MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[CourseClub.Me] Udacity - Data Analyst Nanodegree

磁力链接/BT种子名称

[CourseClub.Me] Udacity - Data Analyst Nanodegree

磁力链接/BT种子简介

种子哈希:88f80a1ad6a0ec4fe039cb7db5ff9574e8079842
文件大小: 9.77G
已经下载:2198次
下载速度:极快
收录时间:2021-03-09
最近下载:2025-08-25

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:88F80A1AD6A0EC4FE039CB7DB5FF9574E8079842
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 TikTok成人版 PornHub 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

大潮喷 老公不在 姬野 熊猫班多视角 566 上门小姐 早期 中国男人 系列种子 大尺 ts性感 mojo 디비디 顶级真实调教 车震内射肥穴 调教炮机 一不小心 还小 無碼 中文 日式 越南屠夫 洗澡啪啪 沈先森深夜场 姐毛性感 insidious lo 操小姨子 山鬼 转生成 量子危机

文件列表

  • Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-qRv1wrtgsmM.mp4 118.9 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-i3RTW83wI1Q.mp4 112.4 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.mp4 110.1 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/08. Coding 2-qEteyPNRSwU.mp4 109.7 MB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.mp4 92.2 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.mp4 59.4 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.mp4 53.6 MB
  • Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.mp4 52.2 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.mp4 52.0 MB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/05. Investigate A Dataset Project Walkthrough Final-OtDZCYxbHB4.mp4 51.8 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-cXluuqCVg18.mp4 44.2 MB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It-7IKqdW30GvQ.mp4 42.7 MB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.mp4 36.5 MB
  • Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.mp4 36.4 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-Uy89Ff49pRc.mp4 34.9 MB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.mp4 34.1 MB
  • Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.mp4 34.0 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.mp4 33.2 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.mp4 32.6 MB
  • Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.mp4 32.0 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.mp4 26.7 MB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.mp4 26.5 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.mp4 26.3 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.mp4 26.3 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.mp4 26.1 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.mp4 25.9 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.mp4 24.9 MB
  • Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.mp4 24.4 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.mp4 23.9 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.mp4 23.2 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.mp4 23.1 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.mp4 23.0 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.mp4 22.9 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.mp4 22.8 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.mp4 22.7 MB
  • Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.mp4 22.0 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.mp4 22.0 MB
  • Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.mp4 21.9 MB
  • Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.mp4 21.8 MB
  • Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.mp4 21.7 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.mp4 21.7 MB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.mp4 21.6 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview-wg535YU4jFw.mp4 21.3 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.mp4 21.3 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.mp4 21.1 MB
  • Part 02-Module 02-Lesson 01_Python Project/08. Classroom DAND-Explore US Bikeshare Data Walkthrough-0yuglNRWyKs.mp4 21.1 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.mp4 21.0 MB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.mp4 20.9 MB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.mp4 20.9 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.mp4 20.9 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.mp4 20.3 MB
  • Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.mp4 20.2 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.mp4 20.0 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.mp4 19.9 MB
  • Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.mp4 19.9 MB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/06. Explore And Summarize Data Walkthrough Final-_OwKKL6SI38.mp4 19.8 MB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.mp4 19.7 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.mp4 19.7 MB
  • Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.mp4 19.3 MB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.mp4 19.3 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.mp4 19.3 MB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure-Qb4o_4hCuyg.mp4 19.3 MB
  • Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.mp4 19.3 MB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.mp4 19.2 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.mp4 19.2 MB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.mp4 19.2 MB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.mp4 19.1 MB
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.mp4 19.0 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.mp4 18.9 MB
  • Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.mp4 18.5 MB
  • Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.mp4 18.4 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.mp4 18.4 MB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.mp4 18.2 MB
  • Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.mp4 18.2 MB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.mp4 18.2 MB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.mp4 18.2 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.mp4 18.1 MB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.mp4 18.1 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.mp4 18.1 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.mp4 18.1 MB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.mp4 17.8 MB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.mp4 17.8 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.mp4 17.7 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.mp4 17.6 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.mp4 17.6 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.mp4 17.5 MB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.mp4 17.5 MB
  • Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.mp4 17.5 MB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.mp4 17.4 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.mp4 17.3 MB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4 17.2 MB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/01. Sparta Science-MkjoaUmdOXc.mp4 17.1 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.mp4 17.0 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-R9AtVBq2Z5E.mp4 16.9 MB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative-29mkriaGT0E.mp4 16.9 MB
  • Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.mp4 16.9 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.mp4 16.7 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.mp4 16.7 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.mp4 16.7 MB
  • Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.mp4 16.7 MB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.mp4 16.7 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.mp4 16.6 MB
  • Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.mp4 16.5 MB
  • Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.mp4 16.3 MB
  • Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.mp4 16.2 MB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.mp4 16.2 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.mp4 16.2 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.mp4 16.1 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.mp4 16.1 MB
  • Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.mp4 16.1 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.mp4 16.0 MB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.mp4 16.0 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.mp4 15.9 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.mp4 15.9 MB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.mp4 15.8 MB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.mp4 15.7 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.mp4 15.7 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.mp4 15.7 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.mp4 15.6 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.mp4 15.4 MB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.mp4 15.3 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.mp4 15.3 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.mp4 15.3 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.mp4 15.3 MB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.mp4 15.3 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.mp4 15.2 MB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.mp4 15.1 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.mp4 15.1 MB
  • Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.mp4 15.1 MB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.mp4 15.1 MB
  • Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.mp4 15.0 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.mp4 14.9 MB
  • Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.mp4 14.7 MB
  • Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.mp4 14.6 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.mp4 14.6 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.mp4 14.5 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.mp4 14.5 MB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.mp4 14.4 MB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.mp4 14.4 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.mp4 14.3 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.mp4 14.3 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.mp4 14.1 MB
  • Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.mp4 14.0 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.mp4 14.0 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.mp4 14.0 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.mp4 14.0 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.mp4 14.0 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.mp4 13.9 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.mp4 13.9 MB
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.mp4 13.9 MB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.mp4 13.9 MB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.mp4 13.9 MB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.mp4 13.9 MB
  • Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.mp4 13.9 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4 13.8 MB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.mp4 13.7 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.mp4 13.6 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.mp4 13.6 MB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.mp4 13.5 MB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.mp4 13.5 MB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.mp4 13.5 MB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.mp4 13.5 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.mp4 13.5 MB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.mp4 13.4 MB
  • Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.mp4 13.3 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.mp4 13.3 MB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.mp4 13.3 MB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.mp4 13.3 MB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.mp4 13.3 MB
  • Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.mp4 13.2 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.mp4 13.2 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.mp4 13.2 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.mp4 13.1 MB
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.mp4 13.1 MB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company-CcTfHemUvbM.mp4 13.1 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.mp4 13.0 MB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.mp4 12.9 MB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.mp4 12.8 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.mp4 12.8 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.mp4 12.8 MB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.mp4 12.8 MB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.mp4 12.8 MB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.mp4 12.8 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.mp4 12.7 MB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.mp4 12.7 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.mp4 12.6 MB
  • Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.mp4 12.6 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.mp4 12.6 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.mp4 12.5 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/24. What If Our Sample Is Large-WoTCeSTL1eM.mp4 12.5 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.mp4 12.5 MB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.mp4 12.5 MB
  • Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.mp4 12.4 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.mp4 12.4 MB
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.mp4 12.4 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.mp4 12.4 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.mp4 12.3 MB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.mp4 12.3 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.mp4 12.2 MB
  • Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.mp4 12.2 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.mp4 12.1 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.mp4 12.1 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.mp4 12.1 MB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.mp4 12.1 MB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.mp4 12.1 MB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.mp4 12.1 MB
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.mp4 12.1 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.mp4 12.1 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types Of Errors - Part II-mbdSQ5CjdFs.mp4 12.0 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.mp4 12.0 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.mp4 12.0 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.mp4 12.0 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.mp4 12.0 MB
  • Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.mp4 12.0 MB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.mp4 11.9 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.mp4 11.9 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.mp4 11.8 MB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.mp4 11.8 MB
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.mp4 11.8 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.mp4 11.7 MB
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.mp4 11.6 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.mp4 11.6 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.mp4 11.6 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.mp4 11.5 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.mp4 11.5 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.mp4 11.5 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.mp4 11.5 MB
  • Part 18-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.mp4 11.4 MB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.mp4 11.3 MB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.mp4 11.3 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests-8hv8KnvQ6JY.mp4 11.3 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.mp4 11.3 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.mp4 11.3 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.mp4 11.3 MB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.mp4 11.3 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.mp4 11.3 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-pDELcPTP2BI.mp4 11.2 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.mp4 11.2 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.mp4 11.2 MB
  • Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.mp4 11.2 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.mp4 11.2 MB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.mp4 11.1 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.mp4 11.1 MB
  • Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.mp4 11.1 MB
  • Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.mp4 11.0 MB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.mp4 11.0 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.mp4 10.9 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.mp4 10.9 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.mp4 10.8 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.mp4 10.8 MB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.mp4 10.8 MB
  • Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.mp4 10.8 MB
  • Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.mp4 10.8 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.mp4 10.8 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.mp4 10.7 MB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.mp4 10.7 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.mp4 10.7 MB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Kaggle Project Final For Classroom-Ssttix340C8.mp4 10.6 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.mp4 10.6 MB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.mp4 10.6 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.mp4 10.6 MB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/12. Meet the Careers Team-cuKecPpZ7PM.mp4 10.6 MB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/13. Meet the Careers Team-cuKecPpZ7PM.mp4 10.6 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.mp4 10.6 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.mp4 10.6 MB
  • Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.mp4 10.5 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.mp4 10.5 MB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.mp4 10.5 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.mp4 10.4 MB
  • Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.mp4 10.4 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.mp4 10.4 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.mp4 10.4 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.mp4 10.3 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.mp4 10.3 MB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace-Aa9SFwiRbho.mp4 10.3 MB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.mp4 10.3 MB
  • Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.mp4 10.3 MB
  • Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.mp4 10.3 MB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/02. DSND Trailer Final-X2xQnb-bR8A.mp4 10.2 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.mp4 10.2 MB
  • Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.mp4 10.2 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.mp4 10.2 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.mp4 10.2 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.mp4 10.1 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.mp4 10.1 MB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.mp4 10.1 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.mp4 10.1 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.mp4 10.0 MB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.mp4 9.9 MB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.mp4 9.9 MB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.mp4 9.9 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.mp4 9.9 MB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.mp4 9.9 MB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.mp4 9.9 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.mp4 9.9 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-wkWDrSBBtz0.mp4 9.9 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.mp4 9.9 MB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.mp4 9.8 MB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.mp4 9.8 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.mp4 9.8 MB
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.mp4 9.8 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.mp4 9.8 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.mp4 9.7 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.mp4 9.7 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.mp4 9.7 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.mp4 9.7 MB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.mp4 9.6 MB
  • Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.mp4 9.6 MB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.mp4 9.5 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.mp4 9.5 MB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.mp4 9.5 MB
  • Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.mp4 9.5 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.mp4 9.4 MB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.mp4 9.4 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.mp4 9.4 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.mp4 9.4 MB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.mp4 9.3 MB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.mp4 9.3 MB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.mp4 9.3 MB
  • Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.mp4 9.3 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.mp4 9.2 MB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.mp4 9.2 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.mp4 9.1 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.mp4 9.1 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.mp4 9.1 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.mp4 9.1 MB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.mp4 9.1 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values-hFNjd5l9CLs.mp4 9.0 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.mp4 9.0 MB
  • Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.mp4 9.0 MB
  • Part 09-Module 01-Lesson 02_Design/13. Using Color-6bAedqD3ilw.mp4 8.9 MB
  • Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.mp4 8.8 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.mp4 8.8 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.mp4 8.7 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.mp4 8.7 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.mp4 8.7 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.mp4 8.7 MB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.mp4 8.6 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.mp4 8.6 MB
  • Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.mp4 8.6 MB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.mp4 8.6 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.mp4 8.6 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.mp4 8.6 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.mp4 8.6 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.mp4 8.6 MB
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.mp4 8.5 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.mp4 8.5 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.mp4 8.5 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.mp4 8.4 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.mp4 8.4 MB
  • Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.mp4 8.4 MB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.mp4 8.4 MB
  • Part 18-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.mp4 8.4 MB
  • Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.mp4 8.3 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.mp4 8.3 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.mp4 8.3 MB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.mp4 8.3 MB
  • Part 05-Module 01-Lesson 01_Congratulations & Next Steps/img/party-v1-1.gif 8.3 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.mp4 8.3 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.mp4 8.3 MB
  • Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.mp4 8.2 MB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.mp4 8.2 MB
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.mp4 8.2 MB
  • Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.mp4 8.1 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.mp4 8.1 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.mp4 8.1 MB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-resolve-merge-conflict.gif 8.1 MB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.mp4 8.1 MB
  • Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.mp4 8.1 MB
  • Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.mp4 8.1 MB
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.mp4 8.1 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses - Part II-nByvHz77GiA.mp4 8.0 MB
  • Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.mp4 8.0 MB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.mp4 8.0 MB
  • Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.mp4 8.0 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.mp4 8.0 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.mp4 8.0 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.mp4 8.0 MB
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.mp4 8.0 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.mp4 8.0 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.mp4 8.0 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.mp4 7.9 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.mp4 7.9 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.mp4 7.9 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.mp4 7.9 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.mp4 7.9 MB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.mp4 7.9 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.mp4 7.9 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.mp4 7.8 MB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.mp4 7.8 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.mp4 7.8 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions In Hypothesis Testing-I0Mo7hcxahY.mp4 7.8 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.mp4 7.8 MB
  • Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.mp4 7.8 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.mp4 7.8 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.mp4 7.8 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.mp4 7.7 MB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.mp4 7.7 MB
  • Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.mp4 7.7 MB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.mp4 7.7 MB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4 7.7 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Multiple Testing Corrections-DuMgeHrkIF0.mp4 7.7 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.mp4 7.7 MB
  • Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.mp4 7.7 MB
  • Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.mp4 7.6 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.mp4 7.6 MB
  • Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.mp4 7.6 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What Is A P-value Anyway-eU6pUZjqviA.mp4 7.6 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.mp4 7.6 MB
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.mp4 7.6 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.mp4 7.6 MB
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.mp4 7.6 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.mp4 7.6 MB
  • Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.mp4 7.6 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.mp4 7.6 MB
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.mp4 7.5 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.mp4 7.5 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.mp4 7.5 MB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.mp4 7.5 MB
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.mp4 7.4 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.mp4 7.4 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.mp4 7.4 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.mp4 7.4 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.mp4 7.4 MB
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.mp4 7.4 MB
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.mp4 7.3 MB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.mp4 7.3 MB
  • Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.mp4 7.3 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/26. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.mp4 7.3 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.mp4 7.3 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.mp4 7.3 MB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.mp4 7.3 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.mp4 7.3 MB
  • Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.mp4 7.3 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.mp4 7.2 MB
  • Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.mp4 7.2 MB
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.mp4 7.2 MB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.mp4 7.1 MB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.mp4 7.1 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.mp4 7.1 MB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.mp4 7.1 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.mp4 7.1 MB
  • Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.mp4 7.1 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.mp4 7.1 MB
  • Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.mp4 7.1 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.mp4 7.1 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.mp4 7.0 MB
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.mp4 7.0 MB
  • Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.mp4 7.0 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.mp4 7.0 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.mp4 7.0 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.mp4 7.0 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.mp4 7.0 MB
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.mp4 7.0 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.mp4 7.0 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.mp4 7.0 MB
  • Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.mp4 7.0 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.mp4 6.9 MB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.mp4 6.9 MB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.mp4 6.9 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.mp4 6.9 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.mp4 6.9 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.mp4 6.9 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.mp4 6.9 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.mp4 6.9 MB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.mp4 6.9 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.mp4 6.9 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.mp4 6.9 MB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.mp4 6.8 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.mp4 6.8 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.mp4 6.8 MB
  • Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.mp4 6.8 MB
  • Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.mp4 6.8 MB
  • Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.mp4 6.8 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.mp4 6.7 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.mp4 6.7 MB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.mp4 6.7 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.mp4 6.6 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.mp4 6.6 MB
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.mp4 6.6 MB
  • Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.mp4 6.6 MB
  • Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.mp4 6.6 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.mp4 6.6 MB
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.mp4 6.6 MB
  • Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.mp4 6.6 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.mp4 6.6 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.mp4 6.6 MB
  • Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.mp4 6.6 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.mp4 6.5 MB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.mp4 6.5 MB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.mp4 6.5 MB
  • Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.mp4 6.5 MB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.mp4 6.5 MB
  • Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.mp4 6.5 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 6.5 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 6.5 MB
  • Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.mp4 6.4 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.mp4 6.4 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.mp4 6.4 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.mp4 6.4 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.mp4 6.4 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.mp4 6.4 MB
  • Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.mp4 6.3 MB
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.mp4 6.3 MB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.mp4 6.3 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.mp4 6.3 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.mp4 6.3 MB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.mp4 6.3 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.mp4 6.3 MB
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.mp4 6.3 MB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.mp4 6.3 MB
  • Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.mp4 6.3 MB
  • Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.mp4 6.3 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.mp4 6.3 MB
  • Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.mp4 6.3 MB
  • Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.mp4 6.3 MB
  • Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.mp4 6.2 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.mp4 6.2 MB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.mp4 6.2 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.mp4 6.2 MB
  • Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.mp4 6.2 MB
  • Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.mp4 6.2 MB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4 6.2 MB
  • Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.mp4 6.2 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.mp4 6.2 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.mp4 6.2 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.mp4 6.2 MB
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.mp4 6.1 MB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.mp4 6.1 MB
  • Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.mp4 6.1 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.mp4 6.1 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.mp4 6.1 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/party.gif 6.1 MB
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.mp4 6.1 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.mp4 6.1 MB
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.mp4 6.0 MB
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.mp4 6.0 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.mp4 6.0 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.mp4 6.0 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.mp4 6.0 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.mp4 6.0 MB
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.mp4 6.0 MB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.mp4 6.0 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.mp4 5.9 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.mp4 5.9 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.mp4 5.9 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.mp4 5.9 MB
  • Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.mp4 5.9 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.mp4 5.9 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.mp4 5.9 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.mp4 5.9 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.mp4 5.9 MB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.mp4 5.9 MB
  • Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.mp4 5.9 MB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.mp4 5.9 MB
  • Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.mp4 5.9 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.mp4 5.9 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.mp4 5.8 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.mp4 5.8 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.mp4 5.8 MB
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.mp4 5.8 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.mp4 5.8 MB
  • Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.mp4 5.8 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.mp4 5.8 MB
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.mp4 5.8 MB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.mp4 5.7 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.mp4 5.7 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.mp4 5.7 MB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.mp4 5.7 MB
  • Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.mp4 5.7 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.mp4 5.7 MB
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.mp4 5.7 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.mp4 5.6 MB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.mp4 5.6 MB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.mp4 5.6 MB
  • Part 04-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.mp4 5.6 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.mp4 5.6 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.mp4 5.6 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.mp4 5.6 MB
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.mp4 5.6 MB
  • Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.mp4 5.6 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.mp4 5.6 MB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.mp4 5.6 MB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.mp4 5.6 MB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.mp4 5.6 MB
  • Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.mp4 5.6 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.mp4 5.6 MB
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.mp4 5.6 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.mp4 5.6 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.mp4 5.5 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.mp4 5.5 MB
  • Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.mp4 5.5 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.mp4 5.5 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.mp4 5.5 MB
  • Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.mp4 5.5 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.mp4 5.5 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.mp4 5.5 MB
  • Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.mp4 5.5 MB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.mp4 5.5 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.mp4 5.5 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.mp4 5.5 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.mp4 5.5 MB
  • Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.mp4 5.5 MB
  • Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.mp4 5.5 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.mp4 5.5 MB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.mp4 5.5 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.mp4 5.4 MB
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.mp4 5.4 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.mp4 5.4 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.mp4 5.4 MB
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.mp4 5.4 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.mp4 5.4 MB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.mp4 5.4 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.mp4 5.3 MB
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.mp4 5.3 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.mp4 5.3 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.mp4 5.3 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.mp4 5.3 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.mp4 5.3 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.mp4 5.3 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.mp4 5.3 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.mp4 5.3 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.mp4 5.3 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.mp4 5.3 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.mp4 5.3 MB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.mp4 5.3 MB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.mp4 5.3 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.mp4 5.3 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.mp4 5.3 MB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.mp4 5.3 MB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.mp4 5.2 MB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.mp4 5.2 MB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.mp4 5.2 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.mp4 5.2 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.mp4 5.2 MB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.mp4 5.1 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.mp4 5.1 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.mp4 5.1 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python-KS6cKoKe8ms.mp4 5.1 MB
  • Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.mp4 5.1 MB
  • Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.mp4 5.1 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.mp4 5.1 MB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.mp4 5.1 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/16. Outro-dps7Ti6Lado.mp4 5.1 MB
  • Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.mp4 5.1 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.mp4 5.1 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.mp4 5.1 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.mp4 5.1 MB
  • Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.mp4 5.0 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.mp4 5.0 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.mp4 5.0 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.mp4 5.0 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.mp4 5.0 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.mp4 5.0 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.mp4 5.0 MB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.mp4 5.0 MB
  • Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video-68EGMItJiNM.mp4 5.0 MB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.mp4 5.0 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.mp4 5.0 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.mp4 4.9 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.mp4 4.9 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.mp4 4.9 MB
  • Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.mp4 4.9 MB
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.mp4 4.9 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.mp4 4.9 MB
  • Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.mp4 4.9 MB
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.mp4 4.9 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.mp4 4.9 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.mp4 4.9 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.mp4 4.9 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.mp4 4.9 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.mp4 4.9 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.mp4 4.9 MB
  • Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.mp4 4.9 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.mp4 4.8 MB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.mp4 4.8 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.mp4 4.8 MB
  • Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.mp4 4.8 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Download Tableau Public-2bXsg6SKHG8.mp4 4.8 MB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.mp4 4.8 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.mp4 4.8 MB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.mp4 4.8 MB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.mp4 4.8 MB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.mp4 4.8 MB
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.mp4 4.8 MB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.mp4 4.8 MB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.mp4 4.8 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.mp4 4.8 MB
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.mp4 4.8 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.mp4 4.8 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.mp4 4.8 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.mp4 4.8 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.mp4 4.8 MB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.mp4 4.8 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.mp4 4.7 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.mp4 4.7 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.mp4 4.7 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Tableau Desktop Download-End96VkLQc4.mp4 4.7 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.mp4 4.7 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.mp4 4.7 MB
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.mp4 4.7 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.mp4 4.7 MB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.mp4 4.7 MB
  • Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.mp4 4.7 MB
  • Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.mp4 4.7 MB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.mp4 4.7 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.mp4 4.7 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.mp4 4.7 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.mp4 4.7 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.mp4 4.7 MB
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.mp4 4.7 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.mp4 4.7 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.mp4 4.7 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.mp4 4.6 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.mp4 4.6 MB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.mp4 4.6 MB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.mp4 4.6 MB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.mp4 4.6 MB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.mp4 4.6 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion-nQFchD4XPPs.mp4 4.6 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.mp4 4.6 MB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.mp4 4.6 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.mp4 4.6 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.mp4 4.6 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.mp4 4.6 MB
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.mp4 4.6 MB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.mp4 4.5 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.mp4 4.5 MB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.mp4 4.5 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.mp4 4.5 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.mp4 4.5 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.mp4 4.5 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.mp4 4.5 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.mp4 4.5 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.mp4 4.5 MB
  • Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.mp4 4.5 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.mp4 4.5 MB
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.mp4 4.5 MB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.mp4 4.5 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.mp4 4.5 MB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.mp4 4.4 MB
  • Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.mp4 4.4 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.mp4 4.4 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.mp4 4.4 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.mp4 4.4 MB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.mp4 4.4 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.mp4 4.4 MB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.mp4 4.4 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.mp4 4.4 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.mp4 4.4 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.mp4 4.4 MB
  • Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.mp4 4.4 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.mp4 4.4 MB
  • Part 04-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.mp4 4.4 MB
  • Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.mp4 4.4 MB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.mp4 4.4 MB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.mp4 4.4 MB
  • Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.mp4 4.4 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.mp4 4.4 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.mp4 4.4 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.mp4 4.4 MB
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.mp4 4.4 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.mp4 4.4 MB
  • Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.mp4 4.4 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.mp4 4.4 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.mp4 4.4 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.mp4 4.4 MB
  • Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.mp4 4.3 MB
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.mp4 4.3 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.mp4 4.3 MB
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.mp4 4.3 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.mp4 4.3 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.mp4 4.3 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.mp4 4.3 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.mp4 4.3 MB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.mp4 4.3 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.mp4 4.3 MB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.mp4 4.3 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.mp4 4.2 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.mp4 4.2 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.mp4 4.2 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.mp4 4.2 MB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.mp4 4.2 MB
  • Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.mp4 4.2 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.mp4 4.2 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.mp4 4.2 MB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.mp4 4.2 MB
  • Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.mp4 4.2 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.mp4 4.2 MB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.mp4 4.2 MB
  • Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.mp4 4.2 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.mp4 4.2 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.mp4 4.2 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.mp4 4.2 MB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.mp4 4.2 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.mp4 4.2 MB
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.mp4 4.1 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.mp4 4.1 MB
  • Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.mp4 4.1 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.mp4 4.1 MB
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.mp4 4.1 MB
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.mp4 4.1 MB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.mp4 4.1 MB
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.mp4 4.1 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4 4.1 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4 4.1 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4 4.1 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types Of Errors - Part III-Z-srkCPsdaM.mp4 4.1 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.mp4 4.1 MB
  • Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.mp4 4.1 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses-JkXTwS-5Daw.mp4 4.1 MB
  • Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.mp4 4.1 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.mp4 4.1 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.mp4 4.1 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.mp4 4.1 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.mp4 4.1 MB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.mp4 4.1 MB
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.mp4 4.1 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.mp4 4.1 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.mp4 4.0 MB
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.mp4 4.0 MB
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.mp4 4.0 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.mp4 4.0 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.mp4 4.0 MB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.mp4 4.0 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.mp4 4.0 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.mp4 4.0 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.mp4 4.0 MB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.mp4 4.0 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.mp4 4.0 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.mp4 4.0 MB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.mp4 4.0 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.mp4 4.0 MB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.mp4 4.0 MB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.mp4 4.0 MB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.mp4 4.0 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.mp4 4.0 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.mp4 4.0 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.mp4 4.0 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.mp4 4.0 MB
  • Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.mp4 4.0 MB
  • Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.mp4 4.0 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.mp4 4.0 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.mp4 4.0 MB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.mp4 4.0 MB
  • Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.mp4 4.0 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Simulating From the Null-sL2yJtHZd8Y.mp4 3.9 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.mp4 3.9 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.mp4 3.9 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.mp4 3.9 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.mp4 3.9 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.mp4 3.9 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.mp4 3.9 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.mp4 3.9 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.mp4 3.9 MB
  • Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.mp4 3.9 MB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.mp4 3.9 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.mp4 3.9 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.mp4 3.9 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.mp4 3.9 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.mp4 3.9 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.mp4 3.9 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.mp4 3.9 MB
  • Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.mp4 3.9 MB
  • Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.mp4 3.9 MB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.mp4 3.9 MB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.mp4 3.9 MB
  • Part 04-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.mp4 3.9 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.mp4 3.9 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.mp4 3.8 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.mp4 3.8 MB
