搜索
[UdemyCourseDownloader] Data Science and Machine Learning Bootcamp with R
磁力链接/BT种子名称
[UdemyCourseDownloader] Data Science and Machine Learning Bootcamp with R
磁力链接/BT种子简介
种子哈希:
9b2727c349d063e5b9aa1caebd14d6385fd4e26f
文件大小:
2.39G
已经下载:
205
次
下载速度:
极快
收录时间:
2021-05-21
最近下载:
2025-05-24
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:9B2727C349D063E5B9AA1CAEBD14D6385FD4E26F
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
她趣
TikTok成人版
PornHub
听泉鉴鲍
草榴社区
哆哔涩漫
呦乐园
萝莉岛
最近搜索
bbk1 付费完整福利
md-0183
主播调教
酒店与炮友
nia
【网曝门事件】
一群小妹妹[
一堆00
【真真】
播报
housewives-and-black-boys-sex-party-1080p
站立式
学妹制止
台湾极品
很多女同
小桃红
julia ann
姨妈
妈妈吹
界头
国产真人
请让一让
getting over a breakup 1080p
绯色
甜甜 翻白眼
九儿 推特
极品丰满
侄女西西
里罩
钓妹
文件列表
18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.mp4
57.1 MB
19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.mp4
50.9 MB
21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.mp4
50.1 MB
23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.mp4
49.7 MB
14. Data Manipulation with R/8. Guide to Using Tidyr.mp4
49.4 MB
20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.mp4
49.2 MB
33. Machine Learning with R - Neural Nets/2. Neural Nets with R.mp4
48.5 MB
20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.mp4
48.2 MB
15. Data Visualization with R/2. Histograms.mp4
47.8 MB
01. Course Introduction/4.1 R-Course-HTML-Notes.zip.zip
47.8 MB
06. Development Environment Overview/2.1 R-Course-HTML-Notes.zip.zip
47.8 MB
22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.mp4
42.9 MB
24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.mp4
42.4 MB
22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.mp4
41.5 MB
15. Data Visualization with R/3. Scatterplots.mp4
39.4 MB
12. R Programming Basics/10. Functions Training Exercise - Solutions.mp4
38.5 MB
32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.mp4
37.4 MB
12. R Programming Basics/8. Functions.mp4
36.8 MB
18. Capstone Data Project/1. Introduction to Capstone Project.mp4
36.7 MB
09. R Data Frames/5. Overview of Data Frame Operations - Part 2.mp4
35.8 MB
21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.mp4
35.3 MB
17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.mp4
35.2 MB
27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.mp4
35.1 MB
28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.mp4
34.6 MB
31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.mp4
34.6 MB
23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.mp4
34.4 MB
16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.mp4
34.2 MB
23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.mp4
33.7 MB
16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.mp4
33.7 MB
09. R Data Frames/4. Overview of Data Frame Operations - Part 1.mp4
31.9 MB
09. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.mp4
30.4 MB
26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.mp4
30.2 MB
06. Development Environment Overview/3. Guide to RStudio.mp4
29.7 MB
13. Advanced R Programming/3. Apply.mp4
29.4 MB
21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.mp4
27.3 MB
15. Data Visualization with R/10. ggplot2 Exercise Solutions.mp4
27.3 MB
12. R Programming Basics/3. if, else, and else if Statements.mp4
27.2 MB
06. Development Environment Overview/2. Course Notes.mp4
27.0 MB
11. Data Input and Output with R/4. SQL with R.mp4
26.7 MB
25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.mp4
26.4 MB
14. Data Manipulation with R/2. Guide to Using Dplyr.mp4
26.4 MB
08. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.mp4
25.8 MB
11. Data Input and Output with R/3. Excel Files with R.mp4
25.3 MB
29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.mp4
25.3 MB
15. Data Visualization with R/7. Coordinates and Faceting.mp4
25.2 MB
13. Advanced R Programming/6. Dates and Timestamps.mp4
25.2 MB
12. R Programming Basics/7. For Loops.mp4
24.2 MB
20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.mp4
23.9 MB
12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.mp4
22.1 MB
29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.mp4
22.1 MB
04. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.mp4
21.9 MB
34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.mp4
21.6 MB
14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.mp4
21.5 MB
15. Data Visualization with R/6. 2 Variable Plotting.mp4
21.4 MB
