 kB
  • 29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.vtt 14.1 kB
  • 21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.vtt 13.9 kB
  • 06. Development Environment Overview/2. Course Notes.vtt 13.5 kB
  • 08. R Matrices/2. Creating a Matrix.vtt 13.3 kB
  • 29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.vtt 13.1 kB
  • 14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.vtt 13.0 kB
  • 30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.vtt 12.9 kB
  • 21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.vtt 12.9 kB
  • 15. Data Visualization with R/7. Coordinates and Faceting.vtt 12.8 kB
  • 07. Introduction to R Basics/8. Vector Indexing and Slicing.vtt 12.8 kB
  • 25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.vtt 12.3 kB
  • 17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.vtt 12.1 kB
  • 18. Capstone Data Project/1. Introduction to Capstone Project.vtt 11.8 kB
  • 09. R Data Frames/3. Data Frame Indexing and Selection.vtt 11.7 kB
  • 10. R Lists/1. List Basics.vtt 11.7 kB
  • 13. Advanced R Programming/2. Built-in R Features.vtt 11.5 kB
  • 34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.vtt 11.3 kB
  • 09. R Data Frames/2. Data Frame Basics.vtt 10.9 kB
  • 15. Data Visualization with R/4. Barplots.vtt 10.6 kB
  • 08. R Matrices/6. Factor and Categorical Matrices.vtt 10.4 kB
  • 12. R Programming Basics/2. Logical Operators.vtt 10.3 kB
  • 15. Data Visualization with R/5. Boxplots.vtt 9.9 kB
  • 11. Data Input and Output with R/5. Web Scraping with R.vtt 9.6 kB
  • 15. Data Visualization with R/6. 2 Variable Plotting.vtt 9.5 kB
  • 12. R Programming Basics/6. While Loops.vtt 9.4 kB
  • 15. Data Visualization with R/1. Overview of ggplot2.vtt 9.4 kB
  • 07. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.vtt 9.3 kB
  • 03. Windows Installation Set-Up/1. Windows Installation Procedure.vtt 9.3 kB
  • 07. Introduction to R Basics/5. Vector Basics.vtt 9.2 kB
  • 08. R Matrices/5. Matrix Selection and Indexing.vtt 8.8 kB
  • 07. Introduction to R Basics/7. Comparison Operators.vtt 8.7 kB
  • 14. Data Manipulation with R/4. Pipe Operator.vtt 8.6 kB
  • 33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.vtt 8.6 kB
  • 26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.vtt 8.5 kB
  • 11. Data Input and Output with R/2. CSV Files with R.vtt 8.5 kB
  • 04. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.vtt 8.0 kB
  • 20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.vtt 7.5 kB
  • 15. Data Visualization with R/8. Themes.vtt 7.0 kB
  • 32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.vtt 7.0 kB
  • 08. R Matrices/4. Matrix Operations.vtt 7.0 kB
  • 07. Introduction to R Basics/4. R Basic Data Types.vtt 7.0 kB
  • 07. Introduction to R Basics/3. Variables.vtt 6.8 kB
  • 24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.vtt 6.6 kB
  • 27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.vtt 6.6 kB
  • 30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.vtt 6.5 kB
  • 13. Advanced R Programming/5. Regular Expressions.vtt 6.3 kB
  • 07. Introduction to R Basics/2. Arithmetic in R.vtt 6.0 kB
  • 08. R Matrices/3. Matrix Arithmetic.vtt 5.9 kB
  • 35. Bonus Section - Discounts for Other Courses/1. Bonus Lecture Coupons.html 5.9 kB
  • 07. Introduction to R Basics/6. Vector Operations.vtt 5.9 kB
  • 32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.vtt 5.7 kB
  • 28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.vtt 5.6 kB
  • 01. Course Introduction/3. What is Data Science.vtt 5.4 kB
  • 25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.vtt 4.9 kB
  • 13. Advanced R Programming/4. Math Functions with R.vtt 4.5 kB
  • 16. Data Visualization Project/1. Data Visualization Project.vtt 4.3 kB
  • 15. Data Visualization with R/9. ggplot2 Exercises.vtt 4.2 kB
  • 07. Introduction to R Basics/1. Introduction to R Basics.vtt 3.8 kB
  • 01. Course Introduction/1. Introduction to Course.vtt 3.7 kB
  • 29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.vtt 3.6 kB
  • 12. R Programming Basics/9. Functions Training Exercise.vtt 3.6 kB
  • 34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.vtt 3.3 kB
  • 07. Introduction to R Basics/10. R Basics Training Exercise.vtt 3.2 kB
  • 31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.vtt 3.2 kB
  • 01. Course Introduction/2. Course Curriculum.vtt 3.1 kB
  • 07. Introduction to R Basics/9. Getting Help with R and RStudio.vtt 3.1 kB
  • 23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.vtt 2.6 kB
  • 27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.vtt 2.6 kB
  • 12. R Programming Basics/4. Conditional Statements Training Exercise.vtt 2.3 kB
  • 02. Course Best Practices/1. How to Get Help in the Course!.html 2.0 kB
  • 14. Data Manipulation with R/6. Dplyr Training Exercise.vtt 1.8 kB
  • 09. R Data Frames/6. Data Frame Training Exercise.vtt 1.6 kB
  • 05. Linux Installation/1. LinuxUnbuntu Installation Procedure.html 1.5 kB
  • 12. R Programming Basics/1. Introduction to Programming Basics.vtt 1.5 kB
  • 08. R Matrices/7. Matrix Training Exercise.vtt 1.4 kB
  • 13. Advanced R Programming/1. Introduction to Advanced R Programming.vtt 1.4 kB
  • 01. Course Introduction/4. Course FAQ.html 1.3 kB
  • 08. R Matrices/1. Introduction to R Matrices.vtt 1.2 kB
  • 09. R Data Frames/1. Introduction to R Data Frames.vtt 1.0 kB
  • 17. Interactive Visualizations with Plotly/2. Resources for Plotly and ggplot2.html 962 Bytes
  • 14. Data Manipulation with R/1. Data Manipulation Overview.vtt 945 Bytes
  • 11. Data Input and Output with R/1. Introduction to Data Input and Output with R.vtt 462 Bytes
  • 06. Development Environment Overview/1. Development Environment Overview.vtt 451 Bytes
  • 19. Introduction to Machine Learning with R/1. ISLR PDF.html 393 Bytes
  • 02. Course Best Practices/3. Installation and Set-Up.html 335 Bytes
  • 14. Data Manipulation with R/5. Quick note on Dpylr exercise.html 309 Bytes
  • 02. Course Best Practices/2. Welcome to the Course..html 155 Bytes
  • udemycoursedownloader.com.url 132 Bytes
  • 08. R Matrices/4.1 Reference of Built-in Functions.html 117 Bytes
  • Udemy Course downloader.txt 94 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!