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.mp4 3.8 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.mp4 3.8 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.mp4 3.8 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.mp4 3.8 MB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.mp4 3.8 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Calculating the p-value-_W3Jg7jQ8jI.mp4 3.8 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.mp4 3.8 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.mp4 3.8 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.mp4 3.8 MB
  • Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.mp4 3.8 MB
  • Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.mp4 3.8 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.mp4 3.8 MB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.mp4 3.8 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.mp4 3.8 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.mp4 3.8 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.mp4 3.8 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.mp4 3.8 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.mp4 3.8 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.mp4 3.7 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.mp4 3.7 MB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.mp4 3.7 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.mp4 3.7 MB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.mp4 3.7 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.mp4 3.7 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.mp4 3.7 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.mp4 3.7 MB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.mp4 3.7 MB
  • Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.mp4 3.7 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.mp4 3.7 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.mp4 3.7 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.mp4 3.7 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.mp4 3.7 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.mp4 3.7 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.mp4 3.7 MB
  • Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.mp4 3.7 MB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.mp4 3.7 MB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/01. DAND 01 Congrats V1-QS1jKmZWdTk.mp4 3.7 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.mp4 3.6 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.mp4 3.6 MB
  • Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.mp4 3.6 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.mp4 3.6 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.mp4 3.6 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.mp4 3.6 MB
  • Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.mp4 3.6 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.mp4 3.6 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.mp4 3.6 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.mp4 3.6 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.mp4 3.6 MB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.mp4 3.6 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.mp4 3.6 MB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.mp4 3.6 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.mp4 3.6 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.mp4 3.6 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.mp4 3.6 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.mp4 3.6 MB
  • Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.mp4 3.5 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.mp4 3.5 MB
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.mp4 3.5 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.mp4 3.5 MB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.mp4 3.5 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.mp4 3.5 MB
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.mp4 3.5 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.mp4 3.5 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.mp4 3.5 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.mp4 3.5 MB
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.mp4 3.5 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.mp4 3.5 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.mp4 3.5 MB
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.mp4 3.5 MB
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.mp4 3.5 MB
  • Part 04-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.mp4 3.5 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.mp4 3.5 MB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.mp4 3.5 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.mp4 3.5 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.mp4 3.5 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.mp4 3.5 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.mp4 3.4 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.mp4 3.4 MB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.mp4 3.4 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.mp4 3.4 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.mp4 3.4 MB
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.mp4 3.4 MB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.mp4 3.4 MB
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.mp4 3.4 MB
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.mp4 3.4 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.mp4 3.4 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.mp4 3.4 MB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.mp4 3.4 MB
  • Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.mp4 3.4 MB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.mp4 3.4 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.mp4 3.4 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.mp4 3.4 MB
  • Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.mp4 3.4 MB
  • Part 04-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.mp4 3.4 MB
  • Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.mp4 3.4 MB
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.mp4 3.3 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.mp4 3.3 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.mp4 3.3 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.mp4 3.3 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.mp4 3.3 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.mp4 3.3 MB
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.mp4 3.3 MB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.mp4 3.3 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.mp4 3.3 MB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.mp4 3.3 MB
  • Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.mp4 3.3 MB
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.mp4 3.3 MB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.mp4 3.3 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.mp4 3.3 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.mp4 3.3 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.mp4 3.3 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.mp4 3.3 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.mp4 3.3 MB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.mp4 3.3 MB
  • Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.mp4 3.3 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.mp4 3.2 MB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.mp4 3.2 MB
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.mp4 3.2 MB
  • Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.mp4 3.2 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.mp4 3.2 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types Of Errors - Part I-aw6GMxIvENc.mp4 3.2 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.mp4 3.2 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.mp4 3.2 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.mp4 3.2 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.mp4 3.2 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.mp4 3.2 MB
  • Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.mp4 3.2 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.mp4 3.2 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.mp4 3.2 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.mp4 3.2 MB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Instructor Introduction Charlie And Phillip-8ar0mETDrZw.mp4 3.2 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.mp4 3.2 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.mp4 3.1 MB
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.mp4 3.1 MB
  • Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.mp4 3.1 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.mp4 3.1 MB
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.mp4 3.1 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.mp4 3.1 MB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.mp4 3.1 MB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.mp4 3.1 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.mp4 3.1 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.mp4 3.1 MB
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.mp4 3.1 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.mp4 3.1 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.mp4 3.1 MB
  • Part 04-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.mp4 3.1 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.mp4 3.1 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.mp4 3.1 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.mp4 3.1 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.mp4 3.0 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.mp4 3.0 MB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.mp4 3.0 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.mp4 3.0 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.mp4 3.0 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.mp4 3.0 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.mp4 3.0 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.mp4 3.0 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.mp4 3.0 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.mp4 3.0 MB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.mp4 3.0 MB
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.mp4 3.0 MB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.mp4 3.0 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.mp4 3.0 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.mp4 3.0 MB
  • Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.mp4 3.0 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.mp4 3.0 MB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.mp4 3.0 MB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.mp4 3.0 MB
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.mp4 3.0 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.mp4 3.0 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.mp4 3.0 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.mp4 3.0 MB
  • Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.mp4 3.0 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.mp4 3.0 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.mp4 2.9 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.mp4 2.9 MB
  • Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.mp4 2.9 MB
  • Part 04-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.mp4 2.9 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.mp4 2.9 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.mp4 2.9 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.mp4 2.9 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.mp4 2.9 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.mp4 2.9 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.mp4 2.9 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.mp4 2.9 MB
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.mp4 2.9 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.mp4 2.9 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.mp4 2.9 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.mp4 2.9 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.mp4 2.9 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.mp4 2.9 MB
  • Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.mp4 2.9 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.mp4 2.9 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.mp4 2.9 MB
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.mp4 2.9 MB
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.mp4 2.9 MB
  • Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.mp4 2.9 MB
  • Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.mp4 2.9 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.mp4 2.9 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.mp4 2.9 MB
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.mp4 2.9 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.mp4 2.9 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.mp4 2.9 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.mp4 2.9 MB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.mp4 2.9 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.mp4 2.8 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.mp4 2.8 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.mp4 2.8 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.mp4 2.8 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.mp4 2.8 MB
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.mp4 2.8 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.mp4 2.8 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.mp4 2.8 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.mp4 2.8 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.mp4 2.8 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.mp4 2.8 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.mp4 2.8 MB
  • Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.mp4 2.8 MB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.mp4 2.8 MB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.mp4 2.8 MB
  • Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.mp4 2.8 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.mp4 2.8 MB
  • Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.mp4 2.8 MB
  • Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.mp4 2.8 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.mp4 2.8 MB
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.mp4 2.8 MB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.mp4 2.8 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.mp4 2.8 MB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.mp4 2.7 MB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.mp4 2.7 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.mp4 2.7 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.mp4 2.7 MB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.mp4 2.7 MB
  • Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.mp4 2.7 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.mp4 2.7 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.mp4 2.7 MB
  • Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.mp4 2.7 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.mp4 2.7 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.mp4 2.7 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.mp4 2.7 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.mp4 2.7 MB
  • Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.mp4 2.7 MB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.mp4 2.7 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.mp4 2.7 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.mp4 2.7 MB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.mp4 2.7 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.mp4 2.7 MB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.mp4 2.6 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.mp4 2.6 MB
  • Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.mp4 2.6 MB
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.mp4 2.6 MB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.mp4 2.6 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.mp4 2.6 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.mp4 2.6 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.mp4 2.6 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.mp4 2.6 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.mp4 2.6 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.mp4 2.6 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.mp4 2.6 MB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/13. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.mp4 2.6 MB
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.mp4 2.6 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.mp4 2.6 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.mp4 2.6 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.mp4 2.6 MB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.mp4 2.6 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.mp4 2.6 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.mp4 2.6 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.mp4 2.6 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.mp4 2.6 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.mp4 2.6 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.mp4 2.5 MB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.mp4 2.5 MB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.mp4 2.5 MB
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.mp4 2.5 MB
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.mp4 2.5 MB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.mp4 2.5 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.mp4 2.5 MB
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.mp4 2.5 MB
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.mp4 2.5 MB
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.mp4 2.5 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.mp4 2.5 MB
  • Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.mp4 2.5 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.mp4 2.5 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.mp4 2.5 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.mp4 2.5 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.mp4 2.5 MB
  • Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.mp4 2.5 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.mp4 2.5 MB
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.mp4 2.5 MB
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.mp4 2.5 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.mp4 2.5 MB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.mp4 2.5 MB
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.mp4 2.5 MB
  • Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.mp4 2.4 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.mp4 2.4 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.mp4 2.4 MB
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.mp4 2.4 MB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.mp4 2.4 MB
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.mp4 2.4 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.mp4 2.4 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.mp4 2.4 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.mp4 2.4 MB
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.mp4 2.4 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.mp4 2.4 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.mp4 2.4 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.mp4 2.4 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.mp4 2.4 MB
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.mp4 2.4 MB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.mp4 2.4 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.mp4 2.4 MB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.mp4 2.4 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.mp4 2.4 MB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.mp4 2.4 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.mp4 2.4 MB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.mp4 2.3 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.mp4 2.3 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.mp4 2.3 MB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.mp4 2.3 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.mp4 2.3 MB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.mp4 2.3 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.mp4 2.3 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.mp4 2.3 MB
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.mp4 2.3 MB
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.mp4 2.3 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.mp4 2.3 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.mp4 2.3 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.mp4 2.3 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.mp4 2.3 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.mp4 2.3 MB
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.mp4 2.3 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.mp4 2.3 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.mp4 2.3 MB
  • Part 04-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.mp4 2.3 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.mp4 2.3 MB
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.mp4 2.3 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.mp4 2.2 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.mp4 2.2 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.mp4 2.2 MB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.mp4 2.2 MB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.mp4 2.2 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.mp4 2.2 MB
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.mp4 2.2 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.mp4 2.2 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.mp4 2.2 MB
  • Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.mp4 2.2 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.mp4 2.2 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.mp4 2.2 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.mp4 2.2 MB
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.mp4 2.2 MB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.mp4 2.2 MB
  • Part 04-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.mp4 2.2 MB
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.mp4 2.2 MB
  • Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.mp4 2.2 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.mp4 2.2 MB
  • Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.mp4 2.2 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.mp4 2.2 MB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.mp4 2.2 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.mp4 2.2 MB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.mp4 2.2 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.mp4 2.2 MB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.mp4 2.2 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.mp4 2.2 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.mp4 2.2 MB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.mp4 2.2 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.mp4 2.2 MB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.mp4 2.2 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.mp4 2.1 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.mp4 2.1 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.mp4 2.1 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.mp4 2.1 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.mp4 2.1 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.mp4 2.1 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.mp4 2.1 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.mp4 2.1 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.mp4 2.1 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.mp4 2.1 MB
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.mp4 2.1 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.mp4 2.1 MB
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.mp4 2.1 MB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-add-to-staging-recap.gif 2.1 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.mp4 2.1 MB
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.mp4 2.1 MB
  • Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.mp4 2.1 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.mp4 2.1 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.mp4 2.1 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.mp4 2.0 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.mp4 2.0 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.mp4 2.0 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.mp4 2.0 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.mp4 2.0 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.mp4 2.0 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.mp4 2.0 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.mp4 2.0 MB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.mp4 2.0 MB
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.mp4 2.0 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.mp4 2.0 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.mp4 2.0 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.mp4 2.0 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.mp4 2.0 MB
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.mp4 2.0 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.mp4 2.0 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.mp4 2.0 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.mp4 2.0 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.mp4 2.0 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.mp4 2.0 MB
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.mp4 2.0 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.mp4 1.9 MB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.mp4 1.9 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.mp4 1.9 MB
  • Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.mp4 1.9 MB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.mp4 1.9 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.mp4 1.9 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.mp4 1.9 MB
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.mp4 1.9 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.mp4 1.9 MB
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.mp4 1.9 MB
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.mp4 1.9 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.mp4 1.9 MB
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.mp4 1.9 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.mp4 1.9 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.mp4 1.9 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.mp4 1.9 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.mp4 1.9 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.mp4 1.9 MB
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.mp4 1.9 MB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.mp4 1.9 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.mp4 1.9 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.mp4 1.9 MB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/wave.gif 1.9 MB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/wave.gif 1.9 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.mp4 1.8 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.mp4 1.8 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.mp4 1.8 MB
  • Part 15-Module 02-Lesson 05_Trees/13. BST Complications-pcB0wV7myy4.mp4 1.8 MB
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.mp4 1.8 MB
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.mp4 1.8 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.mp4 1.8 MB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.mp4 1.8 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.mp4 1.8 MB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.mp4 1.8 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.mp4 1.8 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.mp4 1.8 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.mp4 1.8 MB
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.mp4 1.8 MB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.mp4 1.8 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.mp4 1.8 MB
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.mp4 1.8 MB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.mp4 1.8 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.mp4 1.8 MB
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.mp4 1.8 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.mp4 1.8 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.mp4 1.8 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.mp4 1.8 MB
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.mp4 1.8 MB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.mp4 1.7 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.mp4 1.7 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.mp4 1.7 MB
  • Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.mp4 1.7 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.mp4 1.7 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.mp4 1.7 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.mp4 1.7 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.mp4 1.7 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.mp4 1.7 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.mp4 1.7 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.mp4 1.7 MB
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.mp4 1.7 MB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.mp4 1.7 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.mp4 1.7 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.mp4 1.7 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.mp4 1.7 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4 1.7 MB
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.mp4 1.7 MB
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.mp4 1.7 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.mp4 1.7 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.mp4 1.7 MB
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.mp4 1.7 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.mp4 1.7 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.mp4 1.7 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.mp4 1.6 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.mp4 1.6 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.mp4 1.6 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.mp4 1.6 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.mp4 1.6 MB
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.mp4 1.6 MB
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.mp4 1.6 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.mp4 1.6 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.mp4 1.6 MB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.mp4 1.6 MB
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.mp4 1.6 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.mp4 1.6 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.mp4 1.6 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.mp4 1.6 MB
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.mp4 1.6 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.mp4 1.6 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.mp4 1.6 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.mp4 1.6 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.mp4 1.6 MB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.mp4 1.6 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.mp4 1.6 MB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.mp4 1.5 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.mp4 1.5 MB
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.mp4 1.5 MB
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.mp4 1.5 MB
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.mp4 1.5 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.mp4 1.5 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.mp4 1.5 MB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.mp4 1.5 MB
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.mp4 1.5 MB
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.mp4 1.5 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.mp4 1.5 MB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.mp4 1.5 MB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.mp4 1.5 MB
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.mp4 1.5 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.mp4 1.5 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.mp4 1.5 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.mp4 1.5 MB
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.mp4 1.5 MB
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.mp4 1.5 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.mp4 1.4 MB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.mp4 1.4 MB
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.mp4 1.4 MB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.mp4 1.4 MB
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.mp4 1.4 MB
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.mp4 1.4 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.mp4 1.4 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.mp4 1.4 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.mp4 1.4 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.mp4 1.4 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.mp4 1.4 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.mp4 1.4 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.mp4 1.4 MB
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.mp4 1.4 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.mp4 1.4 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.mp4 1.4 MB
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.mp4 1.4 MB
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.mp4 1.4 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.mp4 1.4 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.mp4 1.4 MB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.mp4 1.3 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.mp4 1.3 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.mp4 1.3 MB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.mp4 1.3 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.mp4 1.3 MB
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.mp4 1.3 MB
  • Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.mp4 1.3 MB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.mp4 1.3 MB
  • Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.mp4 1.3 MB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.mp4 1.3 MB
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.mp4 1.3 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.mp4 1.3 MB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/dogtionary-combined.png 1.3 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.mp4 1.3 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.mp4 1.3 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.mp4 1.3 MB
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.mp4 1.3 MB
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.mp4 1.3 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.mp4 1.3 MB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.mp4 1.3 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.mp4 1.3 MB
  • Part 12-Module 01-Lesson 01_GitHub Review/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 13-Module 01-Lesson 02_LinkedIn Review/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 15-Module 01-Lesson 05_Interview Practice/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.3 MB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.mp4 1.3 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.mp4 1.2 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.mp4 1.2 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.mp4 1.2 MB
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.mp4 1.2 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.mp4 1.2 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.mp4 1.2 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.mp4 1.2 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.mp4 1.2 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.mp4 1.2 MB
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.mp4 1.2 MB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.mp4 1.2 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.mp4 1.2 MB
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.mp4 1.2 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.mp4 1.2 MB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.mp4 1.2 MB
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.mp4 1.2 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.mp4 1.2 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.mp4 1.2 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.mp4 1.2 MB
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.mp4 1.2 MB
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.mp4 1.2 MB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.mp4 1.2 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.mp4 1.2 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.mp4 1.2 MB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.mp4 1.2 MB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.mp4 1.1 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.mp4 1.1 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.mp4 1.1 MB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.mp4 1.1 MB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.mp4 1.1 MB
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.mp4 1.1 MB
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.mp4 1.1 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.mp4 1.1 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.mp4 1.1 MB
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.mp4 1.1 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.mp4 1.1 MB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.mp4 1.1 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.mp4 1.1 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.mp4 1.1 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.mp4 1.1 MB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.mp4 1.1 MB
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.mp4 1.1 MB
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron--dT9dztM-Lc.mp4 1.1 MB
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.mp4 1.1 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.mp4 1.1 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.mp4 1.1 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.mp4 1.1 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2018-01-15-17.36.32.png 1.1 MB
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.mp4 1.1 MB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.mp4 1.1 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.mp4 1.1 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.mp4 1.1 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.mp4 1.1 MB
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.mp4 1.0 MB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.mp4 1.0 MB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48713571.gif 1.0 MB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.mp4 1.0 MB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.mp4 1.0 MB
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.mp4 1.0 MB
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.mp4 1.0 MB
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.mp4 1.0 MB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/img/inner-outer.png 1.0 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/oblstsm-imgur.gif 1.0 MB
  • Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.mp4 1.0 MB
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.mp4 1.0 MB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.mp4 999.1 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.mp4 999.0 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.mp4 998.8 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-course-git-blog-project-in-browser.png 991.8 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/img/left-right.png 987.6 kB
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.mp4 983.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.mp4 977.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.48.20-pm.png 947.6 kB
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.mp4 942.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.mp4 940.9 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.mp4 940.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.mp4 940.4 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.mp4 937.1 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.mp4 930.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.mp4 919.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.mp4 918.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.mp4 914.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.mp4 912.6 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.mp4 907.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.mp4 907.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.17.08-pm.png 903.8 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Projects-1-E_ZYovKeI.mp4 888.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.mp4 884.7 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.mp4 884.0 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-Thj7e55iSlA.mp4 874.1 kB
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.mp4 862.9 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.mp4 856.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.mp4 852.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.18.27-pm.png 852.0 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.mp4 851.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.mp4 848.2 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.mp4 845.4 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.mp4 844.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.mp4 837.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.mp4 836.9 kB
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.mp4 824.8 kB
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.mp4 823.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.mp4 823.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.mp4 819.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3011778732.gif 817.5 kB
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.mp4 817.0 kB
  • Part 01-Module 02-Lesson 02_Explore Weather Trends/img/earth.png 814.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.mp4 811.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.mp4 811.8 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/screenshot-2017-10-10-18.43.41.png 807.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.mp4 806.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.mp4 806.7 kB
  • Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.mp4 800.8 kB
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.mp4 799.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.mp4 795.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.mp4 793.6 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.mp4 793.6 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.mp4 790.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.mp4 789.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.mp4 789.1 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3013458575.gif 784.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3017968763.gif 784.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.mp4 784.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.mp4 784.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/groups-used-in-map.png 777.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.mp4 775.7 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/get-hired-with-the-udacity-career-portal.gif 774.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.mp4 772.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.mp4 771.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.mp4 769.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.mp4 765.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.mp4 765.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.mp4 763.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.mp4 761.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3013038717.gif 759.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3029558686.gif 756.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3046518548.gif 754.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.mp4 754.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.mp4 752.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.mp4 752.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.mp4 752.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/img/805108698.gif 750.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.mp4 744.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.mp4 737.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.mp4 737.8 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.mp4 736.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.mp4 732.4 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/img/6509638772.gif 728.1 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.mp4 725.0 kB
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.mp4 719.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.mp4 718.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3007818802.gif 713.5 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.mp4 710.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.mp4 710.0 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3000408954.gif 699.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.mp4 698.7 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/dog-pred.png 696.3 kB
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.mp4 693.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.mp4 692.3 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3003048586.gif 692.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.mp4 691.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.mp4 688.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.mp4 688.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.mp4 688.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/866348580.gif 687.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.mp4 684.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3028758556.gif 679.4 kB
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.mp4 679.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.mp4 677.8 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.mp4 677.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-field-rows.png 675.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.mp4 666.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.mp4 663.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.mp4 659.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.mp4 657.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.mp4 655.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.mp4 655.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-aggregation.png 645.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.mp4 642.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.mp4 638.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.mp4 635.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-aggregation-products.png 634.8 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-9.43.05-am.png 632.9 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-1.33.46-pm.png 632.8 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.56.39-pm.png 625.1 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3018068594.gif 625.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.mp4 624.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3006519007.gif 618.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.mp4 617.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3050828611.gif 614.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.mp4 614.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2952958620.gif 610.5 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-merge-fast-forward.gif 609.7 kB
  • Part 03-Module 01-Lesson 01_Anaconda/media/conda_default_install.mp4 609.6 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2949888602.gif 607.7 kB
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.mp4 591.8 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.mp4 583.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.mp4 582.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.mp4 582.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3037078563.gif 579.3 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.mp4 572.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.mp4 571.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-jO81hfubpXY.mp4 571.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.mp4 570.8 kB
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.mp4 570.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2960808631.gif 569.4 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2950698619.gif 568.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.mp4 568.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.mp4 566.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.mp4 559.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3011168678.gif 557.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2950898595.gif 557.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.mp4 546.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.mp4 541.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.mp4 540.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-interactive.png 538.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3021038710.gif 538.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3054288537.gif 538.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-after-sub-categories.png 537.7 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.mp4 535.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3060688537.gif 534.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.mp4 531.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.mp4 530.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2968568545.gif 530.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-before.png 529.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.mp4 528.9 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3021598681.gif 528.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.mp4 526.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.mp4 526.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2951968606.gif 525.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/3219238538.gif 524.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/set-colors.png 523.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.mp4 520.9 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/img/screen-shot-2018-03-19-at-2.30.59-pm.png 519.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.mp4 518.2 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-vs-git-log-oneline.png 516.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/size-bubble-plot.png 516.1 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/img/5.dap-quiz-img5.png 515.4 kB
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.mp4 514.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.mp4 514.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.mp4 514.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/sheet-ui.png 513.7 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.mp4 511.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3010158775.gif 509.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/set-profits.png 508.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/3204138549.gif 508.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3010518798.gif 508.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2964588671.gif 508.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3065108611.gif 508.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-11-29-at-3.39.26-pm.png 508.0 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-project-in-editor.png 501.8 kB
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.mp4 499.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2961658665.gif 499.4 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2018-04-29-at-10.10.52-am.png 498.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/3078258540.gif 498.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.mp4 496.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-after.png 495.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.mp4 495.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3005068624.gif 493.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-dk3FxGVdP7Q.mp4 493.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2983928561.gif 492.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.mp4 491.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.mp4 490.2 kB
  • index.html 486.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.mp4 484.7 kB
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.mp4 484.4 kB
  • img/data-analyst-large.jpg 482.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.mp4 481.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/shape-scatter.png 481.7 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/3214548558.gif 479.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-profit-per-item.png 478.8 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.mp4 478.6 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/3204388552.gif 474.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3061868535.gif 474.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.mp4 474.6 kB
  • Part 16-Module 01-Lesson 14_Validation/img/2952658806.gif 472.1 kB
  • assets/img/udacimak.png 472.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/3215618544.gif 471.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.mp4 471.6 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3030118734.gif 471.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3030118734.gif 471.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.mp4 470.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3022688664.gif 470.3 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.mp4 469.3 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/img/6485174133.gif 469.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/groups-created.png 467.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/profit-vs-quantity-countries.png 465.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.mp4 462.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.mp4 459.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/878318589.gif 458.8 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.mp4 458.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3026198572.gif 457.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/img/6499079068.gif 456.6 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/img/6551597473.gif 455.0 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/screenshot-2017-10-10-18.19.36.png 454.0 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3380638551.gif 453.0 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2991788616.gif 449.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/2949998599.gif 448.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/color-map-discrete.png 444.2 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/dog-rates-social.jpg 443.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3055608552.gif 442.0 kB
  • Part 03-Module 01-Lesson 01_Anaconda/img/conda-search.png 441.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2979408584.gif 440.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/color-map-sequential.png 439.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/3005648570.gif 438.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2962768598.gif 438.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3026648562.gif 435.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.mp4 433.9 kB
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.mp4 433.7 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.mp4 432.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3015658890.gif 429.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.mp4 429.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-dyShKWpTo-c.mp4 429.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3039578581.gif 426.6 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3039578581.gif 426.6 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3070118550.gif 420.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3057568562.gif 418.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3043028606.gif 418.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3043028606.gif 418.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2965848544.gif 416.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3028588558.gif 414.8 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3013998667.gif 414.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/868608913.gif 414.3 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-vs-git-log-stat.png 414.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3020598730.gif 412.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/2968998545.gif 407.6 kB