22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.mp4
20.8 MB
10. R Lists/1. List Basics.mp4
20.5 MB
30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.mp4
20.1 MB
08. R Matrices/2. Creating a Matrix.mp4
19.5 MB
09. R Data Frames/2. Data Frame Basics.mp4
19.1 MB
13. Advanced R Programming/2. Built-in R Features.mp4
18.9 MB
03. Windows Installation Set-Up/1. Windows Installation Procedure.mp4
18.6 MB
11. Data Input and Output with R/5. Web Scraping with R.mp4
18.2 MB
09. R Data Frames/3. Data Frame Indexing and Selection.mp4
17.6 MB
15. Data Visualization with R/4. Barplots.mp4
17.6 MB
07. Introduction to R Basics/8. Vector Indexing and Slicing.mp4
16.8 MB
08. R Matrices/6. Factor and Categorical Matrices.mp4
15.6 MB
12. R Programming Basics/2. Logical Operators.mp4
15.2 MB
15. Data Visualization with R/5. Boxplots.mp4
14.8 MB
14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.vtt
14.5 MB
14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.mp4
14.5 MB
14. Data Manipulation with R/4. Pipe Operator.mp4
14.4 MB
07. Introduction to R Basics/5. Vector Basics.mp4
14.3 MB
07. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.mp4
13.4 MB
01. Course Introduction/1. Introduction to Course.mp4
13.0 MB
11. Data Input and Output with R/2. CSV Files with R.mp4
12.8 MB
12. R Programming Basics/6. While Loops.mp4
12.6 MB
15. Data Visualization with R/1. Overview of ggplot2.mp4
12.6 MB
08. R Matrices/5. Matrix Selection and Indexing.mp4
12.4 MB
25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.mp4
12.3 MB
16. Data Visualization Project/1. Data Visualization Project.mp4
12.2 MB
26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.mp4
11.8 MB
15. Data Visualization with R/8. Themes.mp4
11.8 MB
33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.mp4
11.8 MB
08. R Matrices/4. Matrix Operations.mp4
11.3 MB
07. Introduction to R Basics/7. Comparison Operators.mp4
11.2 MB
32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.mp4
10.9 MB
20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.mp4
10.7 MB
23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.mp4
10.6 MB
13. Advanced R Programming/5. Regular Expressions.mp4
10.2 MB
29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.mp4
9.8 MB
13. Advanced R Programming/4. Math Functions with R.mp4
9.7 MB
27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.mp4
9.6 MB
07. Introduction to R Basics/4. R Basic Data Types.mp4
9.5 MB
07. Introduction to R Basics/3. Variables.mp4
9.4 MB
30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.mp4
9.0 MB
24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.mp4
8.9 MB
27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.mp4
8.8 MB
34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.mp4
8.8 MB
28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.mp4
8.4 MB
08. R Matrices/3. Matrix Arithmetic.mp4
8.2 MB
07. Introduction to R Basics/2. Arithmetic in R.mp4
8.1 MB
32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.mp4
7.9 MB
07. Introduction to R Basics/6. Vector Operations.mp4
7.9 MB
31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.mp4
7.6 MB
01. Course Introduction/3. What is Data Science.mp4
7.4 MB
15. Data Visualization with R/9. ggplot2 Exercises.mp4
7.0 MB
12. R Programming Basics/9. Functions Training Exercise.mp4
7.0 MB
01. Course Introduction/2. Course Curriculum.mp4
6.0 MB
07. Introduction to R Basics/9. Getting Help with R and RStudio.mp4
5.9 MB
07. Introduction to R Basics/1. Introduction to R Basics.mp4
5.9 MB
07. Introduction to R Basics/10. R Basics Training Exercise.mp4
5.6 MB
09. R Data Frames/6. Data Frame Training Exercise.mp4
4.5 MB
12. R Programming Basics/4. Conditional Statements Training Exercise.mp4
3.6 MB
08. R Matrices/7. Matrix Training Exercise.mp4
3.4 MB
19. Introduction to Machine Learning with R/2.1 Machine Learning Slides.zip.zip
3.0 MB
14. Data Manipulation with R/6. Dplyr Training Exercise.mp4
2.8 MB
12. R Programming Basics/1. Introduction to Programming Basics.mp4
1.8 MB
13. Advanced R Programming/1. Introduction to Advanced R Programming.mp4
1.7 MB
08. R Matrices/1. Introduction to R Matrices.mp4
1.5 MB
09. R Data Frames/1. Introduction to R Data Frames.mp4
1.4 MB
14. Data Manipulation with R/1. Data Manipulation Overview.mp4
1.2 MB
06. Development Environment Overview/1. Development Environment Overview.mp4