  • Part 16-Module 01-Lesson 14_Validation/img/2967458615.gif 405.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3079918535.gif 404.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/869219044.gif 403.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/2949388589.gif 402.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-field-.png 401.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2954798550.gif 401.1 kB
  • Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.mp4 400.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.mp4 400.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2972788560.gif 400.3 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/img/ud123-l1-google-docs-saving-progress.gif 399.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-field-panel.png 399.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.mp4 397.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/2970568555.gif 397.4 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/create-a-story.png 393.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2961648618.gif 390.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.mp4 390.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/876198587.gif 389.4 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/img/ud123-l1-git-course-outline.png 387.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3034108583.gif 387.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3021738574.gif 384.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3021738574.gif 384.0 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3015748699.gif 381.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3006898966.gif 374.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3006898966.gif 374.7 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-details-section.png 373.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2989458548.gif 372.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-kNxZwfXwvuk.mp4 371.4 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3068368544.gif 371.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/img/882868605.gif 369.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.mp4 366.1 kB
  • Part 09-Module 01-Lesson 02_Design/img/bad-viz-2.png 365.0 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-2.48.52-pm.png 364.8 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3509488559.gif 364.6 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3016528680.gif 363.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3016528680.gif 363.9 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2944258660.gif 363.4 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-add.gif 361.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3022688695.gif 359.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3022688695.gif 359.5 kB
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-th34aboBOO0.mp4 359.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2966188568.gif 358.1 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2963418671.gif 356.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/tableau-initial-ui.png 354.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.mp4 353.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/864988793.gif 353.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2971108543.gif 352.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3022578615.gif 351.4 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3075798615.gif 350.3 kB
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.mp4 349.8 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3019898679.gif 349.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/2947418593.gif 349.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2949098585.gif 348.3 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.mp4 347.4 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2970968572.gif 345.2 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2985858609.gif 344.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/2967838699.gif 344.3 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-indicators.png 344.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3041298589.gif 343.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3041298589.gif 343.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3022138739.gif 342.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3022138739.gif 342.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2966938598.gif 341.3 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/img/kitty.png 340.5 kB
  • Part 02-Module 02-Lesson 01_Python Project/media/Markdown+cells.mp4 338.3 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/media/Markdown+cells.mp4 338.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/829028854.gif 337.3 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/2949288751.gif 336.9 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3079068542.gif 335.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3031238602.gif 334.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3031238602.gif 334.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.mp4 334.9 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/img/7905614952.gif 333.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2955568614.gif 333.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-4.34.28-pm.png 332.7 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.mp4 330.8 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3044638608.gif 329.4 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/3027808567.gif 329.2 kB
  • Part 09-Module 02-Lesson 01_Create a Tableau Story/img/madewithudacity-instagram.png 328.8 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-prep2.png 328.8 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2966288580.gif 326.5 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-initial-commit.png 326.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3051818547.gif 324.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.mp4 324.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2948198572.gif 324.1 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2946478670.gif 322.6 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-career-service-example.png 322.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-8.59.39-pm.png 322.0 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-editor.png 320.6 kB
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.mp4 320.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2951528674.gif 318.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/img/generate-messages-output.png 318.0 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48665990.gif 316.7 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2962878580.gif 316.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3007308918.gif 315.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3007308918.gif 315.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3017398561.gif 314.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3017398561.gif 314.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/814098656.gif 314.0 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2953828563.gif 313.9 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/img/investigate.png 313.8 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-prep.png 311.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/2948108617.gif 309.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3004608562.gif 309.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3004608562.gif 309.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/2979378621.gif 306.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.mp4 305.6 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/img/7910014174.gif 304.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-9.00.30-pm.png 303.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/set-create.png 302.8 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3005308759.gif 300.8 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/2971368663.gif 300.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/3015568660.gif 299.4 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/img/7881207114.gif 298.3 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48745039.gif 298.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2975168588.gif 296.1 kB
  • Part 16-Module 01-Lesson 14_Validation/img/2983948695.gif 295.8 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/2964618613.gif 295.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2967388588.gif 295.7 kB
  • Part 15-Module 02-Lesson 06_Graphs/img/7919804788.gif 295.6 kB
  • Part 15-Module 02-Lesson 06_Graphs/media/unnamed-69567-0.gif 295.6 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3094188555.gif 294.2 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2946788593.gif 293.7 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-output.png 293.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-3.21.13-pm.png 293.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2971928572.gif 292.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2961888679.gif 292.1 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/3031408552.gif 291.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.mp4 291.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/814098645.gif 289.8 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.mp4 289.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/2962508544.gif 288.1 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-editor-with-tag-message.png 287.6 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3075678542.gif 286.8 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3010588684.gif 285.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/867518844.gif 285.4 kB
  • Part 16-Module 01-Lesson 14_Validation/img/2956889232.gif 284.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/2967348648.gif 283.7 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2959748717.gif 282.8 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/img/3098298776.gif 280.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/2960588577.gif 279.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/866508792.gif 278.7 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/new-story-point.png 278.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/865278622.gif 277.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/2954438563.gif 276.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/3046488600.gif 276.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/img/867159460.gif 274.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/2975748546.gif 274.4 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48736116.gif 273.8 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a2.png 273.4 kB
  • Part 07-Module 01-Lesson 01_What is EDA/img/817709051.gif 272.4 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-p-lines-removed-annotated.png 272.3 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-decorate.png 271.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/img/screenshot-2017-10-10-11.43.11.png 271.6 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3070498540.gif 271.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.mp4 271.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3187129350.gif 269.4 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3090048570.gif 269.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/giphy.gif 269.3 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3099598537.gif 269.1 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3007188710.gif 268.6 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3007188710.gif 268.6 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3097488603.gif 268.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.mp4 267.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2977488698.gif 265.9 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3073008570.gif 265.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2980468558.gif 264.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3023678781.gif 264.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3023678781.gif 264.5 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3012778786.gif 264.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3016088789.gif 263.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3016088789.gif 263.8 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/2967238555.gif 263.1 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3043168576.gif 262.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.mp4 261.7 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3059748569.gif 261.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2978708547.gif 260.2 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3095478574.gif 260.0 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/screen-shot-2017-09-13-at-3.17.47-pm.png 259.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/2951258711.gif 257.6 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3042228571.gif 255.7 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/3052628554.gif 255.1 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-graph-all.png 254.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3009678880.gif 254.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3009678880.gif 254.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/814098652.gif 253.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/connect-to-global-superstore.png 253.5 kB
  • Part 15-Module 02-Lesson 05_Trees/img/tree-traversal-practice.jpg 252.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/814098616.gif 252.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/img/804129307.gif 251.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-select-regions.png 251.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-27-00.16.09.png 251.2 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/3049918543.gif 250.3 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/868059009.gif 249.3 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2975648542.gif 248.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3020868629.gif 247.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-4.35.54-pm.png 246.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/img/3050008540.gif 245.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3050008540.gif 245.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3035468616.gif 245.0 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3062568546.gif 244.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/data-loaded.png 244.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2981638553.gif 243.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3006538680.gif 243.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3004708698.gif 242.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2953038697.gif 240.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/2981618588.gif 240.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3054638566.gif 239.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.mp4 238.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3005108633.gif 238.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.mp4 237.7 kB
  • assets/js/katex.min.js 236.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-4.31.30-pm.png 236.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/mat-david-images-bios.png 236.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3046538590.gif 235.5 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-11-16-at-3.54.06-pm.png 235.3 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/img/screen-shot-2017-11-16-at-3.54.06-pm.png 235.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/2956218691.gif 235.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/3013728805.gif 234.1 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3065198593.gif 233.4 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/2943288781.gif 233.0 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/2971128561.gif 232.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3017908969.gif 232.7 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.45.19-pm.png 232.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2950318631.gif 231.6 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/3000418740.gif 231.1 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/img/screen-shot-2017-09-08-at-4.51.27-am.png 230.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3011218770.gif 230.3 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a6.png 229.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/group-members.png 229.5 kB
  • Part 16-Module 01-Lesson 14_Validation/img/2984688679.gif 228.9 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-with-untracked.png 228.3 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-after-git-add.png 227.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/2944958630.gif 225.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-5.14.39-pm.png 225.6 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.mp4 225.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2958008562.gif 224.4 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/2988828554.gif 224.2 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/2957208551.gif 224.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.mp4 223.5 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3048698569.gif 222.7 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/img/mat-image.jpg 222.6 kB
  • Part 07-Module 01-Lesson 01_What is EDA/img/mat-image.jpg 222.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-field-from-field-menu.png 222.2 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3029798555.gif 221.2 kB
  • Part 02-Module 02-Lesson 01_Python Project/media/notebook+interface.mp4 220.6 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/media/notebook+interface.mp4 220.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2978828552.gif 220.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/set-edit.png 219.9 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2955948581.gif 219.0 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/img/7889679710.gif 218.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/863268756.gif 218.7 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3004818638.gif 216.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/2947678693.gif 216.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/864218870.gif 216.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3013508659.gif 216.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3083838538.gif 215.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/joins.png 214.7 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/img/3167718589.gif 214.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.mp4 214.1 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-modified-files.png 213.5 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/img/bio.png 213.3 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-stat.gif 211.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.mp4 210.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3010808665.gif 210.8 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-.git-directory.png 210.7 kB
  • Part 16-Module 01-Lesson 14_Validation/img/3080558626.gif 210.5 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/3051998535.gif 210.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/color-change.png 209.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-10-05-15.37.03.png 208.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-drag-region-cropped.png 208.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3081768538.gif 207.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/img/2956148584.gif 207.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3013408667.gif 206.8 kB
  • Part 03-Module 01-Lesson 01_Anaconda/media/conda_install.mp4 206.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/header-geo-numerical.png 206.5 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3004928721.gif 204.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2945308595.gif 203.6 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/2992518635.gif 202.9 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/img/7890272657.gif 202.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/lines-with-color.png 201.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3028688725.gif 201.1 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/img/ezgif-5-1b119f201c.gif 200.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/2946858588.gif 199.9 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3083018581.gif 199.8 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict.png 198.4 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2974078571.gif 198.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3006108749.gif 197.8 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-ignore-word-doc.png 197.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3050028596.gif 196.8 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-all-files.png 196.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.mp4 196.5 kB
  • Part 09-Module 01-Lesson 02_Design/img/pasted-image-0.png 196.4 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-gitignore.png 196.0 kB
  • Part 15-Module 02-Lesson 05_Trees/img/7900766165.gif 195.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/img/900908839.gif 194.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/union.png 194.4 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/img/5.dap-quiz-img6.png 194.1 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/img/7883232307.gif 194.0 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.mp4 193.9 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a1.png 193.7 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.mp4 193.4 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/media/unnamed-5101-0.gif 193.3 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/img/891530421.gif 192.8 kB
  • Part 16-Module 01-Lesson 13_PCA/img/2979238559.gif 191.5 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3012228840.gif 191.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/758878614.gif 190.5 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3024388568.gif 189.4 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-finished.png 189.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-11-29-at-3.42.13-pm.png 188.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-17.23.26.png 188.5 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-checkout-b-footer-master.png 188.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/daily-sales.png 188.3 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/876128948.gif 188.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3056738546.gif 188.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3045948674.gif 187.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.mp4 187.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.mp4 186.3 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/3187718577.gif 186.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/dual-axis-after.png 186.1 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2983168537.gif 185.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/861279250.gif 185.1 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-tag-delete.png 184.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3046338540.gif 184.5 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/img/mat-headshot.png 184.3 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-diff.png 183.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3027018593.gif 183.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/883168607.gif 183.2 kB
  • Part 09-Module 02-Lesson 01_Create a Tableau Story/img/madewithudacity-facebook.png 182.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3043098587.gif 182.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/groups-create-menu.png 181.7 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-sidebar.png 181.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/805618659.gif 181.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/880998663.gif 180.9 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/3004168584.gif 180.2 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-status-output.png 178.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3061308637.gif 178.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3002338759.gif 177.8 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3034378634.gif 177.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/hierarchy-categories-labeled.png 176.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3049908569.gif 175.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3028838708.gif 175.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-01-24-at-12.03.45-am.png 174.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/dual-axis-before.png 174.7 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/img/874499235.gif 174.6 kB
  • Part 16-Module 01-Lesson 14_Validation/img/3053458603.gif 174.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/834268560.gif 174.0 kB
  • Part 16-Module 01-Lesson 14_Validation/img/2980648814.gif 173.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3012238654.gif 173.3 kB
  • Part 02-Module 02-Lesson 01_Python Project/media/command+palette.mp4 173.2 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/media/command+palette.mp4 173.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/805459084.gif 173.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/capture1.png 172.6 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3029308691.gif 172.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/880468669.gif 171.9 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status.png 171.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3020778551.gif 169.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3003368625.gif 169.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3004978616.gif 168.5 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-changes-add-color.png 168.1 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/screen-shot-2017-09-13-at-4.06.33-pm.png 167.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/811278704.gif 167.4 kB
  • Part 16-Module 01-Lesson 14_Validation/img/3043408576.gif 166.8 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/2947738692.gif 165.9 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3027138551.gif 165.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/new-sheets.png 165.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3002978730.gif 164.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-interactive-menu.png 163.8 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/img/867888969.gif 163.7 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3059228570.gif 163.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3014338742.gif 163.2 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/3036378560.gif 162.4 kB
  • Part 02-Module 02-Lesson 01_Python Project/img/magic-timeit.png 161.1 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/magic-timeit.png 161.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/3076888537.gif 160.3 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/server-shutdown.png 159.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-interactive-changed.png 159.1 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-prep.png 158.8 kB
  • Part 09-Module 01-Lesson 02_Design/img/challenger2.gif 158.3 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-checkout-sidebar.png 157.9 kB
  • Part 16-Module 01-Lesson 13_PCA/img/3062928590.gif 156.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/805609565.gif 156.5 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/new-dashboard-button.png 156.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/small-multiples-with-category.png 155.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-25-21.03.17.png 155.6 kB
  • Part 07-Module 01-Lesson 01_What is EDA/img/826879024.gif 155.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/809989248.gif 155.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-05-11-at-11.03.34-am.png 154.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-07-at-10.27.16-am.png 154.4 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/script-plot.png 153.1 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch-sidebar.png 153.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/hierarchy-continuous.png 152.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-07-at-10.27.02-am.png 152.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3019118758.gif 152.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3040398570.gif 152.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3004028719.gif 152.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3053448554.gif 152.1 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-clone.gif 150.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/dual-axis-dragged-cropped.png 150.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-from-view.png 149.5 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2941178604.gif 149.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/828308621.gif 148.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/img/811719066.gif 147.9 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch.png 147.6 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-branches.png 147.3 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3039028733.gif 147.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3003308650.gif 146.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3052598541.gif 145.4 kB
  • Part 09-Module 02-Lesson 01_Create a Tableau Story/img/madewithudacity-twitter.png 144.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature.html 144.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2978908558.gif 143.7 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-body-good.png 143.4 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-tag.png 143.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/3026088745.gif 142.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/img/869958633.gif 141.7 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2945548572.gif 141.3 kB
  • assets/css/bootstrap.min.css 140.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/show-me-selected.png 140.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/873369305.gif 140.4 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2969508540.gif 139.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/hierarchy-month.png 139.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3010208669.gif 138.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3047738551.gif 138.2 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch-asterisk.png 138.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/show-me-bar-chart.png 137.2 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/img/l1-diagrams.002.jpeg 137.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/small-multiples-quarters.png 137.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-10-23.31.14.png 136.9 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-10-23.10.49.png 136.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.mp4 136.2 kB
  • Part 16-Module 01-Lesson 03_SVM/img/3010678612.gif 135.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-7.23.27-pm.png 135.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/863168719.gif 134.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/3019888682.gif 134.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/order-date-hierarchy.png 134.1 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a4.png 133.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3039308629.gif 133.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-24-13.44.50.png 133.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3014438788.gif 133.5 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/img/3007478963.gif 133.4 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/weekly-sales.png 132.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/colors-choose-palette.png 132.4 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/2968538614.gif 132.3 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/3038208564.gif 131.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3008128667.gif 131.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3010848726.gif 131.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3003988627.gif 129.8 kB
  • assets/js/plyr.polyfilled.min.js 129.2 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-mixed.png 128.9 kB
  • Part 16-Module 01-Lesson 03_SVM/img/2972018562.gif 128.7 kB
  • Part 16-Module 01-Lesson 08_Outliers/img/2949658626.gif 128.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3028928653.gif 128.0 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-pre-tag.png 127.7 kB
  • Part 16-Module 01-Lesson 09_Clustering/img/3058428551.gif 127.7 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/natgeo-scatter.jpg 126.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3023678711.gif 126.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/img/3005018665.gif 126.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/groups-create-hover.png 125.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3016218654.gif 125.4 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/script-columns-functions.png 125.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3030708562.gif 124.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/sorted-markets-with-arrow.png 124.5 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/screenshot-2017-10-28-00.29.25.png 123.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/2963708620.gif 123.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/view-data-with-arrow.png 123.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/img/3006318739.gif 123.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.49.10-am.png 123.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/814098604.gif 122.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/market-granularity.png 121.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/rename-columns.png 120.7 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/7day-moving-average.png 119.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/split-string-column.png 119.3 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-10-at-8.23.48-pm.png 117.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/market-number-of-records.png 117.5 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-base-directory-git-repo.png 116.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-1.45.29-pm.png 114.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/market-to-columns-arrow.png 114.5 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-terminal-hangs.png 113.7 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-new-git-project.png 113.1 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-p.png 112.7 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/conda-tab.png 112.6 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/866638906.gif 112.3 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/script-columns-simple.png 111.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.40.37-am.png 110.8 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-new-git-project.png 109.1 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/763288677.gif 108.0 kB
  • Part 09-Module 01-Lesson 02_Design/img/apple.jpg 107.9 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-4.10.54-pm.png 107.8 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-4.04.44-pm.png 106.0 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-server.png 105.8 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/758558730.gif 105.4 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/761138624.gif 105.1 kB
  • Part 02-Module 02-Lesson 01_Python Project/img/new-notebook.png 104.2 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/new-notebook.png 104.2 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/story-interface.png 104.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-4.28.43-pm.png 104.0 kB
  • Part 07-Module 01-Lesson 01_What is EDA/img/862788887.gif 103.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/img/830829287.gif 102.9 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/697369978.gif 102.3 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/762298675.gif 101.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3057419003.gif 100.8 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/screen-shot-2018-08-15-at-9.45.12-am.png 99.7 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-08-15-at-9.45.12-am.png 99.7 kB
  • Part 03-Module 01-Lesson 01_Anaconda/media/conda_enter.mp4 99.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48271967.gif 98.4 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-soft.png 98.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-10.24.41.png 98.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-4.39.42-pm.png 97.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-10.21.06.png 97.7 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-json.png 97.6 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-hard.png 97.4 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-10-03-at-2.27.15-pm.png 97.4 kB
  • Part 13-Module 01-Lesson 02_LinkedIn Review/media/unnamed-project-desc-0.gif 96.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-show.png 96.4 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-23-at-3.39.03-pm.png 96.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/img/screenshot-2017-10-10-02.10.18.png 96.0 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/img/ud123-l1-terminal-config-windows.png 95.5 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/img/48728202.gif 94.4 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48684686.gif 93.8 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/img/48698526.gif 93.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-10.23.17.png 93.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48734324.gif 93.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-10.20.14.png 93.0 kB
  • Part 02-Module 02-Lesson 01_Python Project/img/magic-matplotlib.png 92.9 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/magic-matplotlib.png 92.9 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/img/48721292.gif 92.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/img/screenshot-2017-10-10-12.19.20.png 92.2 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/img/48698525.gif 91.3 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-3.41.58-pm.png 90.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/month-pill-menu-labeled.png 90.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48240997.gif 90.7 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/dashboard-interface.png 90.1 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/162524.gif 90.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/img/875339076.gif 90.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48310768.gif 89.8 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/resid2.jpg 89.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48743074.gif 89.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48271966.gif 88.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48480561.gif 88.0 kB
  • assets/js/jquery-3.3.1.min.js 86.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48716290.gif 86.8 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/inner-join.png 86.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48726280.gif 86.7 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48667978.gif 86.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-4.57.01-pm.png 86.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48739228.gif 86.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48646780.gif 85.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48445276.gif 85.2 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/746818713.gif 85.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48641639.gif 85.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48311832.gif 84.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48198839.gif 84.8 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-base-directory.png 84.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/img/5.dap-quiz-img2.png 84.6 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/img/48688787.gif 84.4 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48752009.gif 84.4 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48741083.gif 84.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48750011.gif 84.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48198838.gif 84.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48011955.gif 83.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/dual-axis-menu.png 83.8 kB
  • Part 03-Module 01-Lesson 01_Anaconda/img/conda-install.png 83.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-1.12.55-pm.png 83.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48704300.gif 82.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/screen-shot-2017-08-02-at-10.48.24-pm.png 82.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/img/screen-shot-2017-08-02-at-10.48.24-pm.png 82.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48240998.gif 82.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3072338540.gif 82.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/img/screen-shot-2017-10-19-at-5.33.45-pm.png 82.3 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/erd.png 82.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48311831.gif 82.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48658976.gif 82.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48632848.gif 81.7 kB
  • Part 02-Module 02-Lesson 01_Python Project/img/notebook-download.png 81.5 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-download.png 81.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/screen-shot-2017-08-02-at-11.14.25-am.png 81.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/img/screen-shot-2017-08-02-at-11.14.25-am.png 81.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/img/5.dap-quiz-img1.png 81.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48230510.gif 81.1 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48750031.gif 80.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.16.14-pm.png 80.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/807038697.gif 80.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/img/861308906.gif 80.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/img/862108772.gif 80.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/img/48678737.gif 79.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/refresh-data-reset-workspace.png 79.6 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/img/l1-diagrams.001.jpeg 79.5 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-3.47.37-pm.png 79.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48737119.gif 79.0 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-10-03-at-2.28.24-pm.png 78.8 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/697369974.gif 78.1 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-init.gif 77.7 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48686674.gif 77.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/create-hierarchy.png 77.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/aggregation-menu.png 77.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/img/814098612.gif 76.7 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48241000.gif 76.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/post-splitting.png 76.3 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/img/48692636.gif 76.0 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-post.png 75.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48709280.gif 75.7 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48721315.gif 75.5 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48678758.gif 75.3 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/nbconvert-example.png 75.1 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/img/for-loop.png 74.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48652467.gif 74.5 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48746014.gif 74.4 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/697369980.gif 73.8 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48687733.gif 73.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48296523.gif 73.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3060998543.gif 73.4 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/763818667.gif 73.3 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48632799.gif 73.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48697566.gif 73.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/888998550.gif 72.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48629196.gif 72.6 kB
  • Part 03-Module 01-Lesson 01_Anaconda/img/conda-create-env.png 72.5 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-status-blog-project.gif 72.5 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/753408539.gif 72.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48609553.gif 72.4 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48683704.gif 72.4 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48692663.gif 72.3 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48667979.gif 72.1 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-2.11.18-pm.png 71.9 kB
  • assets/css/fonts/KaTeX_AMS-Regular.ttf 71.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48480558.gif 71.0 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/img/trees.png 70.8 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48725208.gif 70.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/img/870048987.gif 70.3 kB
  • Part 02-Module 02-Lesson 01_Python Project/img/magic-pdb.png 70.3 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/magic-pdb.png 70.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/show-me-panel-with-arrow.png 70.2 kB
  • assets/css/fonts/KaTeX_Main-Regular.ttf 70.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48734186.gif 70.0 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/img/48680638.gif 70.0 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-10-at-8.10.13-pm.png 69.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3063118541.gif 69.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/animals-clean.png 68.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3063168544.gif 68.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/img/3068058539.gif 68.1 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/right-join.png 68.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/animals-clean-merge.png 68.0 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/left-join.png 67.9 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/758148685.gif 67.6 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-intro-good.png 67.5 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-status-new-project.gif 66.9 kB
  • Part 03-Module 01-Lesson 01_Anaconda/img/conda-env-export.png 65.6 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48739104.gif 65.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/img/813929011.gif 65.0 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48695597.gif 64.8 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/screenshot-2017-10-28-00.14.26.png 64.7 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48716247.gif 64.3 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a7.png 64.1 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a5.png 64.1 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-shutdown.png 63.8 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-good-conclusion.png 63.8 kB
  • Part 07-Module 01-Lesson 01_What is EDA/img/824578551.gif 63.6 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/full-outer-join-if-null.png 63.5 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/735769436.gif 62.8 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/slides-cell-toolbar-menu.png 62.8 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/746818715.gif 62.6 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/full-outer-join.png 62.6 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48698583.gif 62.6 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48738100.gif 62.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48632846.gif 62.1 kB
  • Part 09-Module 01-Lesson 02_Design/img/screen-shot-2017-09-03-at-3.13.54-pm.png 61.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48230509.gif 61.8 kB
  • assets/css/fonts/KaTeX_Main-Bold.ttf 61.7 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48692666.gif 61.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48716288.gif 60.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/img/48292975.gif 60.2 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48750006.gif 60.0 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48693692.gif 59.9 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-11-at-3.21.34-pm.png 59.9 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48204962.gif 59.7 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48635652.gif 59.5 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48688828.gif 59.4 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48746015.gif 59.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/img/3056138568.gif 58.9 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48687795.gif 58.7 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48684742.gif 58.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/data-type-menu.png 58.1 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48742066.gif 57.7 kB
  • Part 02-Module 02-Lesson 01_Python Project/img/magic-timeit2.png 57.5 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/magic-timeit2.png 57.5 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a3.png 57.4 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48741058.gif 57.4 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/python-in-terminal.png 57.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/ma-in-sheets2.png 57.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/field-menu.png 56.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/img/48720246.gif 56.6 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48699581.gif 56.5 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-branch-current.png 55.8 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/img/48729170.gif 55.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-26-00.58.09.png 55.7 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/slides-choose-slide-type.png 54.6 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48698595.gif 54.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/screen-shot-2017-08-04-at-6.41.07-pm.png 53.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/img/screen-shot-2017-08-04-at-6.41.07-pm.png 53.9 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48667981.gif 53.8 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48741099.gif 53.6 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/img/input-times-weights.png 53.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/ma-in-sheets.png 52.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/header-bar.png 51.8 kB
  • assets/js/bootstrap.min.js 51.0 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/screen-shot-2018-06-13-at-6.32.38-pm.png 49.7 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/screen-shot-2017-12-14-at-3.11.32-pm.png 49.1 kB
  • Part 09-Module 01-Lesson 02_Design/img/screen-shot-2017-09-03-at-2.28.22-pm.png 48.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/img/48632800.gif 48.8 kB
  • Part 04-Module 01-Lesson 04_Probability/img/48738115.gif 48.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-01-at-12.10.40-am.png 48.7 kB
  • assets/css/fonts/KaTeX_Main-Italic.ttf 48.0 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-11-at-11.54.30-am.png 47.8 kB
  • assets/js/jquery.mCustomScrollbar.concat.min.js 45.5 kB
  • assets/css/fonts/KaTeX_Main-BoldItalic.ttf 44.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/img/step6-testrun.png 44.5 kB
  • Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/img/stroop-test-2.jpg 44.1 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-intro-bad.png 43.3 kB
  • assets/css/jquery.mCustomScrollbar.min.css 42.8 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/img/ud123-l1-terminal-config-mac.png 42.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-24-12.53.56.png 42.1 kB
  • assets/css/fonts/KaTeX_Math-Italic.ttf 41.4 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/conda-environments.png 41.1 kB
  • assets/css/fonts/KaTeX_AMS-Regular.woff 40.2 kB
  • assets/css/fonts/KaTeX_Math-BoldItalic.ttf 39.7 kB
  • assets/css/fonts/KaTeX_Main-Regular.woff 39.4 kB
  • Part 04-Module 01-Lesson 14_Regression/img/1200px-linear-regression.svg.png 39.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/anaconda.png 38.8 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/udacitylogo-copy.png 38.6 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/udacitylogo-copy.png 38.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/market-and-colors.png 38.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/jupyter.png 37.7 kB
  • assets/css/fonts/KaTeX_Main-Bold.woff 36.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/google-sheets-logo.png 36.7 kB
  • assets/css/fonts/KaTeX_Typewriter-Regular.ttf 36.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/img/histogram-nonnormal.png 36.2 kB
  • assets/css/fonts/KaTeX_Fraktur-Bold.ttf 36.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-18-17.25.08.png 35.9 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/img/intropy-l4-reading-from-a-file.png 35.8 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/screen-shot-2017-09-04-at-2.07.44-pm.png 34.9 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropy-looking-for-python3-big.png 34.7 kB
  • assets/css/fonts/KaTeX_Fraktur-Regular.ttf 34.7 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropt-l2-looking-for-python-big.png 34.4 kB
  • assets/css/fonts/KaTeX_SansSerif-Bold.ttf 34.0 kB
  • Part 16-Module 01-Lesson 13_PCA/media/unnamed-134180-instructor-note-0.gif 33.6 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/14. Dictionaries III.html 33.3 kB
  • assets/css/fonts/KaTeX_AMS-Regular.woff2 33.2 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-18-17.24.42.png 33.0 kB
  • assets/css/fonts/KaTeX_Main-Regular.woff2 32.9 kB
  • Part 09-Module 01-Lesson 02_Design/img/screen-shot-2017-09-03-at-6.34.02-pm.png 32.6 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-18-17.25.26.png 31.7 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/img/screen-shot-2017-01-09-at-1.08.23-pm.png 31.7 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/screen-shot-2018-07-27-at-1.24.38-pm.png 31.6 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-07-27-at-1.24.38-pm.png 31.6 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropy-l1-elements-of-function-definition2.png 31.5 kB
  • Part 09-Module 01-Lesson 02_Design/img/screen-shot-2017-09-03-at-6.12.14-pm.png 31.4 kB
  • assets/css/fonts/KaTeX_SansSerif-Italic.ttf 31.3 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-18-17.25.53.png 31.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3006298726.gif 31.0 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-components.png 31.0 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/02. Lists.html 30.6 kB
  • assets/css/fonts/KaTeX_Main-Bold.woff2 30.6 kB
  • assets/css/fonts/KaTeX_SansSerif-Regular.ttf 30.2 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/media/unnamed-135397-0.gif 29.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/capture6.png 29.3 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/07. The Standard Library.html 29.1 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/img/join.png 28.8 kB
  • Part 04-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-2.22.27-pm.png 28.8 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-2.22.27-pm.png 28.8 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/img/5237420495.gif 28.5 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/img/5245820061.gif 28.5 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/img/5246710001.gif 28.5 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Branching Effectively.html 28.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/cl.png 27.7 kB
  • assets/css/fonts/KaTeX_Main-Italic.woff 27.2 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/img/slicing.png 27.1 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/08. Quiz Building Dashboards Stories with Trina.html 26.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/file-logo.png 26.6 kB
  • assets/css/fonts/KaTeX_Main-BoldItalic.woff 26.2 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/05. Investigate A Dataset Project Walkthrough Final-OtDZCYxbHB4.en.vtt 25.7 kB
  • assets/css/fonts/KaTeX_Script-Regular.ttf 24.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/27. Quiz Marks Filters II.html 24.2 kB
  • assets/css/plyr.css 24.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/img/3028378607.gif 24.1 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/quadraticlinearregression.png 24.1 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/05. Investigate A Dataset Project Walkthrough Final-OtDZCYxbHB4.pt-BR.vtt 23.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/42. Quiz Calculated Fields.html 23.8 kB
  • assets/css/fonts/KaTeX_Math-Italic.woff 23.8 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/05. Assessing Data.html 23.5 kB
  • assets/css/fonts/KaTeX_Fraktur-Bold.woff 23.4 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/04. Resetting Commits.html 23.3 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/05. Reading from a File.html 23.3 kB
  • assets/css/fonts/KaTeX_Math-BoldItalic.woff 23.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-25-21.03.34.png 23.1 kB
  • assets/css/fonts/KaTeX_Main-Italic.woff2 23.1 kB
  • assets/css/fonts/KaTeX_Fraktur-Regular.woff 22.8 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lead-diff.png 22.7 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/img/5259239571.gif 22.3 kB
  • assets/css/fonts/KaTeX_Main-BoldItalic.woff2 22.2 kB
  • assets/css/katex.min.css 22.1 kB
  • Part 09-Module 01-Lesson 02_Design/img/challenger-good.png 21.8 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Video Comparing a Row to Previous Row.html 21.7 kB
  • Part 04-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-1.47.06-pm.png 21.7 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-1.47.06-pm.png 21.7 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/03. Git Commit.html 21.6 kB
  • Part 18-Module 01-Lesson 05_Scripting/img/step3-path.png 21.3 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Laying the Groundwork.html 21.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/15. Quiz Worksheets.html 21.0 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/04. Quiz Hierarchies with Trina.html 21.0 kB
  • assets/css/fonts/KaTeX_Typewriter-Regular.woff 20.9 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/02. Git Add.html 20.9 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.ar.vtt 20.7 kB
  • assets/css/fonts/KaTeX_Fraktur-Bold.woff2 20.5 kB
  • assets/css/fonts/KaTeX_Math-Italic.woff2 20.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/27. Notebook + Quiz Other Things to Consider.html 20.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/22. Quiz Hierarchies.html 20.2 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/06. Merge Conflicts.html 20.2 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropy-l2-if-example.png 20.1 kB
  • assets/css/fonts/KaTeX_Math-BoldItalic.woff2 20.0 kB
  • assets/css/fonts/KaTeX_Fraktur-Regular.woff2 19.9 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/15. Assessing and Building Intuition Quiz.html 19.7 kB
  • Part 13-Module 01-Lesson 02_LinkedIn Review/media/unnamed-project-desc-1.gif 19.6 kB
  • assets/css/fonts/KaTeX_Caligraphic-Bold.ttf 19.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data.html 19.4 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Put a Python In Your Computer.html 19.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.ar.vtt 19.3 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Branching.html 19.3 kB
  • Part 15-Module 02-Lesson 06_Graphs/12. Graph Traversal Practice.html 19.2 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/04. For Loops.html 19.2 kB
  • assets/css/fonts/KaTeX_SansSerif-Bold.woff 19.2 kB
  • assets/css/fonts/KaTeX_Caligraphic-Regular.ttf 19.0 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/10. Quiz Extra Practice with Dashboards.html 18.8 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/15. Notebook + Quiz Simulating from the Null.html 18.7 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/02. Displaying A Repository's Commits.html 18.7 kB
  • Part 04-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-1.04.03-pm.png 18.6 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-1.04.03-pm.png 18.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/08. Quiz Connecting to Data.html 18.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/04. Notebook + Quiz Fitting A MLR Model.html 18.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/34. Quiz Small Multiples.html 18.4 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Tagging.html 18.3 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/12. Notebook + Quiz Dummy Variables.html 18.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/img/step4-alias.png 18.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/06. Data Analysis Process Quiz.html 18.2 kB
  • assets/css/fonts/KaTeX_SansSerif-Italic.woff 18.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/09. Quiz Types of Errors - Part II.html 18.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/30. Quiz + Text Recap.html 17.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/31. Learning Objectives - Conditional Probability.html 17.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/41. Text Calculated Fields.html 17.7 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/16. LEFT and RIGHT JOIN.html 17.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/25. Quiz Marks Filters I.html 17.6 kB
  • assets/css/fonts/KaTeX_Typewriter-Regular.woff2 17.5 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Solution Subquery Mania.html 17.5 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/05. Variables I.html 17.5 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/13. Case Study in Python.html 17.4 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/25. Notebook + Quiz Interpreting Model Coefficients.html 17.4 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lag-diff.png 17.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/28. Notebook + Quiz Other Things to Consider.html 17.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/07. Text Connecting to Data Recap.html 17.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.ar.vtt 17.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/29. Quiz Descriptive vs. Inferential (Bagels).html 17.2 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Merging.html 17.1 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/02. Arithmetic.html 17.1 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/07. Quiz Interpreting Coefficients in MLR.html 17.1 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/06. While Loops.html 16.9 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/04. Quiz Descriptive vs. Inferential (Bagels).html 16.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/18. Quiz Reading and Writing Files.html 16.8 kB
  • Part 18-Module 01-Lesson 03_Control Flow/08. Quiz Boolean Expressions for Conditions.html 16.8 kB
  • assets/css/fonts/KaTeX_SansSerif-Regular.woff 16.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/img/step2-pwd.png 16.8 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/05. Viewing File Changes.html 16.6 kB
  • Part 18-Module 01-Lesson 05_Scripting/22. Quiz The Standard Library.html 16.6 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. Conditional Statements.html 16.6 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/11. Quiz Aggregates in Window Functions.html 16.5 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Reorganizing Code.html 16.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/36. Learning Objectives - Bayes' Rule.html 16.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/30. Quiz Show Me.html 16.4 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/03. Clone An Existing Repo.html 16.4 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/09. Code with Branches III.html 16.3 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.ar.vtt 16.3 kB
  • Part 18-Module 01-Lesson 03_Control Flow/13. Quiz For Loops.html 16.3 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.ar.vtt 16.2 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/img/iris-box-plot.png 16.2 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/04. Notebook + Quiz Building Confidence Intervals.html 16.1 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/04. Determine A Repo's Status.html 16.1 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/img/screen-shot-2017-11-06-at-1.14.05-pm.png 16.0 kB
  • assets/css/fonts/KaTeX_SansSerif-Bold.woff2 16.0 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/06. Notebook + Quiz Difference in Means.html 16.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/32. Quiz Dictionaries and Identity Operators.html 16.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/37. Text Groups Sets.html 15.9 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/07. Code with Branches I.html 15.9 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/08. Code with Branches II.html 15.8 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/16. Compound Data Structures.html 15.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/17. Quiz Type and Type Conversion.html 15.7 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/05. Assessing Data.html 15.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lead-3.png 15.7 kB
  • Part 04-Module 01-Lesson 14_Regression/07. Quizzes On Scatter Plots.html 15.6 kB
  • Part 18-Module 01-Lesson 05_Scripting/img/step5-source.png 15.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/14. Quiz Strings.html 15.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/22. Lists and Membership Operators.html 15.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/23. Quiz Shape and Outliers (Comparing Distributions).html 15.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/18. Mashup APIs, Downloading Files Programmatically, JSON.html 15.5 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/06. Quiz Experiment I.html 15.5 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/10. Types and Type Conversion.html 15.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.ja.vtt 15.4 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/25. Quiz Shape and Outliers (Final Quiz).html 15.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/06. Quiz Data Types (Quantitative vs. Categorical).html 15.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/11. Quiz Combining Data.html 15.3 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Boolean Expressions for Conditions.html 15.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/08. Notebook + Quiz Interpret Results.html 15.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.en.vtt 15.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/26. Text Marks Filters II.html 15.2 kB
  • assets/css/fonts/KaTeX_SansSerif-Italic.woff2 15.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/19. Quiz Aggregations.html 15.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.pt-BR.vtt 15.2 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lag.png 15.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Relational Database Structure.html 15.1 kB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/Project Rubric - Explore and Summarize Data.html 15.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure.html 15.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/36. Quiz Compound Data Structures.html 15.1 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-qRv1wrtgsmM.en.vtt 15.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/10. Quizzes On Scatter Plots.html 15.1 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/10. Using Online Resources.html 15.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/img/step1-cd.png 15.0 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/18. Measures of Center (Mode).html 15.0 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/27. Quiz + Text Recap Next Steps.html 15.0 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/09. Notebook + Quiz Sampling Distributions Python.html 15.0 kB
  • Part 09-Module 01-Lesson 02_Design/20. Quizzes on Data Story Telling.html 14.9 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/02. Create A Repo From Scratch.html 14.9 kB
  • Part 18-Module 01-Lesson 04_Functions/02. Defining Functions.html 14.8 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/screen-shot-2018-08-15-at-9.46.40-am.png 14.8 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-08-15-at-9.46.40-am.png 14.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/45. Quiz Table Calculations.html 14.8 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/10. Text + Quiz Data Types (Ordinal vs. Nominal).html 14.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Quiz Clean (Test).html 14.8 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/17. Quiz Difficulties in AB Testing.html 14.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/39. Summary.html 14.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/22. Quiz Connecting Errors and P-Values.html 14.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/24. Drawing Conclusions Quiz.html 14.7 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Video + Quiz Write Your First Subquery.html 14.6 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/11. String Methods I.html 14.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables and Assignment Operators.html 14.6 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/11. Quiz Types of Errors - Part III.html 14.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces).html 14.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/24. Quiz Shape and Outliers (Visuals).html 14.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/04. [For Windows] Configuring Git Bash to Run Python.html 14.5 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/08. Strings I.html 14.5 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/14. Quiz Applied Standard Deviation and Variance.html 14.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/05. Notebook + Quiz Fitting Logistic Regression in Python.html 14.5 kB
  • Part 04-Module 01-Lesson 14_Regression/11. Quiz What Defines A Line - Notation Quiz.html 14.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/46. Text Recap.html 14.4 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/16. [Optional] Text Linear Model Assumptions.html 14.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/24. Text Marks Filters I.html 14.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/21. Text Hierarchies.html 14.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/23. Quiz Lists and Membership Operators.html 14.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1.html 14.3 kB
  • Part 18-Module 01-Lesson 03_Control Flow/10. For Loops.html 14.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Video Why SQL.html 14.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess (Intro).html 14.3 kB
  • Part 18-Module 01-Lesson 03_Control Flow/29. Quiz Zip and Enumerate.html 14.2 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/05. Unclean Data Dirty vs. Messy 2.html 14.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Quiz Gather (Unzip File).html 14.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Video Why SQL.html 14.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/26. Quiz List Methods.html 14.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/23. Notebook + Quiz Drawing Conclusions.html 14.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/48. Moving Averages.html 14.1 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.en.vtt 14.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/14. Text Worksheets.html 14.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/06. Quiz Variables and Assignment Operators.html 14.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet.html 14.0 kB
  • assets/css/fonts/KaTeX_SansSerif-Regular.woff2 14.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/28. Online Resources.html 14.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz.html 14.0 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Git and Version Control Terminology.html 14.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/30. Notebook + Quiz Model Diagnostics.html 14.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Quiz Assess (Programmatic).html 14.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/18. Quiz Iterating Through Dictionaries.html 13.9 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/28. Quiz Notation for the Mean.html 13.9 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/03. Motivation for Data Visualization.html 13.9 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.en-US.vtt 13.9 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.en.vtt 13.9 kB
  • assets/css/fonts/KaTeX_Script-Regular.woff 13.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/04. Text Outline of Topics Covered.html 13.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/12. Text + Quiz Your First Query.html 13.8 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/03. Defining Functions II.html 13.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/08. Packages Overview Quiz.html 13.7 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.pt-BR.vtt 13.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure.html 13.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/18. Quiz What is a p-value Anyway.html 13.7 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/19. Notebook + Quiz Multicollinearity VIFs.html 13.7 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/10. Text + Quiz Your First Query.html 13.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/15. Homework 1 Final Quiz on Measures Spread.html 13.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/39. Quiz Sets.html 13.6 kB
  • Part 18-Module 01-Lesson 03_Control Flow/16. Building Dictionaries.html 13.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/34. Quiz More With Dictionaries.html 13.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/28. Quiz Tuples.html 13.6 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/17. Solutions LEFT and RIGHT JOIN .html 13.5 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/03. Designing the Program.html 13.5 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/03. Data in NumPy.html 13.5 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/08. Quiz Primary - Foreign Key Relationship.html 13.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/14. Text Formatting Best Practices.html 13.4 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.ar.vtt 13.4 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/Project Rubric - Resume Review Project (Career Change).html 13.4 kB
  • Part 15-Module 02-Lesson 06_Graphs/08. Graph Representation Practice.html 13.3 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/Project Rubric - Resume Review Project (Entry-level).html 13.3 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/20. Solutions Last Check.html 13.3 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/Project Rubric - Wrangle and Analyze Data.html 13.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn.html 13.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/12. Text Formatting Best Practices.html 13.3 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/04. Viewing Modified Files.html 13.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy.html 13.3 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/media/unnamed-59153-0.gif 13.3 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/img/quizimage.png 13.3 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Changing How Git Log Displays Information.html 13.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression.html 13.2 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/06. Having Git Ignore Files.html 13.2 kB
  • assets/css/fonts/KaTeX_Size1-Regular.ttf 13.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods.html 13.1 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/Project Rubric - Resume Review Project (Prior Industry Experience).html 13.1 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.zh-CN.vtt 13.1 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/02. Defining Functions I.html 13.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output.html 13.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/14. [Optional] Notebook + Quiz Other Encodings.html 13.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.en.vtt 13.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/25. List Methods.html 13.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/26. Third-Party Libraries.html 13.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set.html 13.0 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.en.vtt 12.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness.html 12.9 kB
  • Part 18-Module 01-Lesson 03_Control Flow/23. Quiz While Loops.html 12.9 kB
  • Part 18-Module 01-Lesson 03_Control Flow/15. Quiz Match Inputs To Outputs.html 12.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading and Writing Files.html 12.9 kB
  • Part 09-Module 02-Lesson 01_Create a Tableau Story/02. Project Details.html 12.9 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/11. Quiz JOIN Questions Part I.html 12.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.pt-BR.vtt 12.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable.html 12.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Quiz Clean (Code 2).html 12.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/18. Text Aggregations.html 12.8 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.pt-BR.vtt 12.8 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-qRv1wrtgsmM.zh-CN.vtt 12.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/07. Template and Software.html 12.7 kB
  • Part 09-Module 01-Lesson 02_Design/11. Bad Visual Quizzes (Part II).html 12.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programmatic Assessment 2.html 12.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files in Python.html 12.7 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.en.vtt 12.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Quiz Gather (Download).html 12.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality.html 12.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means.html 12.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/32. Text Small Multiples Dual Axis.html 12.7 kB
  • Part 13-Module 01-Lesson 02_LinkedIn Review/Project Rubric - LinkedIn Profile Review Project.html 12.7 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/10. Dummy Variables.html 12.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Integers and Floats.html 12.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/20. String Methods.html 12.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/26. Text Descriptive Statistics Summary .html 12.6 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/21. Notebook + Quiz Central Limit Theorem - Part III.html 12.6 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/09. Third-Party Libraries.html 12.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/44. Text Table Calculations.html 12.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/08. Text + Quiz Types of Databases.html 12.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree.html 12.6 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/05. Quiz Setting Up Hypothesis Tests.html 12.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2.html 12.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2.html 12.6 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/07. Quiz More On Subqueries.html 12.5 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.zh-CN.vtt 12.5 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/12. Quizzes UNION.html 12.5 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-qRv1wrtgsmM.pt-BR.vtt 12.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/49. Text Recap Looking Ahead.html 12.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.ar.vtt 12.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/39. Bonus Target and Features.html 12.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/03. Quiz Arithmetic Operators.html 12.5 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/19. Quiz Last Check.html 12.4 kB
  • assets/css/fonts/KaTeX_Size2-Regular.ttf 12.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces.html 12.4 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/13. Advanced Standard Deviation and Variance.html 12.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Quiz Assess (Visual).html 12.4 kB
  • Part 02-Module 02-Lesson 01_Python Project/08. Classroom DAND-Explore US Bikeshare Data Walkthrough-0yuglNRWyKs.pt-BR.vtt 12.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/16. Quiz LIMIT.html 12.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Text Installing Tableau.html 12.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3.html 12.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/10. Text Combining Data Recap.html 12.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.pt-BR.vtt 12.3 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process.html 12.3 kB
  • Part 04-Module 01-Lesson 14_Regression/09. Correlation Coefficient Quizzes.html 12.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means.html 12.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Data Quality Dimensions 2.html 12.3 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. What are Jupyter notebooks.html 12.3 kB
  • assets/css/fonts/KaTeX_Script-Regular.woff2 12.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/32. Solutions CASE.html 12.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split.html 12.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/10. Text Introduction to the Standard Deviation and Variance.html 12.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/04. Quiz ERD Fundamentals.html 12.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split.html 12.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/38. Quiz Groups.html 12.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split.html 12.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/14. Quiz LIMIT.html 12.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/03. Video + Text The Parch Posey Database.html 12.2 kB
  • Part 09-Module 01-Lesson 02_Design/10. Bad Visual Quizzes (Part I).html 12.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2.html 12.2 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/18. Notebook + Quiz Central Limit Theorem.html 12.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example.html 12.2 kB
  • Part 04-Module 01-Lesson 14_Regression/img/screen-shot-2017-11-10-at-2.43.00-pm.png 12.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files in Python.html 12.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy.html 12.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python.html 12.2 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/19. Quiz Shape and Outliers (What's the Impact).html 12.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/05. Text Map of SQL Content.html 12.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/35. Quiz Dual Axis.html 12.2 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/19. Notebook + Quiz Central Limit Theorem - Part II.html 12.2 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/02. Project Motivation.html 12.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings.html 12.2 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/07. Linked List Practice.html 12.1 kB
  • assets/css/fonts/KaTeX_Caligraphic-Bold.woff 12.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/04. Text + Quiz Your First JOIN.html 12.1 kB
  • Part 04-Module 01-Lesson 14_Regression/20. Notebook + Quiz Your Turn - Part II.html 12.1 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/13. Outlining and Building a Program.html 12.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure.html 12.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/09. Quiz Integers and Floats.html 12.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/24. Notebook + Quiz Bootstrapping.html 12.1 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt 12.1 kB
  • Part 18-Module 01-Lesson 03_Control Flow/05. Quiz Conditional Statements.html 12.1 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/08. Inspecting Data Types.html 12.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Video + Text The Parch Posey Database.html 12.1 kB
  • Part 02-Module 02-Lesson 01_Python Project/08. Classroom DAND-Explore US Bikeshare Data Walkthrough-0yuglNRWyKs.en.vtt 12.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months.html 12.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy.html 12.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters.html 12.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz.html 12.0 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.pt-BR.vtt 12.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix.html 12.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix.html 12.0 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/13. Quiz Notation.html 12.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall.html 11.9 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/15. Solutions WITH.html 11.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/24. Solutions HAVING.html 11.9 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.zh-CN.vtt 11.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line.html 11.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/12. Errors and Exceptions.html 11.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.ar.vtt 11.9 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/30. Quiz Sets.html 11.9 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/06. Cancer Test Results.html 11.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz.html 11.9 kB
  • assets/css/fonts/KaTeX_Caligraphic-Regular.woff 11.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable.html 11.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/09. Decision Tree Accuracy.html 11.8 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Video Notation for Parameters vs. Statistics.html 11.8 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/16. Text Measures of Center and Spread Summary.html 11.8 kB
  • Part 18-Module 01-Lesson 03_Control Flow/25. Break, Continue.html 11.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete.html 11.8 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/04. Twitter API.html 11.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye.html 11.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld.html 11.8 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/img/matplotlib-preview-plot.png 11.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision.html 11.8 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents.html 11.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/46. Sneak Peek Outliers Break Regressions.html 11.8 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/12. Correlation Coefficient Quizzes.html 11.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms.html 11.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own.html 11.7 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/47. SQL Basics Recap.html 11.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/31. Dictionaries and Identity Operators.html 11.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1.html 11.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2.html 11.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2.html 11.7 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/06. Identifying Data Types.html 11.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/16. Text Saving to Tableau Public.html 11.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete.html 11.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.zh-CN.vtt 11.7 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/03. Default Arguments.html 11.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test.html 11.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE.html 11.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE.html 11.7 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices.html 11.7 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Iterative Programming I.html 11.6 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall.html 11.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz.html 11.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/screen-shot-2017-10-27-at-1.49.58-pm.png 11.6 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/img/career-portal-sidebar.png 11.6 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/img/career-portal-sidebar.png 11.6 kB
  • Part 13-Module 01-Lesson 02_LinkedIn Review/img/career-portal-sidebar.png 11.6 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/career-portal-sidebar.png 11.6 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/img/career-portal-sidebar.png 11.6 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/img/career-portal-sidebar.png 11.6 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/img/career-portal-sidebar.png 11.6 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/img/career-portal-sidebar.png 11.6 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/career-portal-sidebar.png 11.6 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/img/career-portal-sidebar.png 11.6 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/img/career-portal-sidebar.png 11.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface.html 11.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/23. Quiz Introduction to Notation.html 11.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities.html 11.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye.html 11.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz.html 11.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete.html 11.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete.html 11.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split.html 11.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/34. Learning from Sensor Data.html 11.6 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall.html 11.6 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices.html 11.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5.html 11.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification.html 11.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete.html 11.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz.html 11.6 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/24. Text Interpreting Interactions.html 11.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3.html 11.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Video Summation.html 11.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1.html 11.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive.html 11.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5.html 11.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4.html 11.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces.html 11.5 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/29. Video CASE Statements.html 11.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays.html 11.5 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/23. HAVING.html 11.5 kB
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA.html 11.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting.html 11.5 kB
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate.html 11.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/31. Quiz Arithmetic Operators.html 11.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces.html 11.5 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/28. Solutions DATE Functions.html 11.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean (Intro).html 11.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions.html 11.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3.html 11.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2.html 11.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/22. Quiz ORDER BY Part II.html 11.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression.html 11.4 kB
  • Part 18-Module 01-Lesson 05_Scripting/20. Importing Local Scripts.html 11.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8.html 11.4 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.pt-BR.vtt 11.4 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Implementing the Program II.html 11.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/10. Booleans, Comparison Operators, and Logical Operators.html 11.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz.html 11.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Video Capital vs. Lower.html 11.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation.html 11.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/27. Quiz Summation.html 11.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior.html 11.4 kB
  • Part 18-Module 01-Lesson 03_Control Flow/32. Quiz List Comprehensions.html 11.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions.html 11.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz.html 11.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10.html 11.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Quiz Gather (Import).html 11.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6.html 11.4 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt 11.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1.html 11.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data.html 11.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2.html 11.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4.html 11.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9.html 11.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/41. Extracting Slope and Intercept.html 11.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara.html 11.3 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/03. Data Attributes.html 11.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split.html 11.3 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/19. Quiz Calculating a p-value.html 11.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/11. Quiz Booleans, Comparison Operators, and Logical Operators.html 11.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Source Web Scraping.html 11.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept.html 11.3 kB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two.html 11.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/29. Quiz Arithmetic Operators.html 11.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/10. Statements.html 11.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous.html 11.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1.html 11.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. Video OR.html 11.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/20. Quiz ORDER BY Part II.html 11.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2.html 11.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/19. Quiz ORDER BY.html 11.3 kB
  • Part 18-Module 01-Lesson 03_Control Flow/17. Iterating Through Dictionaries with For Loops.html 11.3 kB
  • assets/css/fonts/KaTeX_Size4-Regular.ttf 11.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors.html 11.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable.html 11.3 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/04. Commit Messages.html 11.2 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programmatic Assessment 1.html 11.2 kB
  • Part 18-Module 01-Lesson 03_Control Flow/09. Solution Boolean Expressions for Conditions.html 11.2 kB
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line.html 11.2 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/28. Quiz Descriptive vs. Inferential (Udacity Students).html 11.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors.html 11.2 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/21. Exploring Data with Visuals Quiz.html 11.2 kB
  • Part 04-Module 01-Lesson 14_Regression/18. Notebook + Quiz How to Interpret the Results.html 11.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test.html 11.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7.html 11.2 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. Finishing Touches.html 11.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/40. Machine Learning for Author ID.html 11.2 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/15. Solutions GROUP BY.html 11.2 kB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/02. Project Details.html 11.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz.html 11.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/08. Statements.html 11.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. Video OR.html 11.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1.html 11.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions.html 11.2 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/14. Quiz Aliases for Multiple Window Functions.html 11.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/17. Quiz ORDER BY.html 11.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces.html 11.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Video Random Variables.html 11.1 kB
  • Part 18-Module 01-Lesson 03_Control Flow/21. Practice While Loops.html 11.1 kB
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component of New System.html 11.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces.html 11.1 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM.html 11.1 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/10. Sets.html 11.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/07. Video How Databases Store Data.html 11.1 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/04. MacLinux Setup.html 11.1 kB
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature.html 11.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices.html 11.1 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/06. Viewing A Specific Commit.html 11.1 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/12. Exploring with Visuals.html 11.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/42. Making Sense of Metrics 3.html 11.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/43. Making Sense of Metrics 4.html 11.1 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/01. Tuples.html 11.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/43. Video AND and BETWEEN.html 11.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/23. Relational Databases in Python.html 11.1 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Python Programming Setup.html 11.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability.html 11.1 kB
  • Part 04-Module 01-Lesson 14_Regression/19. Notebook + Quiz Regression - Your Turn - Part I.html 11.1 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix.html 11.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities.html 11.1 kB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition.html 11.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity.html 11.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/07. Solution Variables and Assignment Operators.html 11.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces.html 11.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1.html 11.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3.html 11.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2.html 11.0 kB
  • Part 09-Module 01-Lesson 02_Design/04. Quiz Exploratory vs. Explanatory.html 11.0 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/02. Text + Images FULL OUTER JOIN.html 11.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited.html 11.0 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/13. Conclusions Using Groupby.html 11.0 kB
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data.html 11.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/02. Python Installation.html 11.0 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/34. Video LIKE.html 11.0 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.zh-CN.vtt 11.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall.html 11.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.ar.vtt 11.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques for Importing Modules.html 11.0 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-i3RTW83wI1Q.en.vtt 11.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/41. Making Sense of Metrics 2.html 11.0 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting.html 11.0 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. Video How Databases Store Data.html 11.0 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/09. Text + Quiz JOIN Revisited.html 11.0 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Video + Quiz Introduction to Sampling Distributions Part I.html 11.0 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/41. Quiz NOT.html 11.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/30. Solution Zip and Enumerate.html 11.0 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/17. Text Recap + Next Steps.html 11.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/29. Text Show Me.html 10.9 kB
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz.html 10.9 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/07. Conditional Probability Bayes Rule Quiz.html 10.9 kB
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features.html 10.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. Video AND and BETWEEN.html 10.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Quiz Assess (Tidiness).html 10.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/45. Solutions AND and BETWEEN.html 10.9 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.ar.vtt 10.9 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/03. Project Details.html 10.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited.html 10.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/42. Author ID Accuracy.html 10.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/31. Quiz CASE.html 10.9 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/29. Screencast Model Diagnostics in Python - Part I.html 10.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders.html 10.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean (Define).html 10.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability.html 10.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/30. Video Arithmetic Operators.html 10.9 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/16. Multiple Variables Quiz.html 10.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/40. Visualizing Regression Data.html 10.9 kB
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma.html 10.9 kB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components.html 10.9 kB
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance.html 10.9 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/03. Quiz Descriptive vs. Inferential (Udacity Students).html 10.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries.html 10.9 kB
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature.html 10.9 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/13. Text + Quiz WITH vs. Subquery.html 10.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/32. Solutions Arithmetic Operators.html 10.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python.html 10.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. Video LIKE.html 10.9 kB
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines.html 10.8 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/21. Text Higher Order Terms.html 10.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld.html 10.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data.html 10.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior.html 10.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/12. Solutions MIN, MAX, AVG.html 10.8 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Video + Quiz Introduction to Sampling Distributions Part II.html 10.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1.html 10.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8.html 10.8 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.ar.vtt 10.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.ar.vtt 10.8 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Iterative Programming II.html 10.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems.html 10.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Quiz Clean (Code 1).html 10.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/39. Quiz NOT.html 10.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision.html 10.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/44. Quiz AND and BETWEEN.html 10.8 kB
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information.html 10.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms.html 10.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/43. Solutions AND and BETWEEN.html 10.8 kB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature.html 10.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/44. Regressing Bonus Against LTI.html 10.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/42. Solutions NOT.html 10.8 kB
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System.html 10.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/47. Quiz OR.html 10.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/14. Quiz GROUP BY.html 10.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/11. Video SELECT FROM.html 10.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1.html 10.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2.html 10.8 kB
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss.html 10.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Video Arithmetic Operators.html 10.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/03. Quiz Logistic Regression Quick Check.html 10.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What is a p-value Anyway.html 10.7 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. String Methods II.html 10.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/41. Getting Your Code Set Up.html 10.7 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/30. Solutions Arithmetic Operators.html 10.7 kB
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers.html 10.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/43. Timing Your NB Classifier.html 10.7 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/30. Text Descriptive vs. Inferential Summary.html 10.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Video Connecting to Data.html 10.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall.html 10.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment.html 10.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/35. Compound Data Structures.html 10.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/21. Another String Method - Split.html 10.7 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter.html 10.7 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/29. Text Summary on Notation.html 10.7 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/37. Video IN.html 10.7 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/Project Rubric - Investigate a Dataset.html 10.7 kB
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins.html 10.7 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/03. Asking Questions.html 10.7 kB
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers.html 10.7 kB
  • Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate.html 10.7 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/23. Solutions ORDER BY Part II.html 10.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships.html 10.7 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/10. Stack Practice.html 10.7 kB
  • Part 18-Module 01-Lesson 05_Scripting/27. Experimenting with an Interpreter.html 10.7 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/42. Quiz AND and BETWEEN.html 10.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/27. Tuples.html 10.7 kB
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice.html 10.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/21. Research the Enron Fraud.html 10.7 kB
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality.html 10.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall.html 10.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/48. Solutions OR.html 10.6 kB
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions.html 10.6 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices.html 10.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/40. Solutions NOT.html 10.6 kB
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality.html 10.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/18. Solutions GROUP BY Part II.html 10.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Video Important Final Points.html 10.6 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/10. Getting Help.html 10.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/14. Measures of Center (Mean).html 10.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/45. Quiz OR.html 10.6 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/03. Launching the notebook server.html 10.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. Video SELECT FROM.html 10.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/26. Solutions WHERE.html 10.6 kB
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz.html 10.6 kB
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data.html 10.6 kB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words.html 10.6 kB
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System.html 10.6 kB
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature.html 10.6 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt 10.6 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/24. Other Things to Consider - What if Our Sample is Large.html 10.6 kB
  • assets/css/fonts/KaTeX_Caligraphic-Bold.woff2 10.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width.html 10.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features.html 10.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Your first project.html 10.6 kB
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line.html 10.6 kB
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two.html 10.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression.html 10.6 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/07. Quiz Types of Errors - Part I.html 10.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases.html 10.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/05. Commas vs Periods.html 10.6 kB
  • Part 16-Module 01-Lesson 13_PCA/34. Explained Variance of Each PC.html 10.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/38. Quiz IN.html 10.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/20. Solutions ORDER BY.html 10.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/18. Video ORDER BY.html 10.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data.html 10.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/09. Getting Help.html 10.5 kB
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes.html 10.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/29. Sets.html 10.5 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/12. Metric - Average Classroom Time.html 10.5 kB
  • Part 18-Module 01-Lesson 03_Control Flow/11. Practice For Loops.html 10.5 kB
  • Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions.html 10.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/38. Speeding Up Via Feature Selection 1.html 10.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6.html 10.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4.html 10.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2.html 10.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3.html 10.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. Video IN.html 10.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/25. Quiz Techniques for Importing Modules.html 10.5 kB
  • Part 02-Module 02-Lesson 01_Python Project/08. Classroom DAND-Explore US Bikeshare Data Walkthrough-0yuglNRWyKs.zh-CN.vtt 10.5 kB
  • Part 03-Module 01-Lesson 01_Anaconda/02. What is Anaconda.html 10.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective.html 10.5 kB