891.2 kB
11. Data Input and Output with R/1. Introduction to Data Input and Output with R.mp4
890.6 kB
33. Machine Learning with R - Neural Nets/2. Neural Nets with R.vtt
28.8 kB
20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.vtt
27.4 kB
18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.vtt
26.9 kB
21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.vtt
26.7 kB
12. R Programming Basics/10. Functions Training Exercise - Solutions.vtt
26.0 kB
20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.vtt
25.7 kB
22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.vtt
25.5 kB
14. Data Manipulation with R/8. Guide to Using Tidyr.vtt
25.5 kB
15. Data Visualization with R/2. Histograms.vtt
25.4 kB
23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.vtt
25.3 kB
19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.vtt
24.9 kB
09. R Data Frames/5. Overview of Data Frame Operations - Part 2.vtt
24.4 kB
12. R Programming Basics/8. Functions.vtt
23.8 kB
24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.vtt
23.1 kB
22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.vtt
22.7 kB
09. R Data Frames/4. Overview of Data Frame Operations - Part 1.vtt
22.3 kB
15. Data Visualization with R/3. Scatterplots.vtt
21.8 kB
31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.vtt
21.4 kB
27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.vtt
20.8 kB
23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.vtt
19.8 kB
28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.vtt
19.0 kB
09. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.vtt
18.9 kB
32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.vtt
18.5 kB
13. Advanced R Programming/3. Apply.vtt
18.4 kB
12. R Programming Basics/3. if, else, and else if Statements.vtt
18.1 kB
23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.vtt
17.6 kB
15. Data Visualization with R/10. ggplot2 Exercise Solutions.vtt
17.5 kB
06. Development Environment Overview/3. Guide to RStudio.vtt
17.4 kB
08. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.vtt
17.4 kB
12. R Programming Basics/7. For Loops.vtt
16.4 kB
14. Data Manipulation with R/2. Guide to Using Dplyr.vtt
16.3 kB
11. Data Input and Output with R/3. Excel Files with R.vtt
16.1 kB
12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.vtt
15.8 kB
26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.vtt
15.6 kB
22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.vtt
15.6 kB
13. Advanced R Programming/6. Dates and Timestamps.vtt
15.2 kB
16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.vtt
15.1 kB
16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.vtt
15.0 kB
11. Data Input and Output with R/4. SQL with R.vtt
14.8 kB
20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.vtt
14.3 kB
29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.vtt
14.1 kB
21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.vtt
13.9 kB
06. Development Environment Overview/2. Course Notes.vtt
13.5 kB
08. R Matrices/2. Creating a Matrix.vtt
13.3 kB
29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.vtt
13.1 kB
14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.vtt
13.0 kB
30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.vtt
12.9 kB
21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.vtt
12.9 kB
15. Data Visualization with R/7. Coordinates and Faceting.vtt
12.8 kB
07. Introduction to R Basics/8. Vector Indexing and Slicing.vtt
12.8 kB
25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.vtt
12.3 kB
17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.vtt
12.1 kB
18. Capstone Data Project/1. Introduction to Capstone Project.vtt
11.8 kB
09. R Data Frames/3. Data Frame Indexing and Selection.vtt
11.7 kB
10. R Lists/1. List Basics.vtt
11.7 kB
13. Advanced R Programming/2. Built-in R Features.vtt
11.5 kB
34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.vtt
11.3 kB
09. R Data Frames/2. Data Frame Basics.vtt
10.9 kB
15. Data Visualization with R/4. Barplots.vtt
10.6 kB
08. R Matrices/6. Factor and Categorical Matrices.vtt
10.4 kB
12. R Programming Basics/2. Logical Operators.vtt
10.3 kB
15. Data Visualization with R/5. Boxplots.vtt
9.9 kB
11. Data Input and Output with R/5. Web Scraping with R.vtt
9.6 kB
15. Data Visualization with R/6. 2 Variable Plotting.vtt
9.5 kB
12. R Programming Basics/6. While Loops.vtt