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality.html 10.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/21. Solutions ORDER BY Part II.html 10.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6.html 10.5 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/13. Other Language Associated with Confidence Intervals.html 10.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses.html 10.5 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/11. NumPy Quiz.html 10.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/34. How Many True Positives.html 10.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color.html 10.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5.html 10.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/46. Solutions OR.html 10.5 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/05. Data Analysis Process Overview.html 10.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability.html 10.5 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview.html 10.5 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Video + Quiz Performance Tuning 1.html 10.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together.html 10.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests.html 10.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/28. Quiz WHERE with Non-Numeric.html 10.5 kB
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance.html 10.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/25. Quiz WHERE.html 10.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review.html 10.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut.html 10.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/24. Video WHERE.html 10.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/24. Solutions WHERE.html 10.5 kB
  • Part 18-Module 01-Lesson 03_Control Flow/20. While Loops.html 10.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.pt-BR.vtt 10.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/42. Regression Score Training Data.html 10.5 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.ar.vtt 10.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/15. Video LIMIT.html 10.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons.html 10.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function.html 10.5 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. Video Introduction to Five Number Summary.html 10.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy.html 10.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/36. Solutions LIKE.html 10.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/35. Quiz LIKE.html 10.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/33. Text Introduction to Logical Operators.html 10.4 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/05. Quiz 5 Number Summary Practice.html 10.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test.html 10.4 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/11. Exploring with Visuals.html 10.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. Video What is Notation.html 10.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/45. Salary vs. LTI for Predicting Bonus.html 10.4 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/04. Program Structure and Schedule.html 10.4 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/36. Quiz IN.html 10.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3.html 10.4 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/18. Solutions ORDER BY.html 10.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2.html 10.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/27. Video WHERE with Non-Numeric Data.html 10.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1.html 10.4 kB
  • assets/css/fonts/KaTeX_Caligraphic-Regular.woff2 10.4 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. Video ORDER BY.html 10.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3.html 10.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data.html 10.4 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/05. Python Practice.html 10.4 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5.html 10.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/39. Solutions IN.html 10.4 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/03. Integers and Floats.html 10.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/24. Solution List and Membership Operators.html 10.4 kB
  • Part 16-Module 01-Lesson 13_PCA/35. How Many PCs to Use.html 10.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout.html 10.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/09. Video Types of Statements.html 10.4 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Video Shape.html 10.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters.html 10.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/33. Recall of Your POI Identifier.html 10.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/27. Applying Metrics to Your POI Identifier.html 10.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypothesis Tests - Part II.html 10.4 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/03. Probability Quiz.html 10.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/29. Solutions WHERE with Non-Numeric.html 10.4 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.zh-CN.vtt 10.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2.html 10.3 kB
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data.html 10.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/31. Number of True Positives.html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/26. Quiz WHERE with Non-Numeric.html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/23. Quiz WHERE.html 10.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer.html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. Video WHERE.html 10.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots.html 10.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots.html 10.3 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/07. Price by Cut.html 10.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn.html 10.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/43. Regression Score Test Data.html 10.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2.html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. Video LIMIT.html 10.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/21. Quiz Variable Types.html 10.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type and Type Conversion.html 10.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means.html 10.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean.html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/34. Solutions LIKE.html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/33. Quiz LIKE.html 10.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again).html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/31. Text Introduction to Logical Operators.html 10.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.ar.vtt 10.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/13. Solutions Your First Query Solution.html 10.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Video Working With Outliers My Advice.html 10.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/40. SelectPercentile and Complexity.html 10.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall.html 10.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/17. Solutions LIMIT.html 10.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/32. Unpacking Into Precision and Recall.html 10.3 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Video Multicollinearity VIFs.html 10.3 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/16. Exploring Your Friends' Birthdays.html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. Video WHERE with Non-Numeric Data.html 10.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/10. Questions for a Dataset.html 10.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. Video What Can You Create In Tableau.html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/37. Solutions IN.html 10.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.en-US.vtt 10.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure.html 10.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.ar.vtt 10.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.en.vtt 10.3 kB
  • Part 18-Module 01-Lesson 03_Control Flow/14. Solution For Loops Quiz.html 10.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Video Types of Statements.html 10.2 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/02. Version Control In Daily Use.html 10.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6.html 10.2 kB
  • Part 16-Module 01-Lesson 03_SVM/36. Extracting Predictions from an SVM.html 10.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5.html 10.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7.html 10.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter.html 10.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem.html 10.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated.html 10.2 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Putting together the Pieces.html 10.2 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/Project Description - Interview Practice (Data Analyst).html 10.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2.html 10.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors.html 10.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1.html 10.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3.html 10.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4.html 10.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions.html 10.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/27. Solutions WHERE with Non-Numeric.html 10.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors.html 10.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression.html 10.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces.html 10.2 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/08. Univariate Plots.html 10.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds.html 10.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces.html 10.2 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/05. Binomial Distributions Quiz.html 10.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn.html 10.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators.html 10.2 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/05. Windows Setup.html 10.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count.html 10.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/39. Getting Started with Mini-Projects.html 10.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors.html 10.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/11. Solutions Your First Query Solution.html 10.1 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/03. AB Testing.html 10.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Video Two Useful Theorems - Law of Large Numbers.html 10.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz.html 10.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/15. Solutions LIMIT.html 10.1 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.en.vtt 10.1 kB
  • Part 18-Module 01-Lesson 03_Control Flow/03. Practice Conditional Statements.html 10.1 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/12. Quiz CAST.html 10.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier.html 10.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video.html 10.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.ar.vtt 10.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Video Bootstrapping The Central Limit Theorem.html 10.1 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt 10.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4.html 10.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/40. Making Sense of Metrics 1.html 10.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot.html 10.1 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/Project Rubric - Udacity Professional Profile Review.html 10.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/21. Video ORDER BY Part II.html 10.1 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Video Descriptive vs. Inferential Statistics.html 10.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors.html 10.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2.html 10.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/40. Video NOT.html 10.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender.html 10.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review.html 10.1 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces.html 10.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression.html 10.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypothesis Tests - Part I.html 10.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features.html 10.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn.html 10.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/35. How Many True Negatives.html 10.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types of Errors - Part III.html 10.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car.html 10.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/16. Notebook + Quiz Law of Large Numbers.html 10.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home.html 10.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept.html 10.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/09. Measures of Spread (Calculation and Units).html 10.0 kB
  • Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn.html 10.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie.html 10.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Quiz Gather (Open Jupyter Notebook).html 10.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/09. Quiz Scripting with Raw Input.html 10.0 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/17. Quiz GROUP BY Part II.html 10.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK.html 10.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video.html 10.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/14. Practice Handling Input Errors.html 10.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Video Combining Data.html 10.0 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/10. Code with Branches IV.html 10.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up.html 10.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/04. Solution Conditional Statements.html 10.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households.html 10.0 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/Project Rubric - Craft Your Cover Letter.html 10.0 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Breaking Programs Into Smaller Pieces.html 10.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/32. Text Recap.html 10.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.ar.vtt 10.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders.html 10.0 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Video ORDER BY Part II.html 10.0 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types of Errors - Part II.html 9.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. Video NOT.html 9.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter.html 9.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer.html 9.9 kB
  • Part 18-Module 01-Lesson 03_Control Flow/24. Solution While Loops Quiz.html 9.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/39. Changing the Number of Features.html 9.9 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. Video Introduction to Standard Deviation and Variance.html 9.9 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/10. Text Sampling Distribution Notes.html 9.9 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile.html 9.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation.html 9.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time.html 9.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/37. False Negatives.html 9.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/28. Number of POIs in Test Set.html 9.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/36. False Positives.html 9.9 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction.html 9.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. Video UNION.html 9.9 kB
  • Part 16-Module 01-Lesson 13_PCA/37. Dimensionality Reduction and Overfitting.html 9.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson.html 9.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/08. Solution SUM.html 9.9 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/16. Measures of Center (Median).html 9.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification.html 9.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/38. Precision.html 9.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma.html 9.9 kB
  • Part 16-Module 01-Lesson 13_PCA/33. PCA Mini-Project.html 9.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz.html 9.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/39. Recall.html 9.9 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/06. Variables II.html 9.9 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/21. Quiz Percentiles.html 9.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web.html 9.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited.html 9.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson.html 9.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses.html 9.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example.html 9.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/30. Accuracy of a Biased Identifier.html 9.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz.html 9.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/03. Install Python Using Anaconda.html 9.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/38. Regression Mini-Project.html 9.9 kB
  • Part 16-Module 01-Lesson 03_SVM/31. Speed-Accuracy Tradeoff.html 9.8 kB
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing.html 9.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/37. Your First Email DT Accuracy.html 9.8 kB
  • Part 16-Module 01-Lesson 13_PCA/36. F1 Score vs. No. of PCs Used.html 9.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots.html 9.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric.html 9.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/36. Decision Tree Mini-Project.html 9.8 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/08. Magic keywords.html 9.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example.html 9.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes.html 9.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/02. Course Outline.html 9.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical.html 9.8 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors.html 9.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes.html 9.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video.html 9.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses.html 9.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz.html 9.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup.html 9.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python.html 9.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video.html 9.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/33. Text Map Configuration.html 9.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule.html 9.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/21. Solutions DISTINCT.html 9.8 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Video Measures of Center (Mean).html 9.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees.html 9.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy.html 9.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting.html 9.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn.html 9.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/02. Video The Parch Posey Database.html 9.8 kB
  • Part 09-Module 01-Lesson 02_Design/17. Good Visual.html 9.8 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Video Introduction.html 9.8 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/04. Asking Questions.html 9.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/29. Number of People in Test Set.html 9.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages.html 9.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans().html 9.8 kB
  • Part 18-Module 01-Lesson 03_Control Flow/26. Quiz Break, Continue.html 9.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. Video How This Lesson Is Structured.html 9.8 kB
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day.html 9.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Video Small Multiples Dual Axis.html 9.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data.html 9.8 kB
  • Part 02-Module 02-Lesson 01_Python Project/06. Magic keywords.html 9.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/26. Video DATE Functions II.html 9.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/41. Accuracy Using 1 of Features.html 9.7 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.en-US.vtt 9.7 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.en.vtt 9.7 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Video Descriptive vs. Inferential Statistics.html 9.7 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Video Working With Outliers.html 9.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure.html 9.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain.html 9.7 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Video The Shape For Data In The World.html 9.7 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/01. Video SQL Introduction.html 9.7 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.en-US.vtt 9.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram.html 9.7 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Video Two Useful Theorems - Central Limit Theorem.html 9.7 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.en.vtt 9.7 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/06. Quiz JOINs with Comparison Operators.html 9.7 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/07. Comparison Operators.html 9.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/27. Identify the Most Powerful Features.html 9.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/04. Setting Up Your Programming Environment.html 9.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions.html 9.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Other Things to Consider - What if Test More Than Once.html 9.7 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Video Notation for the Mean.html 9.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Video Table Calculations.html 9.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/35. Mixing Data Sources (optional).html 9.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Video Marks Filters.html 9.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Video Calculated Fields.html 9.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. Video What is Tableau.html 9.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.ja.vtt 9.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. Video What's Next.html 9.7 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/06. Text ERD Reminder.html 9.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Video Groups Sets.html 9.7 kB
  • Part 15-Module 02-Lesson 05_Trees/11. Binary Tree Practice.html 9.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day.html 9.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/25. Number of Features and Overfitting.html 9.7 kB
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2.html 9.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/24. Clustering Changes.html 9.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Video The Parch Posey Database.html 9.6 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/10. Fixing Data Types Pt 2.html 9.6 kB
  • Part 04-Module 01-Lesson 14_Regression/12. Quiz What Defines A Line - Line Basics Quiz.html 9.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots.html 9.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations.html 9.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1.html 9.6 kB
  • Part 16-Module 01-Lesson 03_SVM/34. Accuracy after Optimizing C.html 9.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Video Aggregations.html 9.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule.html 9.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction.html 9.6 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/05. Text Descriptive vs. Inferential Statistics.html 9.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Video Hierarchies.html 9.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/11. Data Types (Continuous vs. Discrete).html 9.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/11. Quiz MIN, MAX, AVG.html 9.6 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/13. Metric - Completion Rate.html 9.6 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/10. Metric - Enrollment Rate.html 9.6 kB
  • Part 18-Module 01-Lesson 04_Functions/05. Variable Scope.html 9.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Video Shape and Outliers.html 9.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.ar.vtt 9.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Video Worksheets.html 9.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/13. Video GROUP BY.html 9.6 kB
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words.html 9.6 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/21. Text Recap Looking Ahead.html 9.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. Video Measures of Center (Median).html 9.6 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/15. Conclusions Using Query.html 9.6 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Video Why Would We Want to Split Data Into Separate Tables.html 9.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. Video What are Measures of Spread.html 9.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Video Show Me.html 9.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/27. Quiz DATE Functions.html 9.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets.html 9.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/06. Example Buggy Feature.html 9.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/04. Video + Text First Aggregation - COUNT.html 9.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Video SQL Introduction.html 9.6 kB
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection.html 9.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/15. Solution Strings.html 9.6 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/06. Quiz 5 Hypothesis Testing.html 9.5 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt 9.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Video Simulating from the Null.html 9.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R.html 9.5 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. Video When Does the Central Limit Theorem Not Work.html 9.5 kB
  • Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn.html 9.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/44. Metrics for Your POI Identifier.html 9.5 kB
  • Part 16-Module 01-Lesson 03_SVM/33. Optimize C Parameter.html 9.5 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/07. Text General Notes for Building Stories.html 9.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R.html 9.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data.html 9.5 kB
  • Part 18-Module 01-Lesson 03_Control Flow/33. Solution List Comprehensions.html 9.5 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/15. Quiz COALESCE.html 9.5 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/08. Scales and Multiple Histograms.html 9.5 kB
  • Part 18-Module 01-Lesson 03_Control Flow/06. Solution Conditional Statements.html 9.5 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-i3RTW83wI1Q.zh-CN.vtt 9.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/28. Data Wrangling Summary.html 9.5 kB
  • Part 18-Module 01-Lesson 04_Functions/15. [Optional] Quiz Iterators and Generators.html 9.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.ar.vtt 9.5 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/07. Filter, Drop Nulls, Dedupe.html 9.5 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/06. Markdown cells.html 9.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/05. Running a Python Script.html 9.4 kB
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3.html 9.4 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/14. Project Description.html 9.4 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/12. Solutions JOIN Questions Part I.html 9.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values.html 9.4 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/06. Effect of Management Style on Worker Speed.html 9.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1.html 9.4 kB
  • Part 18-Module 01-Lesson 04_Functions/03. Quiz Defining Functions.html 9.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/26. Wrangling vs. EDA vs. ETL.html 9.4 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/19. Quiz On Visual Encodings.html 9.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/26. Other Things to Consider - How Do CIs and HTs Compare.html 9.4 kB
  • Part 18-Module 01-Lesson 04_Functions/12. Quiz Lambda Expressions.html 9.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.ar.vtt 9.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/07. Quiz SUM.html 9.4 kB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/Project Description - Explore and Summarize Data.html 9.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate.html 9.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables.html 9.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables.html 9.4 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/10. Appending Data (cont.).html 9.4 kB
  • Part 09-Module 01-Lesson 02_Design/15. Shape, Size, Other Tools.html 9.4 kB
  • Part 16-Module 01-Lesson 03_SVM/30. A Smaller Training Set.html 9.4 kB
  • Part 02-Module 02-Lesson 01_Python Project/05. Markdown cells.html 9.4 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Video Histograms.html 9.4 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz.html 9.4 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/03. Quiz FULL OUTER JOIN.html 9.4 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.zh-CN.vtt 9.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment.html 9.4 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/11. Efficiency Practice.html 9.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/29. Remove, Repeat.html 9.4 kB
  • Part 18-Module 01-Lesson 05_Scripting/08. Scripting with Raw Input.html 9.4 kB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words.html 9.4 kB
  • Part 13-Module 01-Lesson 02_LinkedIn Review/01. Using LinkedIn.html 9.4 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/10. Commit messages best practices.html 9.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/30. Checking Important Features Again.html 9.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/16. Video GROUP BY Part II.html 9.3 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/04. Notebook interface.html 9.3 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/02. Project Details.html 9.3 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/17. Building Program Pieces IV.html 9.3 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Video Window Functions 1.html 9.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall.html 9.3 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/14. Building Program Pieces I.html 9.3 kB
  • Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients.html 9.3 kB
  • Part 02-Module 02-Lesson 01_Python Project/Project Rubric - Explore US Bikeshare Data.html 9.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Phase II Clinical Trial Data.html 9.3 kB
  • Part 16-Module 01-Lesson 03_SVM/29. SVM Author ID Timing.html 9.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Video Standard Deviation Calculation.html 9.3 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions in Hypothesis Testing.html 9.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/33. Solution Dictionaries and Identity Operators.html 9.3 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. Screencast + Text How Does MLR Work.html 9.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R.html 9.3 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/17. Quiz Comparing a Row to Previous Row.html 9.3 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/15. Correct Interpretations of Confidence Intervals.html 9.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text.html 9.3 kB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation.html 9.3 kB
  • Part 02-Module 02-Lesson 01_Python Project/03. Notebook interface.html 9.3 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/09. Text Dummy Variables.html 9.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/04. Solution Arithmetic Operators.html 9.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/09. Video Model Diagnostics + Performance Metrics.html 9.3 kB
  • Part 18-Module 01-Lesson 03_Control Flow/19. Solution Iterating Through Dictionaries.html 9.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/04. Navigating Your Working Directory and File IO.html 9.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/12. Solution Booleans, Comparison and Logical Operators.html 9.3 kB
  • Part 04-Module 01-Lesson 14_Regression/05. Quiz Linear Regression Language.html 9.3 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/Project Rubric - Interview Practice (Data Analyst).html 9.3 kB
  • Part 09-Module 02-Lesson 01_Create a Tableau Story/Project Rubric - Create a Tableau Story.html 9.3 kB
  • Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses.html 9.3 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/15. Quiz Analyzing Multiple Metrics.html 9.2 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/07. Quiz and Solution Notebooks.html 9.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/29. Missing POIs 1 (optional).html 9.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. Examples.html 9.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/25. Follow the Money.html 9.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable.html 9.2 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/10. Transposes in NumPy.html 9.2 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/04. Quiz 3 Updated DataFrame.html 9.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format.html 9.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/37. Solution Compound Data Structions.html 9.2 kB
  • Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components.html 9.2 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/05. Element-wise Operations in NumPy.html 9.2 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Video The Background of Bootstrapping.html 9.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.ar.vtt 9.2 kB
  • Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation.html 9.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Video Measures of Center (Mode).html 9.2 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/02. Quiz 1 Understanding the Dataset.html 9.2 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Video Dummy Variables.html 9.2 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/14. Quiz WITH.html 9.2 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Introduction.html 9.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety.html 9.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.ar.vtt 9.2 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/28. Use TfIdf to Get the Most Important Word.html 9.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.zh-CN.vtt 9.2 kB
  • Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation.html 9.2 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Video Multiple Linear Regression.html 9.2 kB
  • Part 16-Module 01-Lesson 03_SVM/38. Final Thoughts on Deploying SVMs.html 9.2 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Video Introduction to Sampling Distributions Part III.html 9.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling.html 9.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution.html 9.1 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-i3RTW83wI1Q.pt-BR.vtt 9.1 kB
  • Part 04-Module 01-Lesson 14_Regression/03. Quiz Machine Learning Big Picture.html 9.1 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/11. Fixing Data Types Pt 3.html 9.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.pt-BR.vtt 9.1 kB
  • Part 18-Module 01-Lesson 04_Functions/14. [Optional] Iterators and Generators.html 9.1 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. Video Better Way.html 9.1 kB
  • Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA.html 9.1 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins.html 9.1 kB
  • Part 15-Module 02-Lesson 05_Trees/14. BST Practice.html 9.1 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts.html 9.1 kB
  • Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro.html 9.1 kB
  • Part 16-Module 01-Lesson 13_PCA/26. Applying PCA to Real Data.html 9.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price.html 9.1 kB
  • Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.ar.vtt 9.1 kB
  • Part 04-Module 01-Lesson 14_Regression/14. Text The Regression Closed Form Solution.html 9.1 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropy-l2-circular-cylinder-rh.svg 9.1 kB
  • Part 16-Module 01-Lesson 03_SVM/28. SVM Author ID Accuracy.html 9.1 kB
  • Part 16-Module 01-Lesson 03_SVM/35. Optimized RBF vs. Linear SVM Accuracy.html 9.1 kB
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands).html 9.1 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/03. Video NULLs and Aggregation.html 9.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. Video LEFT and RIGHT JOINs.html 9.1 kB
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2.html 9.1 kB
  • Part 18-Module 01-Lesson 03_Control Flow/22. Solution While Loops Practice.html 9.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Video Bootstrapping.html 9.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/05. Recursion Practice.html 9.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion.html 9.1 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Video Multiple Linear Regression Model Results.html 9.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting.html 9.1 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/06. Python The Basics.html 9.1 kB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing.html 9.1 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. Video What if We Only Want One Number.html 9.1 kB
  • Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA.html 9.1 kB
  • Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code.html 9.1 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. Video Weekdays vs. Weekends What is the Difference.html 9.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram.html 9.1 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/15. Merging Datasets.html 9.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Video Why the Standard Deviation.html 9.0 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Write the Body.html 9.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Video Summary.html 9.0 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/02. Analyzing with IPython.html 9.0 kB
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1.html 9.0 kB
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers.html 9.0 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/25. Video DATE Functions.html 9.0 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/05. Text Subquery Formatting.html 9.0 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Video Data Types (Continuous vs. Discrete).html 9.0 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/04. Program Structure and Schedule.html 9.0 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Video Percentiles.html 9.0 kB
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization.html 9.0 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt 9.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size.html 9.0 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/15. Gapminder Data.html 9.0 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/32. Missing POIs 4 (optional).html 9.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization.html 9.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/18. Solution Type and Type Conversion.html 9.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/14. Programmatic Assessment.html 9.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/23. Overfitting a Decision Tree 1.html 9.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Phase II Clinical Trial Data.html 9.0 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/13. Mean Price by Clarity.html 9.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/Project Rubric - Optimize Your GitHub Profile.html 9.0 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Video Calculating the p-value.html 9.0 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/03. Python Dictionaries.html 9.0 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.en.vtt 9.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price.html 9.0 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/16. Solutions COALESCE.html 9.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship.html 9.0 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/09. Video MIN MAX.html 9.0 kB
  • Part 16-Module 01-Lesson 03_SVM/32. Deploy an RBF Kernel.html 9.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/01. Introduction.html 9.0 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/19. Video DISTINCT.html 9.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/18. Assess (Summary).html 9.0 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/05. Quiz 4 Probability.html 8.9 kB
  • Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature.html 8.9 kB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/01. Project Overview.html 8.9 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Video Data Types (Ordinal vs. Nominal).html 8.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate.html 8.9 kB
  • Part 16-Module 01-Lesson 03_SVM/37. How Many Chris Emails Predicted.html 8.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing vs. Exploring.html 8.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.ar.vtt 8.9 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/13. Size of the Enron Dataset.html 8.9 kB
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression.html 8.9 kB
  • Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video.html 8.9 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/15. Building Program Pieces II.html 8.9 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/10. Video Traditional Confidence Intervals.html 8.9 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/18. Query the Dataset 1.html 8.9 kB
  • Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary.html 8.9 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Screencast Multicollinearity VIFs.html 8.9 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/31. Video Final Thoughts On Shifting to Machine Learning.html 8.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/20. Quiz DISTINCT.html 8.9 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/02. Quiz Analyzing an Interview.html 8.9 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.en.vtt 8.9 kB
  • Part 02-Module 02-Lesson 01_Python Project/Project Description - Explore US Bikeshare Data.html 8.9 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/12. Next Steps.html 8.9 kB
  • Part 18-Module 01-Lesson 03_Control Flow/12. Solution For Loops Practice.html 8.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/10. Video AVG.html 8.8 kB
  • Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie.html 8.8 kB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1.html 8.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/05. Walkthrough and Dataset.html 8.8 kB
  • Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM.html 8.8 kB
  • Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn.html 8.8 kB
  • Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs.html 8.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/15. Finding POIs in the Enron Data.html 8.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/19. Solution Reading and Writing Files.html 8.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset.html 8.8 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array.html 8.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/30. Video CASE Aggregations.html 8.8 kB
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3.html 8.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/04. Video Fitting Logistic Regression in Python.html 8.8 kB
  • Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick.html 8.8 kB
  • Part 16-Module 01-Lesson 14_Validation/12. GridSearchCV in sklearn.html 8.8 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt 8.8 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/09. Built-in Functions.html 8.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/03. A Definition and An Analogy.html 8.8 kB
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2.html 8.8 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1.html 8.8 kB
  • Part 01-Module 02-Lesson 02_Explore Weather Trends/Project Description - Explore Weather Trends.html 8.8 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/06. Assessment Types vs. Steps.html 8.8 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Video Why are Sampling Distributions Important.html 8.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price.html 8.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/33. Missing POIs 5 (optional).html 8.8 kB
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2.html 8.8 kB
  • Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.ar.vtt 8.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/02. Lesson Outline.html 8.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/27. Dealing with Unfilled Features.html 8.8 kB
  • Part 18-Module 01-Lesson 03_Control Flow/27. Solution Break, Continue.html 8.8 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.pt-BR.vtt 8.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/07. Video (ScreenCast) Interpret Results - Part II.html 8.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/12. Datasets and Questions Mini-Project.html 8.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/16. How Many POIs Exist.html 8.8 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/03. Customizing Your Profile.html 8.8 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome!.html 8.8 kB
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll.html 8.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/34. Missing POIs 6 (optional).html 8.8 kB
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters.html 8.8 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients.html 8.8 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1.html 8.8 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability.html 8.8 kB
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5.html 8.8 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/10. String Keys Practice.html 8.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram.html 8.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data.html 8.8 kB
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors.html 8.8 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. Video CAST.html 8.8 kB
  • Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter.html 8.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/31. Missing POIs 3 (optional).html 8.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/06. Video SUM.html 8.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/01. Video Introduction.html 8.8 kB
  • Part 18-Module 01-Lesson 04_Functions/08. Documentation.html 8.8 kB
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1.html 8.7 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/10. Quiz Subquery Mania.html 8.7 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/10. Video Alias.html 8.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/02. Video Fitting Logistic Regression.html 8.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/17. Problems with Incomplete Data.html 8.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age.html 8.7 kB
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means.html 8.7 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Implementing the Program.html 8.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/09. Univariate Feature Selection.html 8.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/15. Solutions Aliases for Multiple Window Functions.html 8.7 kB
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2.html 8.7 kB
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin.html 8.7 kB
  • Part 03-Module 01-Lesson 01_Anaconda/05. Managing environments.html 8.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/20. Query the Dataset 3.html 8.7 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data.html 8.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/06. Video Interpreting Results - Part I.html 8.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/31. Accuracy of the Overfit Tree.html 8.7 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/Project Rubric - Technical Interview Practice.html 8.7 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Video Data Types (Quantitative vs. Categorical).html 8.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/22. Solutions Percentiles.html 8.7 kB
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2.html 8.7 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Video Other Sampling Distributions.html 8.7 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/08. NumPy Matrix Multiplication.html 8.7 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. What is Version Control.html 8.7 kB
  • Part 18-Module 01-Lesson 05_Scripting/11. Errors and Exceptions.html 8.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps.html 8.7 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Video JOINing Subqueries.html 8.7 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rule.html 8.7 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles.html 8.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size.html 8.7 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Video Introduction to Notation.html 8.7 kB
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression.html 8.7 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier.html 8.7 kB
  • Part 16-Module 01-Lesson 03_SVM/27. SVM Mini-Project.html 8.7 kB
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4.html 8.7 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/13. Carat Frequency Polygon.html 8.7 kB
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2.html 8.7 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary.html 8.7 kB
  • Part 09-Module 01-Lesson 02_Design/09. Design Integrity.html 8.7 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/16. Building Program Pieces III.html 8.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/24. Overfitting a Decision Tree 2.html 8.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/19. Query the Dataset 2.html 8.6 kB
  • Part 16-Module 01-Lesson 14_Validation/17. Your First (Overfit) POI Identifier.html 8.6 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/33. Video Congratulations.html 8.6 kB
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1.html 8.6 kB
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3.html 8.6 kB
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4.html 8.6 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/14. Bar Charts of Mean Price.html 8.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.pt-BR.vtt 8.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study.html 8.6 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/09. Quiz Self JOINs.html 8.6 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/12. Dictionaries.html 8.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8.html 8.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7.html 8.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview.html 8.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/26. Accuracy of Your Overfit Decision Tree.html 8.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/27. Communicating Results Practice.html 8.6 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/05. Quiz Window Functions 2.html 8.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/28. Dict-to-array conversion.html 8.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1.html 8.6 kB
  • Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots.html 8.6 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/06. Text General Notes for Building Data Dashboards with Trina.html 8.6 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/06. Solutions Window Functions 2.html 8.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/30. Missing POIs 2 (optional).html 8.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4.html 8.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/26. Unfilled Features.html 8.5 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/01. Project Overview.html 8.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features.html 8.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video.html 8.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Video Dummy Variables Recap.html 8.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/img/client-server.png 8.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/27. Text Recap.html 8.5 kB
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency.html 8.5 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/07. Text Primary and Foreign Keys.html 8.5 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. Video JOINs with Comparison Operators.html 8.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size.html 8.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3.html 8.5 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/02. Self-Practice Behavioral Questions.html 8.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video.html 8.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/07. Editing a Python Script.html 8.5 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Write the Introduction.html 8.5 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/02. Text Optional Lessons Note.html 8.5 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.zh-CN.vtt 8.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations.html 8.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/13. Gather (Summary).html 8.5 kB
  • Part 16-Module 01-Lesson 09_Clustering/21. Clustering with 3 Features.html 8.5 kB
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters.html 8.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/14. Features in the Enron Dataset.html 8.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction.html 8.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/16. Accessing Error Messages.html 8.5 kB
  • Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analyses.html 8.5 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/01. Diamonds.html 8.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing.html 8.5 kB
  • Part 04-Module 01-Lesson 14_Regression/10. Video What Defines A Line.html 8.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2.html 8.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/24. Enron CFO.html 8.5 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2.html 8.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion.html 8.5 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum.html 8.5 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/22. Enron CEO.html 8.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/24. Clean (Summary).html 8.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information.html 8.4 kB
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions.html 8.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files on Hand.html 8.4 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/23. Enron Chairman.html 8.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types of Errors - Part I.html 8.4 kB
  • Part 04-Module 01-Lesson 14_Regression/02. Video Introduction to Machine Learning.html 8.4 kB
  • Part 16-Module 01-Lesson 08_Outliers/12. Slope After Cleaning.html 8.4 kB
  • Part 18-Module 01-Lesson 03_Control Flow/34. Conclusion.html 8.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!.html 8.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!.html 8.4 kB
  • Part 18-Module 01-Lesson 05_Scripting/01. Introduction.html 8.4 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3.html 8.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size.html 8.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots.html 8.4 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About with More Than Two Variables.html 8.4 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition).html 8.4 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric.html 8.4 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula.html 8.4 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories.html 8.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection.html 8.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4.html 8.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5.html 8.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6.html 8.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2.html 8.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing.html 8.4 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/03. Quiz Window Functions 1.html 8.4 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI.html 8.4 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/04. Solutions LEFT RIGHT.html 8.4 kB
  • Part 03-Module 01-Lesson 01_Anaconda/04. Managing packages.html 8.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/01. Video Introduction to Aggregation.html 8.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature.html 8.4 kB
  • Part 04-Module 01-Lesson 14_Regression/16. Video How to Interpret the Results.html 8.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/05. Video COUNT NULLs.html 8.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data.html 8.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics.html 8.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye.html 8.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1.html 8.4 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/18. Solutions Comparing a Row to Previous Row.html 8.4 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/03. Reverting A Commit.html 8.4 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/08. Quiz ROW_NUMBER RANK.html 8.4 kB
  • assets/css/fonts/KaTeX_Size3-Regular.ttf 8.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/22. Video HAVING.html 8.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression.html 8.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. Video Welcome!.html 8.4 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3.html 8.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/24. Other File Formats.html 8.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization.html 8.3 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/04. Python Lists.html 8.3 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/05. ScreenCast Difference In Means.html 8.3 kB
  • Part 04-Module 01-Lesson 14_Regression/17. Video Does the Line Fit the Data Well.html 8.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Video Introduction to Summary Statistics.html 8.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical of Outliers and Anomalies.html 8.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/22. Stock Option Range.html 8.3 kB
  • Part 15-Module 02-Lesson 06_Graphs/05. Graph Practice.html 8.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion.html 8.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/22. Feature Selection Mini-Project.html 8.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty.html 8.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes.html 8.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation.html 8.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3.html 8.3 kB
  • Part 18-Module 01-Lesson 04_Functions/11. Lambda Expressions.html 8.3 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/03. Quiz LEFT RIGHT.html 8.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width.html 8.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/19. Clean Away Signature Words.html 8.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data.html 8.3 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3.html 8.3 kB
  • Part 09-Module 01-Lesson 02_Design/02. Lesson Overview.html 8.3 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/15. Text Other JOIN Notes.html 8.3 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/07. Load Factor.html 8.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/19. How Data Gets Dirty and Messy.html 8.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library.html 8.3 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/12. Solutions Aggregates in Window Functions.html 8.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate!.html 8.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics.html 8.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords.html 8.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.en.vtt 8.3 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/12. Video Other Language Associated with Confidence Intervals.html 8.3 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/20. Recap.html 8.2 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/09. Quiz CONCAT.html 8.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge.html 8.2 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/02. Video Introduction to NULLs.html 8.2 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing.html 8.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/19. Clustering Features.html 8.2 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/11. Interquartile Range - IQR.html 8.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Introduce Instructors.html 8.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2.html 8.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/03. Dataset Finding the Best Movies.html 8.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.pt-BR.vtt 8.2 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/16. Gapminder Revisited.html 8.2 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/05. For Loops II.html 8.2 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited.html 8.2 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/03. Meet the Team.html 8.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum.html 8.2 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/33. Text Recap.html 8.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means.html 8.2 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/05. Solution Your First JOIN.html 8.2 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/05. Paired T-test Quiz.html 8.2 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/14. Assessing and Building Intuition.html 8.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Video Data Types Summary.html 8.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.en.vtt 8.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. Video What is Data Why is it important.html 8.2 kB
  • Part 18-Module 01-Lesson 05_Scripting/10. Solution Scripting with Raw Input.html 8.2 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/09. Solutions ROW_NUMBER RANK.html 8.2 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/02. Lesson Outline.html 8.2 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/04. Solutions Window Functions 1.html 8.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape.html 8.2 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/Project Description - Optimize Your GitHub Profile.html 8.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1.html 8.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2.html 8.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax.html 8.2 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/02. Video From Sampling Distributions to Confidence Intervals.html 8.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots.html 8.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/20. Deploying Clustering.html 8.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.ar.vtt 8.2 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/13. Reading CSV Files.html 8.1 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/18. Cleaning Practice.html 8.1 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt 8.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/03. Meet the Team.html 8.1 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Screencast Fitting A Multiple Linear Regression Model.html 8.1 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/11. Gapminder Multivariate Analysis.html 8.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations.html 8.1 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/14. Video Correct Interpretations of Confidence Intervals.html 8.1 kB
  • Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn.html 8.1 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/09. Statistical vs. Practical Significance.html 8.1 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/04. Solutions Write Your First Subquery.html 8.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4.html 8.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight.html 8.1 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/08. Video Statistical vs. Practical Significance.html 8.1 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/13. Conclusions Visuals.html 8.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data.html 8.1 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/02. Lesson Outline.html 8.1 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt 8.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question.html 8.1 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/Project Description - Investigate a Dataset.html 8.1 kB
  • Part 01-Module 02-Lesson 02_Explore Weather Trends/01. Project Instructions.html 8.1 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/14. Your Udacity Professional Profile.html 8.1 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/10. Solutions CONCAT.html 8.1 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/05. Proportion of Friendships Initiated.html 8.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme.html 8.1 kB
  • Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/04. Final Check of Instructions.html 8.1 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Video WITH.html 8.1 kB
  • Part 09-Module 01-Lesson 02_Design/19. Same Data, Different Stories.html 8.1 kB
  • Part 16-Module 01-Lesson 14_Validation/13. GridSearchCV in sklearn.html 8.1 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Screencast How to Add Higher Order Terms.html 8.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps.html 8.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors.html 8.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/13. Video Motivation for Other JOINs.html 8.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/Project Description - Technical Interview Practice.html 8.1 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/08. Keep Practicing!.html 8.1 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/04. Solutions FULL OUTER JOIN.html 8.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer.html 8.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables.html 8.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Video Higher Order Terms.html 8.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2.html 8.0 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/07. Projects.html 8.0 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I.html 8.0 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots.html 8.0 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/03. Binary Search Practice.html 8.0 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias.html 8.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.ar.vtt 8.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/23. Solution The Standard Library.html 8.0 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/18. Matplotlib Example.html 8.0 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Video Aliases for Multiple Window Functions.html 8.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Screencast Dummy Variables.html 8.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model.html 8.0 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions.html 8.0 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/14. Your Udacity Professional Profile.html 8.0 kB
  • Part 16-Module 01-Lesson 09_Clustering/23. Salary Range.html 8.0 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/03. ScreenCast Sampling Distributions and Confidence Intervals.html 8.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Video Interpreting Interactions.html 8.0 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/06. Cleaning Column Labels.html 8.0 kB
  • Part 04-Module 01-Lesson 14_Regression/04. Video Introduction to Linear Regression.html 8.0 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data.html 8.0 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/11. ScreenCast Traditional Confidence Interval Methods.html 8.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds.html 8.0 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron.html 8.0 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2.html 8.0 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1.html 8.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/17. Resources in Your Career Portal.html 8.0 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/16. Results with Merged Dataset.html 8.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods.html 8.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Video Potential Problems.html 8.0 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/05. Git Diff.html 8.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/15. Solution Handling Input Errors.html 8.0 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting with Appending.html 8.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1.html 8.0 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.pt-BR.vtt 7.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.pt-BR.vtt 7.9 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous.html 7.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/07. Solutions JOINs with Comparison Operators.html 7.9 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/03. Quiz 2 Messy Data.html 7.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data.html 7.9 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/Project Description - Craft Your Cover Letter.html 7.9 kB
  • Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.ar.vtt 7.9 kB
  • Part 04-Module 01-Lesson 14_Regression/15. Screencast Fitting A Regression Line in Python.html 7.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation.html 7.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/29. Conclusion.html 7.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.en.vtt 7.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts.html 7.9 kB
  • Part 04-Module 01-Lesson 04_Probability/20. Text Recap + Next Steps.html 7.9 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt 7.9 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/04. Variable Scope.html 7.9 kB
  • Part 04-Module 01-Lesson 14_Regression/22. Text Recap + Next Steps.html 7.9 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads.html 7.9 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Video POSITION, STRPOS, SUBSTR.html 7.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!.html 7.9 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2.html 7.9 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3.html 7.9 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads.html 7.9 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads.html 7.9 kB
  • Part 16-Module 01-Lesson 11_Text Learning/17. Warming Up with parseOutText().html 7.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/19. Mashup Solution.html 7.9 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. Video + Text What's Ahead.html 7.9 kB
  • Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings.html 7.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris.html 7.9 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head.html 7.9 kB
  • Part 04-Module 01-Lesson 14_Regression/13. Video Fitting A Regression Line.html 7.9 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Video Recap.html 7.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/10. Solutions Self JOINs.html 7.9 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/10. Price Box Plots.html 7.9 kB
  • Part 18-Module 01-Lesson 04_Functions/04. Solution Defining Functions.html 7.9 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/12. Price per Carat Box Plots by Color.html 7.9 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/04. Errors.html 7.9 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula.html 7.9 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2.html 7.9 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation.html 7.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.ar.vtt 7.9 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Video More On Subqueries.html 7.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements.html 7.8 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/04. Top Section.html 7.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate.html 7.8 kB
  • Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2.html 7.8 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2.html 7.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example.html 7.8 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/20. Type Quality Plot with Matplotlib.html 7.8 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4.html 7.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails.html 7.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Handoff to Juno Lee.html 7.8 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/13. Solutions UNION.html 7.8 kB
  • Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.ar.vtt 7.8 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/Project Rubric - Analyze AB Test Results.html 7.8 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/03. Lists II.html 7.8 kB
  • Part 16-Module 01-Lesson 08_Outliers/14. Enron Outliers.html 7.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data with Visuals.html 7.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example.html 7.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5.html 7.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6.html 7.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3.html 7.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4.html 7.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes.html 7.8 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/07. Video Confidence Interval Applications.html 7.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios.html 7.8 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/11. Time for Live Practice with Pramp.html 7.8 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/08. Coding 2-qEteyPNRSwU.en.vtt 7.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.ar.vtt 7.8 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/10. Creating a slideshow.html 7.8 kB
  • Part 16-Module 01-Lesson 08_Outliers/10. Slope of Regression with Outliers.html 7.8 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/18. Video JOINs and Filtering.html 7.8 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/07. Resume Review (Prior Industry Experience).html 7.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First.html 7.8 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt 7.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial.html 7.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation.html 7.8 kB
  • Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness.html 7.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling and EDA.html 7.8 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability.html 7.8 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Projects.html 7.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results.html 7.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables.html 7.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/17. Text Recap + Next Steps.html 7.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting with Pandas.html 7.7 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Video + Text Recap.html 7.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.en.vtt 7.7 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/08. Solutions More On Subqueries.html 7.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions.html 7.7 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/08. Click Through Rate.html 7.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.pt-BR.vtt 7.7 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/09. Fixing Data Types Pt 1.html 7.7 kB
  • Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/Project Rubric - Test a Perceptual Phenomenon.html 7.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example.html 7.7 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/09. Bubble Sort Practice.html 7.7 kB
  • Part 18-Module 01-Lesson 04_Functions/16. [Optional] Solution Iterators and Generators.html 7.7 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. How Do I Find Time for My Nanodegree.html 7.7 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/12. Merge Sort Practice.html 7.7 kB
  • Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.ar.vtt 7.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data.html 7.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!.html 7.7 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/Project Description - Analyze AB Test Results.html 7.7 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/07. Resume Review (Career Change).html 7.7 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset.html 7.7 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview.html 7.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/18. Deploying Stemming.html 7.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose.html 7.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction.html 7.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/index.html 7.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Video Introduction to Window Functions.html 7.7 kB
  • Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac.html 7.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion.html 7.7 kB
  • Part 09-Module 01-Lesson 02_Design/16. General Design Tips.html 7.7 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/13. Solutions CAST.html 7.7 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value.html 7.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.ja.vtt 7.7 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/03. Video Introduction to JOINs.html 7.7 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value.html 7.7 kB
  • Part 04-Module 01-Lesson 14_Regression/01. Video Introduction.html 7.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Video Aggregates in Window Functions.html 7.7 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/09. Price per Carat by Cut.html 7.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.ar.vtt 7.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.zh-CN.vtt 7.6 kB
  • Part 16-Module 01-Lesson 14_Validation/18. Deploying a TrainingTesting Regime.html 7.6 kB
  • Part 09-Module 01-Lesson 02_Design/21. Recap.html 7.6 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/06. Quiz POSITION, STRPOS, SUBSTR - AME DATA AS QUIZ 1.html 7.6 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Video Introduction to Percentiles.html 7.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. How Do I Find Time for My Nanodegree.html 7.6 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/07. Resume Review (Entry-level).html 7.6 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/06. prop_initiated vs. tenure.html 7.6 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/12. Queue Practice.html 7.6 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/12. Adjustments - price vs. volume.html 7.6 kB
  • Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.ar.vtt 7.6 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/05. Cheaper Diamonds.html 7.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather (CSV Files).html 7.6 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages.html 7.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset.html 7.6 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review.html 7.6 kB
  • Part 16-Module 01-Lesson 08_Outliers/17. Any More Outliers.html 7.6 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data.html 7.6 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Video ROW_NUMBER RANK.html 7.6 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/Project Description - Wrangle and Analyze Data.html 7.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.en.vtt 7.6 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Video Recap.html 7.6 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/17. When to Deploy Feature Scaling.html 7.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather (Intro).html 7.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate.html 7.6 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots.html 7.6 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/14. Types of Merges.html 7.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/21. Assessing Summary.html 7.6 kB
  • Part 16-Module 01-Lesson 11_Text Learning/20. TfIdf It.html 7.6 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Video LEFT RIGHT.html 7.6 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/05. Adjustments - price vs. depth.html 7.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion.html 7.6 kB
  • Part 03-Module 01-Lesson 01_Anaconda/03. Installing Anaconda.html 7.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction.html 7.6 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/09. Solution Video More On Subqueries.html 7.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/26. Gathering Summary.html 7.5 kB
  • Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/01. Project Overview.html 7.5 kB
  • Part 15-Module 02-Lesson 05_Trees/04. Tree Practice.html 7.5 kB
  • Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual.html 7.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion.html 7.5 kB
  • Part 18-Module 01-Lesson 04_Functions/09. Quiz Documentation.html 7.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.pt-BR.vtt 7.5 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Video Introduction.html 7.5 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions.html 7.5 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation.html 7.5 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/08. Visual Assessment Acquaint Yourself.html 7.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.ar.vtt 7.5 kB
  • Part 16-Module 01-Lesson 08_Outliers/19. Remove These Outliers.html 7.5 kB
  • Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.pt-BR.vtt 7.5 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration.html 7.5 kB
  • Part 16-Module 01-Lesson 08_Outliers/18. Identifying Two More Outliers.html 7.5 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending and NumPy.html 7.4 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/07. Appending Data.html 7.4 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/08. Date Projection.html 7.4 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.pt-BR.vtt 7.4 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/15. Dictionaries IV.html 7.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.pt-BR.vtt 7.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/18. K-Means Clustering Mini-Project.html 7.4 kB
  • Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn.html 7.4 kB
  • Part 09-Module 01-Lesson 02_Design/07. Chart Junk.html 7.4 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/07. Most Frequent Word.html 7.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.en.vtt 7.4 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.en.vtt 7.4 kB
  • Part 09-Module 01-Lesson 02_Design/12. Text Effective Explanatory Visual Recap.html 7.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/index.html 7.4 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Video Subquery Conclusion.html 7.4 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations.html 7.4 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/03. Scripting Your Analysis.html 7.4 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate.html 7.4 kB
  • Part 09-Module 01-Lesson 02_Design/13. Using Color.html 7.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction.html 7.4 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.en.vtt 7.4 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components.html 7.4 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/01. Project Overview.html 7.4 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/04. Price vs. Volume and Diamond Clarity.html 7.4 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/16. Computing Rescaled Features.html 7.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3.html 7.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.ar.vtt 7.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/index.html 7.4 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/13. Meet the Careers Team.html 7.4 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview.html 7.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/22. Conclusion.html 7.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.ar.vtt 7.4 kB
  • Part 16-Module 01-Lesson 08_Outliers/16. Remove Enron Outlier.html 7.4 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/13. Resources in Your Career Portal.html 7.4 kB
  • Part 18-Module 01-Lesson 04_Functions/07. Solution Variable Scope.html 7.4 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Case Study Introduction.html 7.4 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/07. Solutions POSITION, STRPOS, SUBSTR.html 7.4 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects.html 7.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.en.vtt 7.3 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/02. Linear Regression Models.html 7.3 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II.html 7.3 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/01. Price Histograms with Facet and Color.html 7.3 kB
  • Part 09-Module 02-Lesson 01_Create a Tableau Story/Project Description - Create a Tableau Story.html 7.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.ja.vtt 7.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means.html 7.3 kB
  • Part 18-Module 01-Lesson 04_Functions/10. Solution Documentation.html 7.3 kB
  • Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio.html 7.3 kB
  • Part 18-Module 01-Lesson 04_Functions/18. Conclusion.html 7.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/index.html 7.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/index.html 7.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/index.html 7.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/12. Meet the Careers Team.html 7.3 kB
  • Part 02-Module 02-Lesson 01_Python Project/02. Project Details.html 7.3 kB
  • Part 04-Module 01-Lesson 14_Regression/21. Video Recap.html 7.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.pt-BR.vtt 7.3 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots.html 7.3 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview.html 7.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning.html 7.3 kB
  • Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/Project Description - Test a Perceptual Phenomenon.html 7.3 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/resid-plots.gif 7.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.ar.vtt 7.3 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items.html 7.3 kB
  • Part 16-Module 01-Lesson 08_Outliers/15. Identify the Biggest Enron Outlier.html 7.3 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/16. Video Confidence Intervals Hypothesis Tests.html 7.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn.html 7.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.pt-BR.vtt 7.3 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.pt-BR.vtt 7.3 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type Quality Plot - Part 1.html 7.3 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction.html 7.3 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/14. Pandas Query.html 7.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/21. Accessing TfIdf Features.html 7.3 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/10. PriceCarat Binned, Faceted, Colored.html 7.3 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter.html 7.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies.html 7.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty vs. Messy 1.html 7.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie.html 7.2 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Video Self JOINs.html 7.2 kB
  • Part 09-Module 01-Lesson 02_Design/18. Tell A Story.html 7.2 kB
  • Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.ar.vtt 7.2 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Video Communicating With Your Data.html 7.2 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion.html 7.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video.html 7.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/index.html 7.2 kB
  • Part 18-Module 01-Lesson 04_Functions/01. Introduction.html 7.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.ar.vtt 7.2 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/09. price vs. volume.html 7.2 kB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/04. Evaluation and Submission.html 7.2 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview.html 7.2 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/09. Iterative Programming III.html 7.2 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment.html 7.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/13. Access Your Career Portal.html 7.2 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/01. Video Introduction.html 7.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/16. Text Learning Mini-Project.html 7.2 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby.html 7.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/12. Sklearn.html 7.2 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example.html 7.2 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/02. Price vs. Table Colored by Cut.html 7.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/15. What Kind of Scaling.html 7.2 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/08. Address Missing Data First.html 7.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.ar.vtt 7.2 kB
  • Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring.html 7.2 kB
  • Part 18-Module 01-Lesson 04_Functions/06. Variable Scope.html 7.2 kB
  • Part 18-Module 01-Lesson 04_Functions/13. Solution Lambda Expressions.html 7.1 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/19. Plotting with Matplotlib.html 7.1 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Video Hierarchies with Trina.html 7.1 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.ar.vtt 7.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.zh-CN.vtt 7.1 kB
  • Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy.html 7.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/15. Data Munging.html 7.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary.html 7.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/01. Video Motivation.html 7.1 kB
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes.html 7.1 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.ar.vtt 7.1 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2.html 7.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video.html 7.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/09. Getting Help.html 7.1 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.ar.vtt 7.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.ar.vtt 7.1 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/09. Resources in Your Career Portal.html 7.1 kB
  • Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning.html 7.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Data Visualization Introduction.html 7.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.en.vtt 7.1 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.zh-CN.vtt 7.1 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.zh-CN.vtt 7.1 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.zh-CN.vtt 7.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Conclusion.html 7.1 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/07. Completing and Submitting this Project in the Classroom.html 7.0 kB
  • Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit.html 7.0 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/07. Correlation - price and depth.html 7.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.zh-CN.vtt 7.0 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2.html 7.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/16. Outro.html 7.0 kB
  • Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project.html 7.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/16. Text Summary.html 7.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words.html 7.0 kB
  • Part 03-Module 01-Lesson 01_Anaconda/06. More environment actions.html 7.0 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. Video COALESCE.html 7.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.pt-BR.vtt 7.0 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/08. Resources in Your Career Portal.html 7.0 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/11. Code with Branches V.html 7.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data.html 7.0 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion.html 7.0 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Video Introduction to SQL Data Cleaning.html 7.0 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Video Performance Tuning Motivation.html 7.0 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/11. Correlations on Subsets.html 7.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1.html 7.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2.html 7.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3.html 7.0 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.en-US.vtt 7.0 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.en.vtt 7.0 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/07. Smoothing prop_initiated vs. tenure.html 7.0 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Video Introduction to Advanced SQL.html 7.0 kB
  • Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video.html 7.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/10. Solution Missing Data.html 7.0 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Video Introduction to Subqueries.html 7.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/06. Cleaning Sequences.html 7.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/09. Quiz Missing Data.html 7.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/13. Solution Tidiness.html 7.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK.html 7.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/16. Solution Quality.html 7.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.en.vtt 7.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/12. Quiz Tidiness.html 7.0 kB
  • Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm.html 7.0 kB
  • assets/css/fonts/KaTeX_Size1-Regular.woff 7.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/15. Quiz Quality.html 7.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/index.html 7.0 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.zh-CN.vtt 7.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository.html 7.0 kB
  • Part 16-Module 01-Lesson 08_Outliers/11. Score of Regression with Outliers.html 7.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows.html 7.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/index.html 7.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.zh-CN.vtt 7.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/19. Cleaning Summary.html 7.0 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards.html 7.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables.html 6.9 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction.html 6.9 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/08. Resources in Your Career Portal.html 6.9 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type Quality Plot - Part 2.html 6.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Video Performance Tuning 2.html 6.9 kB
  • Part 09-Module 01-Lesson 02_Design/01. Introduction.html 6.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Video Performance Tuning 3.html 6.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Video SQL Completion Congratulations.html 6.9 kB
  • Part 09-Module 02-Lesson 01_Create a Tableau Story/01. Project Overview.html 6.9 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/08. Resources in Your Career Portal.html 6.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales.html 6.9 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/09. Converting notebooks.html 6.9 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/06. Price by Cut Histograms.html 6.9 kB
  • Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video.html 6.9 kB
  • Part 16-Module 01-Lesson 08_Outliers/13. Score After Cleaning.html 6.9 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. Video CONCAT.html 6.9 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next.html 6.9 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.en.vtt 6.9 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.en.vtt 6.9 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics.html 6.9 kB
  • Part 09-Module 01-Lesson 02_Design/22. Onwards!.html 6.9 kB
  • Part 16-Module 01-Lesson 13_PCA/index.html 6.9 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/01. price vs. x.html 6.9 kB
  • Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.en.vtt 6.9 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.ar.vtt 6.9 kB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/05. Example Project.html 6.9 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes #1.html 6.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video.html 6.9 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/09. Resources in Your Career Portal.html 6.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.zh-CN.vtt 6.9 kB
  • Part 16-Module 01-Lesson 08_Outliers/09. Outliers Mini-Project.html 6.9 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/03. Typical Table Value.html 6.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.ar.vtt 6.9 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/04. price vs. depth.html 6.9 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/04. Diamond Counts.html 6.9 kB
  • Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration.html 6.9 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/03. Correlations.html 6.9 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/Project Description - Udacity Professional Profile Review.html 6.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.zh-CN.vtt 6.9 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/08. Resources in Your Career Portal.html 6.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.ar.vtt 6.8 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/08. price vs. carat.html 6.8 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/01. Project Details.html 6.8 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns.html 6.8 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/03. Personal Branding.html 6.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual vs. Programmatic Cleaning.html 6.8 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/11. Sets II.html 6.8 kB
  • Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists.html 6.8 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/05. Recruitment Data.html 6.8 kB
  • Part 03-Module 01-Lesson 01_Anaconda/08. Python Versions.html 6.8 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/01. Introduction.html 6.8 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/18. Introduction to Data Dashboards.html 6.8 kB
  • Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.ar.vtt 6.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.zh-CN.vtt 6.8 kB
  • Part 15-Module 02-Lesson 05_Trees/07. Tree Traversal Practice.html 6.8 kB
  • Part 03-Module 01-Lesson 01_Anaconda/07. Best practices.html 6.8 kB
  • Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.en.vtt 6.8 kB
  • Part 01-Module 02-Lesson 02_Explore Weather Trends/02. Accessing Data With SQL.html 6.8 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Video Building Dashboards Stories with Trina.html 6.8 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn.html 6.8 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/02. Modifying The Last Commit.html 6.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.ar.vtt 6.8 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion.html 6.8 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Welcome Back!.html 6.8 kB
  • Part 07-Module 01-Lesson 02_R Basics/02. Why R.html 6.8 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/14. Data Wrangling with R.html 6.8 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.pt-BR.vtt 6.8 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/15. Quick Sort Practice.html 6.8 kB
  • Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.pt-BR.vtt 6.8 kB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/03. Project Template RMD File.html 6.8 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/06. Implementing the Program III.html 6.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA.html 6.7 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning for Tidiness.html 6.7 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning for Quality.html 6.7 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/02. Course Outline.html 6.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/index.html 6.7 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/index.html 6.7 kB
  • Part 18-Module 01-Lesson 04_Functions/17. [Optional] Generator Expressions.html 6.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.ar.vtt 6.7 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/02. Price Histogram.html 6.7 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips.html 6.7 kB
  • Part 07-Module 01-Lesson 02_R Basics/06. Ready to Explore Data.html 6.7 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/17. Compound Data Structures II.html 6.7 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/09. Reorganizing Code II.html 6.7 kB
  • Part 18-Module 01-Lesson 04_Functions/19. Further Learning.html 6.7 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/06. Choose-Your-Own Algorithm Checklist.html 6.7 kB
  • assets/css/fonts/KaTeX_Size2-Regular.woff 6.7 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/Project Description - Resume Review Project (Entry-level).html 6.7 kB
  • Part 16-Module 01-Lesson 14_Validation/16. Validation Mini-Project.html 6.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.ar.vtt 6.7 kB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.ar.vtt 6.7 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/04. Defining Functions III.html 6.7 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It.html 6.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.ar.vtt 6.7 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward.html 6.7 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch.html 6.7 kB
  • Part 07-Module 01-Lesson 02_R Basics/17. Congratulations.html 6.7 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips.html 6.7 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability.html 6.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.zh-CN.vtt 6.6 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/08. Greatest prop_initiated Group.html 6.6 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion.html 6.6 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/Project Description - Resume Review Project (Prior Industry Experience).html 6.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.pt-BR.vtt 6.6 kB
  • Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.en.vtt 6.6 kB
  • Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.en.vtt 6.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.pt-BR.vtt 6.6 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills.html 6.6 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.ar.vtt 6.6 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.en-US.vtt 6.6 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.en.vtt 6.6 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/11. Text Lesson Recap.html 6.6 kB
  • Part 01-Module 02-Lesson 02_Explore Weather Trends/Project Rubric - Explore Weather Trends.html 6.6 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/03. Completing and Submitting this Project - Two Options.html 6.6 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/06. Typical Depth Range.html 6.6 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format.html 6.6 kB
  • Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion.html 6.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.pt-BR.vtt 6.6 kB
  • Part 16-Module 01-Lesson 03_SVM/index.html 6.6 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/09. Check Rubric.html 6.6 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/08. Can You Beat Our High Score.html 6.6 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up.html 6.5 kB
  • Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability.html 6.5 kB
  • Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/02. Completing and Submitting this Project - Two Options.html 6.5 kB
  • Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals.html 6.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.ar.vtt 6.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary.html 6.5 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.pt-BR.vtt 6.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/index.html 6.5 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/08. Resources in Your Career Portal.html 6.5 kB
  • Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees.html 6.5 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/Project Description - Resume Review Project (Career Change).html 6.5 kB
  • Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees.html 6.5 kB
  • Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation.html 6.5 kB
  • Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion.html 6.5 kB
  • Part 15-Module 02-Lesson 05_Trees/08. Search and Delete.html 6.5 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review.html 6.5 kB
  • Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology.html 6.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.ar.vtt 6.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.ar.vtt 6.5 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.ja.vtt 6.5 kB
  • Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal.html 6.5 kB
  • Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations.html 6.5 kB
  • Part 02-Module 02-Lesson 01_Python Project/04. Code Cells.html 6.5 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.ar.vtt 6.5 kB
  • assets/css/fonts/KaTeX_Size4-Regular.woff 6.5 kB
  • Part 15-Module 02-Lesson 05_Trees/02. Tree Basics.html 6.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.ar.vtt 6.4 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Welcome Back!.html 6.4 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.en.vtt 6.4 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/12. Text Recap + Next Steps.html 6.4 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/14. Feature Scaling Mini-Project.html 6.4 kB
  • Part 15-Module 02-Lesson 05_Trees/16. Heapify.html 6.4 kB
  • Part 18-Module 01-Lesson 03_Control Flow/index.html 6.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.ar.vtt 6.4 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work.html 6.4 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.en.vtt 6.4 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Video Extra Practice with Dashboards.html 6.4 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/02. Getting Started.html 6.4 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review.html 6.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/03. Using Windows.html 6.4 kB
  • Part 15-Module 02-Lesson 05_Trees/09. Insert.html 6.4 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/04. Course Overview.html 6.4 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome to Term 2 of the Data Analyst Nanodegree program.html 6.4 kB
  • Part 15-Module 02-Lesson 05_Trees/01. Trees.html 6.4 kB
  • Part 15-Module 02-Lesson 05_Trees/15. Heaps.html 6.4 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review.html 6.4 kB
  • Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.en.vtt 6.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.pt-BR.vtt 6.4 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/07. While Loops II.html 6.4 kB
  • Part 15-Module 02-Lesson 05_Trees/12. BSTs.html 6.4 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/13. Dictionaries II.html 6.4 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/01. Introduction.html 6.4 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/03. STAR Method.html 6.4 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question.html 6.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.pt-BR.vtt 6.4 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/02. Why Study a New Algorithm Solo.html 6.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/index.html 6.4 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction.html 6.4 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/01. Introduction.html 6.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.ja.vtt 6.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability.html 6.4 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/08. Project Workspace Complete and Submit Project.html 6.4 kB
  • Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.zh-CN.vtt 6.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.ar.vtt 6.3 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/09. Largest Group Mean prop_initiated.html 6.3 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/index.html 6.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.zh-CN.vtt 6.3 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion.html 6.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work.html 6.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs.html 6.3 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress.html 6.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis.html 6.3 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/10. Findings - price vs. volume.html 6.3 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences.html 6.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.ar.vtt 6.3 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!.html 6.3 kB
  • Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA.html 6.3 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative.html 6.3 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/03. Price Histogram Summary.html 6.3 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/02. Findings - price vs. x.html 6.3 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/03. Analyzing Behavioral Answers.html 6.3 kB
  • Part 02-Module 02-Lesson 01_Python Project/01. Project Overview.html 6.3 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Video Congratulations!.html 6.3 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/15. Trends in Mean Price.html 6.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming.html 6.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.ar.vtt 6.3 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/05. Resources in Your Career Portal.html 6.3 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Orientation Introduction.html 6.3 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/03. Candy Conundrum.html 6.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases.html 6.3 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects.html 6.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging.html 6.3 kB
  • Part 15-Module 02-Lesson 05_Trees/13. BST Complications.html 6.3 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Conclusion.html 6.3 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace.html 6.3 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure.html 6.3 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation.html 6.3 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/12. Study Habits of Successful Graduates.html 6.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.pt-BR.vtt 6.2 kB
  • Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course.html 6.2 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.es-MX.vtt 6.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress.html 6.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/index.html 6.2 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding.html 6.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Looking Ahead.html 6.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.en.vtt 6.2 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences.html 6.2 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search.html 6.2 kB