9.4 kB
15. Data Visualization with R/1. Overview of ggplot2.vtt
9.4 kB
07. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.vtt
9.3 kB
03. Windows Installation Set-Up/1. Windows Installation Procedure.vtt
9.3 kB
07. Introduction to R Basics/5. Vector Basics.vtt
9.2 kB
08. R Matrices/5. Matrix Selection and Indexing.vtt
8.8 kB
07. Introduction to R Basics/7. Comparison Operators.vtt
8.7 kB
14. Data Manipulation with R/4. Pipe Operator.vtt
8.6 kB
33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.vtt
8.6 kB
26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.vtt
8.5 kB
11. Data Input and Output with R/2. CSV Files with R.vtt
8.5 kB
04. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.vtt
8.0 kB
20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.vtt
7.5 kB
15. Data Visualization with R/8. Themes.vtt
7.0 kB
32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.vtt
7.0 kB
08. R Matrices/4. Matrix Operations.vtt
7.0 kB
07. Introduction to R Basics/4. R Basic Data Types.vtt
7.0 kB
07. Introduction to R Basics/3. Variables.vtt
6.8 kB
24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.vtt
6.6 kB
27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.vtt
6.6 kB
30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.vtt
6.5 kB
13. Advanced R Programming/5. Regular Expressions.vtt
6.3 kB
07. Introduction to R Basics/2. Arithmetic in R.vtt
6.0 kB
08. R Matrices/3. Matrix Arithmetic.vtt
5.9 kB
35. Bonus Section - Discounts for Other Courses/1. Bonus Lecture Coupons.html
5.9 kB
07. Introduction to R Basics/6. Vector Operations.vtt
5.9 kB
32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.vtt
5.7 kB
28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.vtt
5.6 kB
01. Course Introduction/3. What is Data Science.vtt
5.4 kB
25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.vtt
4.9 kB
13. Advanced R Programming/4. Math Functions with R.vtt
4.5 kB
16. Data Visualization Project/1. Data Visualization Project.vtt
4.3 kB
15. Data Visualization with R/9. ggplot2 Exercises.vtt
4.2 kB
07. Introduction to R Basics/1. Introduction to R Basics.vtt
3.8 kB
01. Course Introduction/1. Introduction to Course.vtt
3.7 kB
29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.vtt
3.6 kB
12. R Programming Basics/9. Functions Training Exercise.vtt
3.6 kB
34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.vtt
3.3 kB
07. Introduction to R Basics/10. R Basics Training Exercise.vtt
3.2 kB
31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.vtt
3.2 kB
01. Course Introduction/2. Course Curriculum.vtt
3.1 kB
07. Introduction to R Basics/9. Getting Help with R and RStudio.vtt
3.1 kB
23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.vtt
2.6 kB
27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.vtt
2.6 kB
12. R Programming Basics/4. Conditional Statements Training Exercise.vtt
2.3 kB
02. Course Best Practices/1. How to Get Help in the Course!.html
2.0 kB
14. Data Manipulation with R/6. Dplyr Training Exercise.vtt
1.8 kB
09. R Data Frames/6. Data Frame Training Exercise.vtt
1.6 kB
05. Linux Installation/1. LinuxUnbuntu Installation Procedure.html
1.5 kB
12. R Programming Basics/1. Introduction to Programming Basics.vtt
1.5 kB
08. R Matrices/7. Matrix Training Exercise.vtt
1.4 kB
13. Advanced R Programming/1. Introduction to Advanced R Programming.vtt
1.4 kB
01. Course Introduction/4. Course FAQ.html
1.3 kB
08. R Matrices/1. Introduction to R Matrices.vtt
1.2 kB
09. R Data Frames/1. Introduction to R Data Frames.vtt
1.0 kB
17. Interactive Visualizations with Plotly/2. Resources for Plotly and ggplot2.html
962 Bytes
14. Data Manipulation with R/1. Data Manipulation Overview.vtt
945 Bytes
11. Data Input and Output with R/1. Introduction to Data Input and Output with R.vtt
462 Bytes
06. Development Environment Overview/1. Development Environment Overview.vtt
451 Bytes
19. Introduction to Machine Learning with R/1. ISLR PDF.html
393 Bytes
02. Course Best Practices/3. Installation and Set-Up.html
335 Bytes
14. Data Manipulation with R/5. Quick note on Dpylr exercise.html
309 Bytes
02. Course Best Practices/2. Welcome to the Course..html
155 Bytes
udemycoursedownloader.com.url
132 Bytes
08. R Matrices/4.1 Reference of Built-in Functions.html
117 Bytes
Udemy Course downloader.txt
94 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!