  • Part 13-Module 01-Lesson 02_LinkedIn Review/02. Resources in Your Career Portal.html 6.2 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company.html 6.2 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences.html 6.2 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/04. Football Statistics.html 6.2 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort.html 6.2 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.pt-BR.vtt 6.2 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/05. Learning Plan - First Two Weeks.html 6.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.ar.vtt 6.2 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort.html 6.2 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort.html 6.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects.html 6.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Orientation Introduction.html 6.2 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/06. Skills.html 6.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary.html 6.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/11. Study Habits of Successful Graduates.html 6.2 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/index.html 6.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/index.html 6.1 kB
  • Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.ar.vtt 6.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting.html 6.1 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro.html 6.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer.html 6.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction.html 6.1 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.ar.vtt 6.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.ar.vtt 6.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search.html 6.1 kB
  • Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data.html 6.1 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/01. Analyzing an Interview.html 6.1 kB
  • Part 13-Module 01-Lesson 02_LinkedIn Review/Project Description - LinkedIn Profile Review Project.html 6.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary.html 6.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort.html 6.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.ar.vtt 6.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort.html 6.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort.html 6.1 kB
  • Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.pt-BR.vtt 6.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion.html 6.1 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely.html 6.1 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-cXluuqCVg18.en.vtt 6.1 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components.html 6.1 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction.html 6.1 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database.html 6.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.pt-BR.vtt 6.0 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview.html 6.0 kB
  • Part 09-Module 02-Lesson 01_Create a Tableau Story/03. Share Your Work.html 6.0 kB
  • Part 07-Module 01-Lesson 01_What is EDA/01. Handoff to Chris Saden.html 6.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.ar.vtt 6.0 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1.html 6.0 kB
  • Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview.html 6.0 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers of Statistics.html 6.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.ar.vtt 6.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/index.html 6.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.ar.vtt 6.0 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely.html 6.0 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network.html 6.0 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection.html 6.0 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components.html 6.0 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure.html 6.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.pt-BR.vtt 6.0 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely.html 6.0 kB
  • Part 03-Module 01-Lesson 01_Anaconda/01. Introduction.html 6.0 kB
  • Part 02-Module 02-Lesson 01_Python Project/07. Project Notebook.html 6.0 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components.html 6.0 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/05. Code cells.html 6.0 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.zh-CN.vtt 5.9 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion.html 5.9 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/08. The Standard Library II.html 5.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/index.html 5.9 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson.html 5.9 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.ar.vtt 5.9 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/02. Socks from a Box.html 5.9 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.zh-CN.vtt 5.9 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare.html 5.9 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/04. What's Next in Your Journey!.html 5.9 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites.html 5.9 kB
  • Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles.html 5.9 kB
  • Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations.html 5.9 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/08. Coding 2.html 5.9 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection.html 5.9 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.zh-CN.vtt 5.9 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure.html 5.9 kB
  • Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction.html 5.9 kB
  • Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices.html 5.9 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection.html 5.9 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/01. Introduction.html 5.9 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/04. Project Workspace Complete and Submit Project.html 5.9 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure.html 5.9 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys.html 5.9 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm.html 5.9 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure.html 5.9 kB
  • Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph.html 5.9 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.zh-CN.vtt 5.9 kB
  • Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal.html 5.9 kB
  • Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.zh-CN.vtt 5.9 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.zh-CN.vtt 5.9 kB
  • Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path.html 5.9 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris.html 5.9 kB
  • Part 15-Module 02-Lesson 06_Graphs/04. Connectivity.html 5.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.ja.vtt 5.8 kB
  • Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/03. Project Workspace Complete and Submit Project.html 5.8 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process.html 5.8 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/08. Experience.html 5.8 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.en.vtt 5.8 kB
  • Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.pt-BR.vtt 5.8 kB
  • Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.en.vtt 5.8 kB
  • Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.en.vtt 5.8 kB
  • assets/css/fonts/KaTeX_Size1-Regular.woff2 5.8 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/05. Project Workspace Complete and Submit Project.html 5.8 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Data Scientist at Facebook.html 5.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.en.vtt 5.8 kB
  • Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.pt-BR.vtt 5.8 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options.html 5.8 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/02. Welcome to the Course!.html 5.8 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations.html 5.8 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.en-US.vtt 5.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/index.html 5.8 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.en.vtt 5.8 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project.html 5.8 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/07. Keyboard shortcuts.html 5.8 kB
  • Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.ar.vtt 5.8 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/01. Introduction.html 5.8 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/06. Reading from a File II.html 5.8 kB
  • Part 05-Module 01-Lesson 01_Congratulations & Next Steps/01. Congratulations Next Steps.html 5.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.ar.vtt 5.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.en-US.vtt 5.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.ar.vtt 5.8 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose of the Cover Letter.html 5.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.en.vtt 5.8 kB
  • Part 15-Module 02-Lesson 06_Graphs/10. DFS.html 5.8 kB
  • Part 15-Module 02-Lesson 06_Graphs/11. BFS.html 5.8 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections.html 5.8 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.pt-BR.vtt 5.8 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth.html 5.8 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/01. Congratulations!.html 5.8 kB
  • Part 02-Module 02-Lesson 01_Python Project/08. Project Walkthrough.html 5.8 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.pt-BR.vtt 5.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.th.vtt 5.7 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction.html 5.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/index.html 5.7 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.pt-BR.vtt 5.7 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued.html 5.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/index.html 5.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.pt-BR.vtt 5.7 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro.html 5.7 kB
  • Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.zh-CN.vtt 5.7 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes.html 5.7 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Dimensions.html 5.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/index.html 5.7 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details.html 5.7 kB
  • Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.ar.vtt 5.7 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.pt-BR.vtt 5.7 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists.html 5.7 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction, Part II.html 5.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/index.html 5.7 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.zh-CN.vtt 5.7 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/02. Installing Jupyter Notebook.html 5.7 kB
  • Part 04-Module 01-Lesson 14_Regression/index.html 5.7 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps.html 5.7 kB
  • Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.pt-BR.vtt 5.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/index.html 5.7 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency.html 5.7 kB
  • Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.ar.vtt 5.7 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/03. Course Expectations.html 5.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.pt-BR.vtt 5.7 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms.html 5.7 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter.html 5.7 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.pt-BR.vtt 5.6 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays.html 5.6 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks.html 5.6 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues.html 5.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.ar.vtt 5.6 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax.html 5.6 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/11. Finishing up.html 5.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.en.vtt 5.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/index.html 5.6 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists.html 5.6 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing.html 5.6 kB
  • Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.ar.vtt 5.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.ar.vtt 5.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.pt-BR.vtt 5.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.ar.vtt 5.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem.html 5.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.pt-BR.vtt 5.6 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps.html 5.6 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Data Scientist at Hired.html 5.6 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Why Use Elevator Pitches.html 5.6 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/01. Introduction.html 5.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm.html 5.6 kB
  • Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.pt-BR.vtt 5.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction.html 5.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.en.vtt 5.6 kB
  • Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.zh-CN.vtt 5.6 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/08. Conclusion.html 5.6 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch.html 5.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem.html 5.6 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Sinthuja Nagalingam at Summit Schools.html 5.6 kB
  • assets/css/fonts/KaTeX_Size2-Regular.woff2 5.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming.html 5.6 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/03. Programming in Python.html 5.6 kB
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.ar.vtt 5.6 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps.html 5.5 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm.html 5.5 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.zh-CN.vtt 5.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.th.vtt 5.5 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem.html 5.5 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/index.html 5.5 kB
  • Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.ar.vtt 5.5 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions.html 5.5 kB
  • Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.en.vtt 5.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.en-US.vtt 5.5 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.ar.vtt 5.5 kB
  • Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.en.vtt 5.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.ar.vtt 5.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.pt-BR.vtt 5.5 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction, Part I.html 5.5 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/01. Intro.html 5.5 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/07. Outro.html 5.5 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing.html 5.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.en.vtt 5.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.pt-BR.vtt 5.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.ar.vtt 5.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.ja.vtt 5.5 kB
  • Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.pt-BR.vtt 5.5 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt 5.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/index.html 5.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.pt-BR.vtt 5.4 kB
  • Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.ar.vtt 5.4 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.pt-BR.vtt 5.4 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.en.vtt 5.4 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/05. Project Walkthrough.html 5.4 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/02. Next Steps.html 5.4 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.en.vtt 5.4 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer.html 5.4 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/01. CEO, Sparta Science.html 5.4 kB
  • Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.en.vtt 5.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/index.html 5.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.en.vtt 5.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.ar.vtt 5.4 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.en.vtt 5.4 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.ar.vtt 5.4 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It-7IKqdW30GvQ.pt-BR.vtt 5.4 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-cXluuqCVg18.zh-CN.vtt 5.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/index.html 5.4 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Intro.html 5.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.ar.vtt 5.4 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity.html 5.4 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.en-US.vtt 5.4 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.en.vtt 5.4 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.en.vtt 5.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.pt-BR.vtt 5.3 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.ar.vtt 5.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.ar.vtt 5.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.pt-BR.vtt 5.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.pt-BR.vtt 5.3 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.pt-BR.vtt 5.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.en.vtt 5.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.ja.vtt 5.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.en.vtt 5.3 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.es-MX.vtt 5.3 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Intro.html 5.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.en.vtt 5.3 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/index.html 5.3 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-cXluuqCVg18.pt-BR.vtt 5.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.ar.vtt 5.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.ar.vtt 5.3 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/02. Tuples II.html 5.3 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.pt-BR.vtt 5.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.en.vtt 5.3 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit.html 5.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.zh-CN.vtt 5.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.ar.vtt 5.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.en.vtt 5.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.ar.vtt 5.3 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara.html 5.3 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.ar.vtt 5.3 kB
  • Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.en.vtt 5.3 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.ar.vtt 5.3 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.ar.vtt 5.3 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset.html 5.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.th.vtt 5.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.ar.vtt 5.2 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales.html 5.2 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.ar.vtt 5.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.ar.vtt 5.2 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/01. Intro.html 5.2 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/01. Intro.html 5.2 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.pt-BR.vtt 5.2 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction, Part III.html 5.2 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/index.html 5.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/index.html 5.2 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction.html 5.2 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/index.html 5.2 kB
  • Part 16-Module 01-Lesson 14_Validation/index.html 5.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.en.vtt 5.2 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/06. Onward.html 5.2 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/05. Lesson Outro.html 5.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.pt-BR.vtt 5.2 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.en.vtt 5.2 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary.html 5.2 kB
  • assets/css/fonts/KaTeX_Size4-Regular.woff2 5.2 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/index.html 5.2 kB
  • Part 09-Module 01-Lesson 02_Design/index.html 5.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.pt-BR.vtt 5.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.ar.vtt 5.2 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lag-1-innerquery.png 5.2 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro.html 5.2 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro.html 5.2 kB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/06. Project Walkthrough.html 5.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.ar.vtt 5.2 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/05. Outro.html 5.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.pt-BR.vtt 5.1 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro.html 5.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.ar.vtt 5.1 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.pt-BR.vtt 5.1 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails.html 5.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.en-US.vtt 5.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.en-US.vtt 5.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.en.vtt 5.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.en.vtt 5.1 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.ar.vtt 5.1 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/01. Instructor.html 5.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.en.vtt 5.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.pt-BR.vtt 5.1 kB
  • Part 16-Module 01-Lesson 08_Outliers/index.html 5.1 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.ar.vtt 5.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.ja.vtt 5.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.zh-CN.vtt 5.1 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/index.html 5.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.ar.vtt 5.1 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/01. Lesson Overview.html 5.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.zh-CN.vtt 5.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.zh-CN.vtt 5.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.zh-CN.vtt 5.1 kB
  • Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.ar.vtt 5.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.pt-BR.vtt 5.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/index.html 5.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.en-US.vtt 5.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.en.vtt 5.1 kB
  • Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.ar.vtt 5.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.zh-CN.vtt 5.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.zh-CN.vtt 5.0 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.ar.vtt 5.0 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviews are Conversations.html 5.0 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.en.vtt 5.0 kB
  • Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer.html 5.0 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.ar.vtt 5.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.en.vtt 5.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt 5.0 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.en.vtt 5.0 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/index.html 5.0 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.pt-BR.vtt 5.0 kB
  • Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.zh-CN.vtt 5.0 kB
  • Part 09-Module 01-Lesson 02_Design/13. Using Color-6bAedqD3ilw.pt-BR.vtt 5.0 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It-7IKqdW30GvQ.en.vtt 5.0 kB
  • Part 18-Module 01-Lesson 04_Functions/index.html 5.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.en.vtt 5.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.en.vtt 5.0 kB
  • Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.ar.vtt 5.0 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content.html 5.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.pt-BR.vtt 5.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.en.vtt 5.0 kB
  • Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.zh-CN.vtt 5.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/index.html 5.0 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction.html 5.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.en.vtt 4.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.pt-BR.vtt 4.9 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.ar.vtt 4.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.zh-CN.vtt 4.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.zh-CN.vtt 4.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.ar.vtt 4.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.pt-BR.vtt 4.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.zh-CN.vtt 4.9 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.ar.vtt 4.9 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.zh-CN.vtt 4.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.en.vtt 4.9 kB
  • Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.zh-CN.vtt 4.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.en.vtt 4.9 kB
  • Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.ja.vtt 4.9 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/twitter-logo-whiteonblue.png 4.9 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt 4.9 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt 4.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.zh-CN.vtt 4.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.th.vtt 4.8 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/index.html 4.8 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.en-US.vtt 4.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.zh-CN.vtt 4.8 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/index.html 4.8 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.en.vtt 4.8 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.zh-CN.vtt 4.8 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.ar.vtt 4.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.en.vtt 4.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.pt-BR.vtt 4.8 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.ar.vtt 4.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.ja.vtt 4.8 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.ja.vtt 4.8 kB
  • Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.zh-CN.vtt 4.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.pt-BR.vtt 4.8 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.zh-CN.vtt 4.8 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.en.vtt 4.8 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/index.html 4.8 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-Uy89Ff49pRc.en.vtt 4.8 kB
  • Part 09-Module 01-Lesson 02_Design/13. Using Color-6bAedqD3ilw.en.vtt 4.8 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.zh-CN.vtt 4.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.ar.vtt 4.8 kB
  • assets/css/fonts/KaTeX_Size3-Regular.woff 4.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.ar.vtt 4.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.pt-BR.vtt 4.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.ar.vtt 4.8 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.ar.vtt 4.8 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.ar.vtt 4.8 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-Uy89Ff49pRc.pt-BR.vtt 4.8 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/index.html 4.8 kB
  • Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.ar.vtt 4.8 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.ar.vtt 4.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.pt-BR.vtt 4.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.en.vtt 4.7 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/index.html 4.7 kB
  • Part 15-Module 02-Lesson 05_Trees/index.html 4.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.en.vtt 4.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.zh-CN.vtt 4.7 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.ar.vtt 4.7 kB
  • Part 04-Module 01-Lesson 04_Probability/index.html 4.7 kB
  • Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.ar.vtt 4.7 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.th.vtt 4.7 kB
  • Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/index.html 4.7 kB
  • Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/index.html 4.7 kB
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.ar.vtt 4.7 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt 4.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.ar.vtt 4.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.zh-CN.vtt 4.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.en.vtt 4.7 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/index.html 4.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.zh-CN.vtt 4.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.ar.vtt 4.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.ar.vtt 4.7 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/index.html 4.7 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt 4.7 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.pt-BR.vtt 4.7 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.zh-CN.vtt 4.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.en.vtt 4.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.pt-BR.vtt 4.6 kB
  • Part 07-Module 01-Lesson 02_R Basics/index.html 4.6 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.zh-CN.vtt 4.6 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.pt-BR.vtt 4.6 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.zh-CN.vtt 4.6 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.pt-BR.vtt 4.6 kB
  • Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.ja.vtt 4.6 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.ar.vtt 4.6 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.ar.vtt 4.6 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.zh-CN.vtt 4.6 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.pt-BR.vtt 4.6 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.es-MX.vtt 4.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.ar.vtt 4.6 kB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.pt-BR.vtt 4.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/index.html 4.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.ar.vtt 4.6 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/index.html 4.6 kB
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.pt-BR.vtt 4.6 kB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.en.vtt 4.6 kB
  • Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.ar.vtt 4.6 kB
  • Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.ar.vtt 4.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.zh-CN.vtt 4.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ar.vtt 4.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.ar.vtt 4.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.en.vtt 4.6 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.en.vtt 4.6 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.pt-BR.vtt 4.6 kB
  • Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.pt-BR.vtt 4.6 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It-7IKqdW30GvQ.zh-CN.vtt 4.6 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.ar.vtt 4.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.zh-CN.vtt 4.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.ar.vtt 4.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.ar.vtt 4.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.ar.vtt 4.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.pt-BR.vtt 4.6 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.ar.vtt 4.6 kB
  • Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/index.html 4.5 kB
  • Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.pt-BR.vtt 4.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/index.html 4.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.ja.vtt 4.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.ar.vtt 4.5 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.en-US.vtt 4.5 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.en.vtt 4.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.zh-CN.vtt 4.5 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/index.html 4.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.ar.vtt 4.5 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.zh-CN.vtt 4.5 kB
  • Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.pt-BR.vtt 4.5 kB
  • Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.zh-CN.vtt 4.5 kB
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.en.vtt 4.5 kB
  • Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.ar.vtt 4.5 kB
  • Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.pt-BR.vtt 4.5 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/index.html 4.5 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/index.html 4.5 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/index.html 4.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.zh-CN.vtt 4.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.ja.vtt 4.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.pt-BR.vtt 4.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.ar.vtt 4.5 kB
  • Part 04-Module 02-Lesson 01_Analyze AB Test Results/index.html 4.5 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.zh-CN.vtt 4.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.zh-CN.vtt 4.5 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.ar.vtt 4.5 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.ar.vtt 4.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.ar.vtt 4.5 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.ar.vtt 4.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.ar.vtt 4.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.zh-CN.vtt 4.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.en.vtt 4.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.pt-BR.vtt 4.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.pt-BR.vtt 4.4 kB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.en.vtt 4.4 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.ar.vtt 4.4 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt 4.4 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.pt-BR.vtt 4.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.ar.vtt 4.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.ar.vtt 4.4 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.en.vtt 4.4 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.ar.vtt 4.4 kB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.ar.vtt 4.4 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt 4.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt 4.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt 4.4 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/index.html 4.4 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/index.html 4.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.ar.vtt 4.4 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.pt-BR.vtt 4.4 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.pt-BR.vtt 4.4 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.ar.vtt 4.4 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/index.html 4.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.ar.vtt 4.4 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.en.vtt 4.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.zh-CN.vtt 4.4 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.ar.vtt 4.4 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.en.vtt 4.4 kB
  • Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.en.vtt 4.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/index.html 4.3 kB
  • Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.pt-BR.vtt 4.3 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt 4.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.pt-BR.vtt 4.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.ar.vtt 4.3 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.pt-BR.vtt 4.3 kB
  • Part 09-Module 01-Lesson 02_Design/13. Using Color-6bAedqD3ilw.zh-CN.vtt 4.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.en-US.vtt 4.3 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/index.html 4.3 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.zh-CN.vtt 4.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.ar.vtt 4.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.en.vtt 4.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.pt-BR.vtt 4.3 kB
  • Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.en.vtt 4.3 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.en-US.vtt 4.3 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.en.vtt 4.3 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.pt-BR.vtt 4.3 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/index.html 4.3 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/index.html 4.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.pt-BR.vtt 4.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ar.vtt 4.3 kB
  • Part 13-Module 01-Lesson 03_Udacity Professional Profile/index.html 4.3 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/index.html 4.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.en.vtt 4.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.zh-CN.vtt 4.3 kB
  • Part 15-Module 02-Lesson 06_Graphs/index.html 4.3 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.zh-CN.vtt 4.3 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What Is A P-value Anyway-eU6pUZjqviA.pt-BR.vtt 4.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.ar.vtt 4.3 kB
  • Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.pt-BR.vtt 4.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.ja.vtt 4.3 kB
  • Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.en-US.vtt 4.3 kB
  • Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.en.vtt 4.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.ar.vtt 4.3 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.ar.vtt 4.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.zh-CN.vtt 4.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.pt-BR.vtt 4.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.ar.vtt 4.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.ar.vtt 4.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.pt-BR.vtt 4.3 kB
  • Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.en.vtt 4.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.en.vtt 4.2 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.ar.vtt 4.2 kB
  • Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.en.vtt 4.2 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.ar.vtt 4.2 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/index.html 4.2 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.pt-BR.vtt 4.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.pt-BR.vtt 4.2 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.pt-BR.vtt 4.2 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.pt-BR.vtt 4.2 kB
  • Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.ar.vtt 4.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.ar.vtt 4.2 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.en-US.vtt 4.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.en-US.vtt 4.2 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.en.vtt 4.2 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.ar.vtt 4.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.en.vtt 4.2 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.zh-CN.vtt 4.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.en.vtt 4.2 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/index.html 4.2 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.ar.vtt 4.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.pt-BR.vtt 4.2 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/index.html 4.2 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt 4.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.ar.vtt 4.2 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/index.html 4.2 kB
  • Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.en.vtt 4.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.en.vtt 4.2 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.ar.vtt 4.2 kB
  • Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.en-US.vtt 4.2 kB
  • Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.en.vtt 4.2 kB
  • Part 07-Module 01-Lesson 01_What is EDA/index.html 4.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.zh-CN.vtt 4.2 kB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.zh-CN.vtt 4.2 kB
  • Part 02-Module 02-Lesson 01_Python Project/index.html 4.2 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/index.html 4.2 kB
  • Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.ar.vtt 4.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.zh-CN.vtt 4.2 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.pt-BR.vtt 4.2 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.en.vtt 4.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.en.vtt 4.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.ar.vtt 4.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.pt-BR.vtt 4.2 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.en-US.vtt 4.2 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.en-US.vtt 4.2 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What Is A P-value Anyway-eU6pUZjqviA.en.vtt 4.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.ar.vtt 4.2 kB
  • Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.zh-CN.vtt 4.2 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.en.vtt 4.2 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.en.vtt 4.2 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.ar.vtt 4.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.pt-BR.vtt 4.1 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.pt-BR.vtt 4.1 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.pt-BR.vtt 4.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.zh-CN.vtt 4.1 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.en.vtt 4.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.en.vtt 4.1 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.en-US.vtt 4.1 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.en.vtt 4.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.en.vtt 4.1 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/index.html 4.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.ja.vtt 4.1 kB
  • Part 07-Module 02-Lesson 01_Explore and Summarize Data/index.html 4.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.en-US.vtt 4.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.en.vtt 4.1 kB
  • Part 03-Module 04-Lesson 01_Investigate a Dataset/index.html 4.1 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt 4.1 kB
  • Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/index.html 4.1 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.ar.vtt 4.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.en.vtt 4.1 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.ar.vtt 4.1 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.ar.vtt 4.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.ar.vtt 4.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.ar.vtt 4.1 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/index.html 4.1 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.ar.vtt 4.1 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.pt-BR.vtt 4.1 kB
  • Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt 4.1 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/index.html 4.1 kB
  • Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.ar.vtt 4.1 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/index.html 4.1 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.ja.vtt 4.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.ja.vtt 4.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.ar.vtt 4.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.pt-BR.vtt 4.0 kB
  • Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.ar.vtt 4.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.ar.vtt 4.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.ja.vtt 4.0 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.ja.vtt 4.0 kB
  • Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/index.html 4.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.en.vtt 4.0 kB
  • Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/index.html 4.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.ar.vtt 4.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.ar.vtt 4.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.ar.vtt 4.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.zh-CN.vtt 4.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.pt-BR.vtt 4.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.ar.vtt 4.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt 4.0 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/index.html 4.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.pt-BR.vtt 4.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.ar.vtt 4.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.pt-BR.vtt 4.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.ar.vtt 4.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.ar.vtt 4.0 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.en.vtt 4.0 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.pt-BR.vtt 4.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.en.vtt 4.0 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.ar.vtt 4.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.pt-BR.vtt 4.0 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.ar.vtt 4.0 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.pt-BR.vtt 4.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.ar.vtt 4.0 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.pt-BR.vtt 4.0 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.en.vtt 4.0 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/index.html 4.0 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.ar.vtt 4.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.pt-BR.vtt 4.0 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.en-US.vtt 4.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.en.vtt 4.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.pt-BR.vtt 4.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.zh-CN.vtt 4.0 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.en.vtt 4.0 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.ar.vtt 4.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.zh-CN.vtt 4.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.ar.vtt 4.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.ar.vtt 4.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.en.vtt 4.0 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.zh-CN.vtt 4.0 kB
  • Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.en-US.vtt 4.0 kB
  • Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.en.vtt 4.0 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.pt-BR.vtt 4.0 kB
  • Part 03-Module 01-Lesson 01_Anaconda/index.html 4.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.ar.vtt 4.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ar.vtt 4.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.ar.vtt 4.0 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.ar.vtt 3.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.ar.vtt 3.9 kB
  • Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.pt-BR.vtt 3.9 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.pt-BR.vtt 3.9 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.pt-BR.vtt 3.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.en.vtt 3.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.en.vtt 3.9 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.zh-CN.vtt 3.9 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-Uy89Ff49pRc.zh-CN.vtt 3.9 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/12. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt 3.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.zh-CN.vtt 3.9 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/13. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt 3.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.ar.vtt 3.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.pt-BR.vtt 3.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.en.vtt 3.9 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.pt-BR.vtt 3.9 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.pt-BR.vtt 3.9 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt 3.9 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.ar.vtt 3.9 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.en.vtt 3.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.ar.vtt 3.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.en.vtt 3.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.ar.vtt 3.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.en.vtt 3.9 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.ar.vtt 3.9 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.ar.vtt 3.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ar.vtt 3.9 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.en.vtt 3.9 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.pt-BR.vtt 3.9 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.zh-CN.vtt 3.9 kB
  • Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.zh-CN.vtt 3.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.ja.vtt 3.9 kB
  • Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.zh-CN.vtt 3.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.zh-CN.vtt 3.9 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/index.html 3.9 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.zh-CN.vtt 3.9 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.en.vtt 3.9 kB
  • assets/css/fonts/KaTeX_Size3-Regular.woff2 3.9 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.pt-BR.vtt 3.9 kB
  • Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.pt-BR.vtt 3.9 kB
  • assets/css/styles.css 3.9 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.zh-CN.vtt 3.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.pt-BR.vtt 3.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.ar.vtt 3.8 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/index.html 3.8 kB
  • Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.pt-BR.vtt 3.8 kB
  • Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.zh-CN.vtt 3.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.pt-BR.vtt 3.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.pt-BR.vtt 3.8 kB
  • Part 09-Module 02-Lesson 01_Create a Tableau Story/index.html 3.8 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.ar.vtt 3.8 kB
  • Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.pt-BR.vtt 3.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.pt-BR.vtt 3.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.pt-BR.vtt 3.8 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/index.html 3.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.en-US.vtt 3.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.en.vtt 3.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.zh-CN.vtt 3.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.ar.vtt 3.8 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/index.html 3.8 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.en.vtt 3.8 kB
  • Part 13-Module 01-Lesson 02_LinkedIn Review/index.html 3.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.ar.vtt 3.8 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.zh-CN.vtt 3.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.ar.vtt 3.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.pt-BR.vtt 3.8 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.ar.vtt 3.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.pt-BR.vtt 3.8 kB
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.ar.vtt 3.8 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/index.html 3.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.ar.vtt 3.8 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.pt-BR.vtt 3.8 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.pt-BR.vtt 3.8 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.pt-BR.vtt 3.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.pt-BR.vtt 3.8 kB
  • Part 01-Module 02-Lesson 02_Explore Weather Trends/index.html 3.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.zh-CN.vtt 3.8 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/index.html 3.8 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt 3.8 kB
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.ar.vtt 3.8 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.es-MX.vtt 3.8 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.es-MX.vtt 3.8 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.es-MX.vtt 3.8 kB
  • Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.ar.vtt 3.8 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.en.vtt 3.8 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/index.html 3.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.pt-BR.vtt 3.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.ar.vtt 3.8 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/index.html 3.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.pt-BR.vtt 3.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.pt-BR.vtt 3.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.ar.vtt 3.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.ar.vtt 3.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.ar.vtt 3.7 kB
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.ar.vtt 3.7 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt 3.7 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt 3.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt 3.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.zh-CN.vtt 3.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.ja.vtt 3.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.zh-CN.vtt 3.7 kB
  • Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.zh-CN.vtt 3.7 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.pt-BR.vtt 3.7 kB
  • Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.ar.vtt 3.7 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.pt-BR.vtt 3.7 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/12. Meet the Careers Team-cuKecPpZ7PM.en.vtt 3.7 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/13. Meet the Careers Team-cuKecPpZ7PM.en.vtt 3.7 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.ar.vtt 3.7 kB
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.zh-CN.vtt 3.7 kB
  • Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.en.vtt 3.7 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.ja.vtt 3.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.pt-BR.vtt 3.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.pt-BR.vtt 3.7 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/index.html 3.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.pt-BR.vtt 3.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.en.vtt 3.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.ja.vtt 3.7 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.en-US.vtt 3.7 kB
  • Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.ja.vtt 3.7 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.en.vtt 3.7 kB
  • Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.zh-CN.vtt 3.7 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.pt-BR.vtt 3.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.pt-BR.vtt 3.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.ar.vtt 3.7 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/index.html 3.7 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.zh-CN.vtt 3.7 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.en.vtt 3.7 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.zh-CN.vtt 3.7 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.en.vtt 3.7 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.en.vtt 3.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.pt-BR.vtt 3.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Calculating the p-value-_W3Jg7jQ8jI.en.vtt 3.7 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/index.html 3.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Calculating the p-value-_W3Jg7jQ8jI.pt-BR.vtt 3.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.en.vtt 3.7 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.ar.vtt 3.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.ja.vtt 3.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.pt-BR.vtt 3.7 kB
  • Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.ar.vtt 3.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.ar.vtt 3.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.ar.vtt 3.7 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.pt-BR.vtt 3.7 kB
  • Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/index.html 3.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.pt-BR.vtt 3.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.ja.vtt 3.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.pt-BR.vtt 3.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.en.vtt 3.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.en.vtt 3.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.ar.vtt 3.6 kB
  • Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.zh-CN.vtt 3.6 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt 3.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.ar.vtt 3.6 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.en.vtt 3.6 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.en.vtt 3.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.ar.vtt 3.6 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.en.vtt 3.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.pt-BR.vtt 3.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.ja.vtt 3.6 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.pt-BR.vtt 3.6 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.zh-CN.vtt 3.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.zh-CN.vtt 3.6 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.en.vtt 3.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.zh-CN.vtt 3.6 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.pt-BR.vtt 3.6 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/index.html 3.6 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.en.vtt 3.6 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.zh-CN.vtt 3.6 kB
  • Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.pt-BR.vtt 3.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.ar.vtt 3.6 kB
  • Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt 3.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.en-US.vtt 3.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.th.vtt 3.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.en.vtt 3.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.pt-BR.vtt 3.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.ar.vtt 3.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.ar.vtt 3.6 kB
  • Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.zh-CN.vtt 3.6 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/index.html 3.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.ar.vtt 3.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt 3.6 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt 3.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.ja.vtt 3.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.en.vtt 3.6 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.en-US.vtt 3.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.en-US.vtt 3.6 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.pt-BR.vtt 3.6 kB
  • Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.pt-BR.vtt 3.6 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.en.vtt 3.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.en.vtt 3.6 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.ar.vtt 3.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.pt-BR.vtt 3.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.pt-BR.vtt 3.6 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.zh-CN.vtt 3.6 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt 3.6 kB
  • Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.en.vtt 3.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.ar.vtt 3.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.en.vtt 3.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.ar.vtt 3.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.th.vtt 3.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.zh-CN.vtt 3.6 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.ar.vtt 3.6 kB
  • Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.en.vtt 3.6 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.pt-BR.vtt 3.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.zh-CN.vtt 3.6 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt 3.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.en.vtt 3.6 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt 3.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.zh-CN.vtt 3.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ar.vtt 3.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.it.vtt 3.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.en.vtt 3.5 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.en.vtt 3.5 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.en.vtt 3.5 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.en.vtt 3.5 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.zh-CN.vtt 3.5 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.pt-BR.vtt 3.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.ar.vtt 3.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.ja.vtt 3.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.pt-BR.vtt 3.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.ar.vtt 3.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.it.vtt 3.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.zh-CN.vtt 3.5 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.pt-BR.vtt 3.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.ar.vtt 3.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.es-ES.vtt 3.5 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.pt-BR.vtt 3.5 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.en-US.vtt 3.5 kB
  • Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.en.vtt 3.5 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.en.vtt 3.5 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.pt-BR.vtt 3.5 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.ar.vtt 3.5 kB
  • Part 18-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.pt-BR.vtt 3.5 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.en.vtt 3.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.zh-CN.vtt 3.5 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.pt-BR.vtt 3.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.en.vtt 3.5 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.zh-CN.vtt 3.5 kB
  • Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.ar.vtt 3.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.en.vtt 3.5 kB
  • Part 05-Module 01-Lesson 01_Congratulations & Next Steps/index.html 3.5 kB
  • Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.ar.vtt 3.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.ja.vtt 3.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.es-ES.vtt 3.5 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.pt-BR.vtt 3.5 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.ar.vtt 3.5 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.zh-CN.vtt 3.5 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.ar.vtt 3.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.pt-BR.vtt 3.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.pt-BR.vtt 3.5 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt 3.5 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.ar.vtt 3.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.ar.vtt 3.5 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.en.vtt 3.5 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt 3.5 kB
  • Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.pt-BR.vtt 3.5 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt 3.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.pt-BR.vtt 3.5 kB
  • Part 04-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.pt-BR.vtt 3.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.pt-BR.vtt 3.5 kB
  • Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.pt-BR.vtt 3.5 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.en.vtt 3.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.en.vtt 3.5 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.zh-CN.vtt 3.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.th.vtt 3.5 kB
  • Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.en-US.vtt 3.5 kB
  • Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.zh-CN.vtt 3.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.zh-CN.vtt 3.5 kB
  • Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.en.vtt 3.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.pt-BR.vtt 3.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.ar.vtt 3.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.en.vtt 3.5 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.ar.vtt 3.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.ar.vtt 3.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.en.vtt 3.5 kB
  • Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.pt-BR.vtt 3.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.en.vtt 3.5 kB
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.ar.vtt 3.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.ar.vtt 3.4 kB
  • Part 15-Module 01-Lesson 04_Land a Job Offer/index.html 3.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.pt-BR.vtt 3.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.en.vtt 3.4 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.zh-CN.vtt 3.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.ja.vtt 3.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.zh-CN.vtt 3.4 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.ar.vtt 3.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.ar.vtt 3.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.pt-BR.vtt 3.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.pt-BR.vtt 3.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.ja.vtt 3.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What Is A P-value Anyway-eU6pUZjqviA.zh-CN.vtt 3.4 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.th.vtt 3.4 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.zh-CN.vtt 3.4 kB
  • Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.pt-BR.vtt 3.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.en.vtt 3.4 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.en.vtt 3.4 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.en.vtt 3.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.en.vtt 3.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.en.vtt 3.4 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.ar.vtt 3.4 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.ar.vtt 3.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.ar.vtt 3.4 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.zh-CN.vtt 3.4 kB
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.ar.vtt 3.4 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.en.vtt 3.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.ar.vtt 3.4 kB
  • Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.en.vtt 3.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.en.vtt 3.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.en.vtt 3.4 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.pt-BR.vtt 3.4 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.pt-BR.vtt 3.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.en.vtt 3.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.en.vtt 3.4 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.zh-CN.vtt 3.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.ar.vtt 3.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Simulating From the Null-sL2yJtHZd8Y.en.vtt 3.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.zh-CN.vtt 3.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.ja.vtt 3.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.en.vtt 3.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.ar.vtt 3.4 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.zh-CN.vtt 3.4 kB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.ar.vtt 3.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.zh-CN.vtt 3.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.pt-BR.vtt 3.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.ar.vtt 3.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.zh-CN.vtt 3.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.pt-BR.vtt 3.4 kB
  • Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.en-US.vtt 3.4 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.pt-BR.vtt 3.4 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.zh-CN.vtt 3.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.ja.vtt 3.4 kB
  • Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.zh-CN.vtt 3.4 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.ar.vtt 3.4 kB
  • Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.en.vtt 3.4 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.en-US.vtt 3.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.ar.vtt 3.4 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.ar.vtt 3.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.en.vtt 3.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.en.vtt 3.4 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.ar.vtt 3.4 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.en.vtt 3.4 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.en.vtt 3.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.ar.vtt 3.4 kB
  • Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.pt-BR.vtt 3.4 kB
  • Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.ar.vtt 3.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ja.vtt 3.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.ar.vtt 3.4 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.pt-BR.vtt 3.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.pt-BR.vtt 3.4 kB
  • Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.zh-CN.vtt 3.3 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Simulating From the Null-sL2yJtHZd8Y.pt-BR.vtt 3.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.zh-CN.vtt 3.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.pt-BR.vtt 3.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.pt-BR.vtt 3.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.ar.vtt 3.3 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.pt-BR.vtt 3.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.ar.vtt 3.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.ar.vtt 3.3 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.zh-CN.vtt 3.3 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.zh-CN.vtt 3.3 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.zh-CN.vtt 3.3 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.pt-BR.vtt 3.3 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.pt-BR.vtt 3.3 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.zh-CN.vtt 3.3 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.en.vtt 3.3 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.ar.vtt 3.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.en.vtt 3.3 kB
  • Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.en-US.vtt 3.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt 3.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt 3.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt 3.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.ar.vtt 3.3 kB
  • Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.en.vtt 3.3 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.th.vtt 3.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.pt-BR.vtt 3.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.ar.vtt 3.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.ar.vtt 3.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.zh-CN.vtt 3.3 kB
  • Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt 3.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.ar.vtt 3.3 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.en.vtt 3.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.pt-BR.vtt 3.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.pt-BR.vtt 3.3 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/01. Sparta Science-MkjoaUmdOXc.pt-BR.vtt 3.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt 3.3 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt 3.3 kB
  • Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.zh-CN.vtt 3.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.en.vtt 3.3 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.es-MX.vtt 3.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.en.vtt 3.3 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.zh-CN.vtt 3.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.ja.vtt 3.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.pt-BR.vtt 3.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.en.vtt 3.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.en.vtt 3.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.ar.vtt 3.3 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.zh-CN.vtt 3.3 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.es-MX.vtt 3.3 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.pt-BR.vtt 3.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.ar.vtt 3.3 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.en-US.vtt 3.3 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.zh-CN.vtt 3.3 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.en.vtt 3.3 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.pt-BR.vtt 3.3 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.pt-BR.vtt 3.3 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.pt-BR.vtt 3.3 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.pt-BR.vtt 3.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.pt-BR.vtt 3.3 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.pt-BR.vtt 3.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.zh-CN.vtt 3.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.ar.vtt 3.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.en.vtt 3.3 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.pt-BR.vtt 3.3 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.en.vtt 3.3 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.zh-CN.vtt 3.3 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.pt-BR.vtt 3.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.ar.vtt 3.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.ar.vtt 3.3 kB
  • Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.en.vtt 3.3 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.pt-BR.vtt 3.2 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.en.vtt 3.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.en.vtt 3.2 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.en-US.vtt 3.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.en.vtt 3.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.pt-BR.vtt 3.2 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.en-US.vtt 3.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.ar.vtt 3.2 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.en.vtt 3.2 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.ar.vtt 3.2 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.en.vtt 3.2 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.en.vtt 3.2 kB
  • Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.en-US.vtt 3.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.pt-BR.vtt 3.2 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/24. What If Our Sample Is Large-WoTCeSTL1eM.en.vtt 3.2 kB
  • Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.en.vtt 3.2 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.zh-CN.vtt 3.2 kB
  • Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.pt-BR.vtt 3.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.pt-BR.vtt 3.2 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.pt-BR.vtt 3.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.pt-BR.vtt 3.2 kB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.ar.vtt 3.2 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.ar.vtt 3.2 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.en.vtt 3.2 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt 3.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.pt-BR.vtt 3.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.ja.vtt 3.2 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.ar.vtt 3.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.ar.vtt 3.2 kB
  • Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.pt-BR.vtt 3.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.ja.vtt 3.2 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.zh-CN.vtt 3.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.zh-CN.vtt 3.2 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.en.vtt 3.2 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.en.vtt 3.2 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview-wg535YU4jFw.en.vtt 3.2 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.en.vtt 3.2 kB
  • Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.ja.vtt 3.2 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.ar.vtt 3.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.pt-BR.vtt 3.2 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.pt-BR.vtt 3.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.pt-BR.vtt 3.2 kB
  • Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.pt-BR.vtt 3.2 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.en.vtt 3.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.ar.vtt 3.2 kB
  • Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.zh-CN.vtt 3.2 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types Of Errors - Part II-mbdSQ5CjdFs.en.vtt 3.2 kB
  • Part 01-Module 01-Lesson 02_The Life of a Data Analyst/01. Sparta Science-MkjoaUmdOXc.en.vtt 3.2 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.zh-CN.vtt 3.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.pt-BR.vtt 3.2 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.en.vtt 3.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.zh-CN.vtt 3.2 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.pt-BR.vtt 3.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.ar.vtt 3.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.ar.vtt 3.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.pt-BR.vtt 3.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.ar.vtt 3.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.en.vtt 3.2 kB
  • Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.zh-CN.vtt 3.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.zh-CN.vtt 3.2 kB
  • Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.en.vtt 3.2 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.en.vtt 3.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.pt-BR.vtt 3.2 kB
  • Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.pt-BR.vtt 3.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt 3.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt 3.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt 3.2 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.ar.vtt 3.2 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.en.vtt 3.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.ar.vtt 3.2 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.es-MX.vtt 3.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.pt-BR.vtt 3.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.pt-BR.vtt 3.1 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.pt-BR.vtt 3.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.pt-BR.vtt 3.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.ja.vtt 3.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.en.vtt 3.1 kB
  • Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.en.vtt 3.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.en.vtt 3.1 kB
  • Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.ar.vtt 3.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.ar.vtt 3.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.zh-CN.vtt 3.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.en.vtt 3.1 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.pt-BR.vtt 3.1 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.pt-BR.vtt 3.1 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.zh-CN.vtt 3.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.ja.vtt 3.1 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.zh-CN.vtt 3.1 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.ar.vtt 3.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.pt-BR.vtt 3.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.ar.vtt 3.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.zh-CN.vtt 3.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.en.vtt 3.1 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.zh-CN.vtt 3.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.ar.vtt 3.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.en.vtt 3.1 kB
  • Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.zh-CN.vtt 3.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt 3.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt 3.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt 3.1 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.pt-BR.vtt 3.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.zh-CN.vtt 3.1 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.en.vtt 3.1 kB
  • Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.ar.vtt 3.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.pt-BR.vtt 3.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.en.vtt 3.1 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.zh-CN.vtt 3.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.ar.vtt 3.1 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.en.vtt 3.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.pt-BR.vtt 3.1 kB
  • Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.zh-CN.vtt 3.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.ar.vtt 3.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.en.vtt 3.1 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.zh-CN.vtt 3.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.zh-CN.vtt 3.1 kB
  • Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.zh-CN.vtt 3.1 kB
  • Part 18-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.en.vtt 3.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.en.vtt 3.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.ar.vtt 3.1 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.zh-CN.vtt 3.1 kB
  • Part 04-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.en.vtt 3.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.en.vtt 3.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.en.vtt 3.1 kB
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.pt-BR.vtt 3.1 kB
  • Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.pt-BR.vtt 3.1 kB
  • Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.pt-BR.vtt 3.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.ar.vtt 3.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.en.vtt 3.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.en-US.vtt 3.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.ar.vtt 3.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.pt-BR.vtt 3.1 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.en.vtt 3.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.ar.vtt 3.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.zh-CN.vtt 3.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.en.vtt 3.1 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.pt-BR.vtt 3.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/24. What If Our Sample Is Large-WoTCeSTL1eM.pt-BR.vtt 3.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.it.vtt 3.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.ar.vtt 3.1 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.pt-BR.vtt 3.1 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.zh-CN.vtt 3.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.en.vtt 3.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.pt-BR.vtt 3.1 kB
  • Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.zh-CN.vtt 3.1 kB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.ar.vtt 3.1 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.en.vtt 3.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.ja.vtt 3.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.ar.vtt 3.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.ar.vtt 3.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.ar.vtt 3.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.ja.vtt 3.1 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.zh-CN.vtt 3.1 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.ar.vtt 3.1 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.pt-BR.vtt 3.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.ar.vtt 3.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.ar.vtt 3.1 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.pt-BR.vtt 3.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types Of Errors - Part II-mbdSQ5CjdFs.pt-BR.vtt 3.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.zh-CN.vtt 3.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.es-ES.vtt 3.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.en.vtt 3.1 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.pt-BR.vtt 3.1 kB
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.ar.vtt 3.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.zh-CN.vtt 3.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.zh-CN.vtt 3.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.pt-BR.vtt 3.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.en.vtt 3.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.en.vtt 3.1 kB
  • Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.ar.vtt 3.1 kB
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.en.vtt 3.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.th.vtt 3.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.zh-CN.vtt 3.0 kB
  • Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.pt-BR.vtt 3.0 kB
  • Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.ar.vtt 3.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.ar.vtt 3.0 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.ar.vtt 3.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.ja.vtt 3.0 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.zh-CN.vtt 3.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.zh-CN.vtt 3.0 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.ar.vtt 3.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.en.vtt 3.0 kB
  • Part 04-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.pt-BR.vtt 3.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.pt-BR.vtt 3.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.ar.vtt 3.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.ja.vtt 3.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.ar.vtt 3.0 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.ar.vtt 3.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.pt-BR.vtt 3.0 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.pt-BR.vtt 3.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.en.vtt 3.0 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.pt-BR.vtt 3.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.ar.vtt 3.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.en.vtt 3.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.ar.vtt 3.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.pt-BR.vtt 3.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.en.vtt 3.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.zh-CN.vtt 3.0 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.zh-CN.vtt 3.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.en.vtt 3.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.zh-CN.vtt 3.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.en.vtt 3.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.zh-CN.vtt 3.0 kB
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.pt-BR.vtt 3.0 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types Of Errors - Part III-Z-srkCPsdaM.pt-BR.vtt 3.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.ar.vtt 3.0 kB
  • Part 04-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.pt-BR.vtt 3.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.en.vtt 3.0 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.pt-BR.vtt 3.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.pt-BR.vtt 3.0 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.pt-BR.vtt 3.0 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.en-US.vtt 3.0 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.ar.vtt 3.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.zh-CN.vtt 3.0 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.en.vtt 3.0 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.en.vtt 3.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.en.vtt 3.0 kB
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.ar.vtt 3.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.en.vtt 3.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.zh-CN.vtt 3.0 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.zh-CN.vtt 3.0 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.pt-BR.vtt 3.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.en.vtt 3.0 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.ar.vtt 3.0 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.en.vtt 3.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.ar.vtt 3.0 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.pt-BR.vtt 3.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.en.vtt 3.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.ar.vtt 3.0 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.en.vtt 3.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.pt-BR.vtt 3.0 kB
  • Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.en.vtt 3.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.th.vtt 3.0 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types Of Errors - Part III-Z-srkCPsdaM.en.vtt 3.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.ja.vtt 3.0 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.zh-CN.vtt 3.0 kB
  • Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.zh-CN.vtt 3.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.zh-CN.vtt 3.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.zh-CN.vtt 3.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.ar.vtt 3.0 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.en.vtt 3.0 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.en.vtt 3.0 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.pt-BR.vtt 3.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.pt-BR.vtt 3.0 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.en.vtt 3.0 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt 3.0 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.en.vtt 3.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.ar.vtt 3.0 kB
  • Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.ar.vtt 3.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.ar.vtt 3.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.ar.vtt 3.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.zh-CN.vtt 3.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.pt-BR.vtt 3.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.zh-CN.vtt 3.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.ar.vtt 3.0 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.pt-BR.vtt 2.9 kB
  • Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.pt-BR.vtt 2.9 kB
  • Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.zh-CN.vtt 2.9 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.en.vtt 2.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.ar.vtt 2.9 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.pt-BR.vtt 2.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.en.vtt 2.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.it.vtt 2.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.pt-BR.vtt 2.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt 2.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt 2.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt 2.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.zh-CN.vtt 2.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.pt-BR.vtt 2.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.pt-BR.vtt 2.9 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.en.vtt 2.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.ar.vtt 2.9 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Calculating the p-value-_W3Jg7jQ8jI.zh-CN.vtt 2.9 kB
  • Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.ja.vtt 2.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.ja.vtt 2.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.ar.vtt 2.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.zh-CN.vtt 2.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.pt-BR.vtt 2.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.pt-BR.vtt 2.9 kB
  • Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.en-US.vtt 2.9 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.en.vtt 2.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ja.vtt 2.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.ar.vtt 2.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.ja.vtt 2.9 kB
  • Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.en.vtt 2.9 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.zh-CN.vtt 2.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.en.vtt 2.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.zh-CN.vtt 2.9 kB
  • Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.ar.vtt 2.9 kB
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.en.vtt 2.9 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.th.vtt 2.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.pt-BR.vtt 2.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.ja.vtt 2.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.es-ES.vtt 2.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.en.vtt 2.9 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.en.vtt 2.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.zh-CN.vtt 2.9 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.pt-BR.vtt 2.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.pt-BR.vtt 2.9 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.en.vtt 2.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.zh-CN.vtt 2.9 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.pt-BR.vtt 2.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.en.vtt 2.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.zh-CN.vtt 2.9 kB
  • Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.zh-CN.vtt 2.9 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.pt-BR.vtt 2.9 kB
  • Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.pt-BR.vtt 2.9 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.pt-BR.vtt 2.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.zh-CN.vtt 2.9 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.pt-BR.vtt 2.9 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.pt-BR.vtt 2.9 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.pt-BR.vtt 2.9 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.en.vtt 2.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.ar.vtt 2.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.ar.vtt 2.9 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt 2.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.ar.vtt 2.9 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.en.vtt 2.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.zh-CN.vtt 2.9 kB
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.pt-BR.vtt 2.9 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.ar.vtt 2.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.zh-CN.vtt 2.9 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.zh-CN.vtt 2.9 kB
  • Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.ar.vtt 2.9 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.en.vtt 2.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.zh-CN.vtt 2.9 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.pt-BR.vtt 2.9 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.ar.vtt 2.9 kB
  • Part 18-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.zh-CN.vtt 2.9 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.ar.vtt 2.9 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.ar.vtt 2.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.ar.vtt 2.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.ja.vtt 2.9 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.en.vtt 2.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.pt-BR.vtt 2.9 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.pt-BR.vtt 2.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.pt-BR.vtt 2.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.pt-BR.vtt 2.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.en.vtt 2.9 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses - Part II-nByvHz77GiA.pt-BR.vtt 2.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.ar.vtt 2.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.pt-BR.vtt 2.9 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.pt-BR.vtt 2.9 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.pt-BR.vtt 2.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.pt-BR.vtt 2.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.en.vtt 2.9 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.zh-CN.vtt 2.9 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.zh-CN.vtt 2.9 kB
  • Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.en.vtt 2.9 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.zh-CN.vtt 2.9 kB
  • Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.ar.vtt 2.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.en.vtt 2.8 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.pt-BR.vtt 2.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.en.vtt 2.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.ar.vtt 2.8 kB
  • Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.ar.vtt 2.8 kB
  • Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.en.vtt 2.8 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.zh-CN.vtt 2.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.en.vtt 2.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.pt-BR.vtt 2.8 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.en.vtt 2.8 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.ar.vtt 2.8 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview-wg535YU4jFw.pt-BR.vtt 2.8 kB
  • Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.en.vtt 2.8 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/24. What If Our Sample Is Large-WoTCeSTL1eM.zh-CN.vtt 2.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.ar.vtt 2.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.ar.vtt 2.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt 2.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt 2.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.pt-BR.vtt 2.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt 2.8 kB
  • Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.pt-BR.vtt 2.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.zh-CN.vtt 2.8 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.pt-BR.vtt 2.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.pt-BR.vtt 2.8 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.en.vtt 2.8 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.ar.vtt 2.8 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.ar.vtt 2.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.zh-CN.vtt 2.8 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.en-US.vtt 2.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.zh-CN.vtt 2.8 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.en.vtt 2.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.ja.vtt 2.8 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.en.vtt 2.8 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.en.vtt 2.8 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.en.vtt 2.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.zh-CN.vtt 2.8 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt 2.8 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt 2.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.en.vtt 2.8 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.es-MX.vtt 2.8 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.ja.vtt 2.8 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.en.vtt 2.8 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.es-MX.vtt 2.8 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.es-MX.vtt 2.8 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.es-MX.vtt 2.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.pt-BR.vtt 2.8 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.ja.vtt 2.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.ja.vtt 2.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.en.vtt 2.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.pt-BR.vtt 2.8 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.zh-CN.vtt 2.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.ar.vtt 2.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.zh-CN.vtt 2.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.pt-BR.vtt 2.8 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ja.vtt 2.8 kB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.th.vtt 2.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.en.vtt 2.8 kB
  • Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.zh-CN.vtt 2.8 kB
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.ar.vtt 2.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.en.vtt 2.8 kB
  • Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.ar.vtt 2.8 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/13. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.pt-BR.vtt 2.8 kB
  • Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.ja.vtt 2.8 kB
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.ar.vtt 2.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.zh-CN.vtt 2.8 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/02. DSND Trailer Final-X2xQnb-bR8A.pt-BR.vtt 2.8 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.zh-CN.vtt 2.8 kB
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.en.vtt 2.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.pt-BR.vtt 2.8 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.es-MX.vtt 2.8 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ar.vtt 2.8 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.ar.vtt 2.8 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses - Part II-nByvHz77GiA.en.vtt 2.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.zh-CN.vtt 2.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.zh-CN.vtt 2.8 kB
  • Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.en.vtt 2.8 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.pt-BR.vtt 2.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.pt-BR.vtt 2.8 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.en.vtt 2.8 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.zh-CN.vtt 2.8 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Simulating From the Null-sL2yJtHZd8Y.zh-CN.vtt 2.8 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.en.vtt 2.8 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.en.vtt 2.8 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.pt-BR.vtt 2.8 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.pt-BR.vtt 2.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.pt-BR.vtt 2.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.pt-BR.vtt 2.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.pt-BR.vtt 2.8 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.pt-BR.vtt 2.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.en.vtt 2.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.ar.vtt 2.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.pt-BR.vtt 2.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.zh-CN.vtt 2.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.pt-BR.vtt 2.8 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.en.vtt 2.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt 2.7 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt 2.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt 2.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.pt-BR.vtt 2.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.ar.vtt 2.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.zh-CN.vtt 2.7 kB
  • Part 18-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.pt-BR.vtt 2.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.pt-BR.vtt 2.7 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.es-ES.vtt 2.7 kB
  • Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.en-US.vtt 2.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.zh-CN.vtt 2.7 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.zh-CN.vtt 2.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.en.vtt 2.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.ar.vtt 2.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.zh-CN.vtt 2.7 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.en.vtt 2.7 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.ar.vtt 2.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.pt-BR.vtt 2.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.ar.vtt 2.7 kB
  • Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.en.vtt 2.7 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.pt-BR.vtt 2.7 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.pt-BR.vtt 2.7 kB
  • Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.zh-CN.vtt 2.7 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.ar.vtt 2.7 kB
  • Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.en.vtt 2.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.en.vtt 2.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.ja.vtt 2.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.ar.vtt 2.7 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.ar.vtt 2.7 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.ar.vtt 2.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.zh-CN.vtt 2.7 kB
  • Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.zh-CN.vtt 2.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.ar.vtt 2.7 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.zh-CN.vtt 2.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.pt-BR.vtt 2.7 kB
  • Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.pt-BR.vtt 2.7 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.en.vtt 2.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.pt-BR.vtt 2.7 kB
  • Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.pt-BR.vtt 2.7 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.pt-BR.vtt 2.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.ja.vtt 2.7 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.en.vtt 2.7 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.en.vtt 2.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.ar.vtt 2.7 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt 2.7 kB
  • Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.en-US.vtt 2.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.en.vtt 2.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.zh-CN.vtt 2.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.pt-BR.vtt 2.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.ar.vtt 2.7 kB
  • Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.en.vtt 2.7 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.en.vtt 2.7 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.pt-BR.vtt 2.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.pt-BR.vtt 2.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.en.vtt 2.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/13. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.en.vtt 2.7 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.en.vtt 2.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.zh-CN.vtt 2.7 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.zh-CN.vtt 2.7 kB
  • Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.pt-BR.vtt 2.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.zh-CN.vtt 2.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.ar.vtt 2.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.pt-BR.vtt 2.7 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ja.vtt 2.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.ar.vtt 2.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.en.vtt 2.7 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.pt-BR.vtt 2.7 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.ar.vtt 2.7 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.en.vtt 2.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python-KS6cKoKe8ms.ar.vtt 2.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.pt-BR.vtt 2.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.en.vtt 2.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.zh-CN.vtt 2.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.en.vtt 2.7 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.es-MX.vtt 2.7 kB
  • Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.pt-BR.vtt 2.7 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.ar.vtt 2.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.zh-CN.vtt 2.7 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.pt-BR.vtt 2.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.zh-CN.vtt 2.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.en.vtt 2.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.ar.vtt 2.7 kB
  • Part 04-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.zh-CN.vtt 2.7 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.pt-BR.vtt 2.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.ar.vtt 2.7 kB
  • Part 04-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.pt-BR.vtt 2.7 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.zh-CN.vtt 2.7 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.zh-CN.vtt 2.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.pt-BR.vtt 2.7 kB
  • Part 04-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.en.vtt 2.7 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.ar.vtt 2.7 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.ar.vtt 2.7 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.ar.vtt 2.7 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.zh-CN.vtt 2.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.pt-BR.vtt 2.7 kB
  • Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.pt-BR.vtt 2.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.ja.vtt 2.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.pt-BR.vtt 2.7 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.ar.vtt 2.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.zh-CN.vtt 2.7 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.ar.vtt 2.7 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ar.vtt 2.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.en.vtt 2.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.zh-CN.vtt 2.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.en.vtt 2.7 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ar.vtt 2.7 kB
  • Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.zh-CN.vtt 2.7 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.ar.vtt 2.7 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.zh-CN.vtt 2.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.en.vtt 2.7 kB
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.ar.vtt 2.7 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.pt-BR.vtt 2.7 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.zh-CN.vtt 2.7 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.es-MX.vtt 2.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.en.vtt 2.7 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.ar.vtt 2.7 kB
  • Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.en.vtt 2.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.zh-CN.vtt 2.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.ar.vtt 2.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.en.vtt 2.6 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types Of Errors - Part II-mbdSQ5CjdFs.zh-CN.vtt 2.6 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.pt-BR.vtt 2.6 kB
  • Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.en-US.vtt 2.6 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.zh-CN.vtt 2.6 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.zh-CN.vtt 2.6 kB
  • Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.en.vtt 2.6 kB
  • Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.ar.vtt 2.6 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.pt-BR.vtt 2.6 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.pt-BR.vtt 2.6 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.pt-BR.vtt 2.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.ar.vtt 2.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.ar.vtt 2.6 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.en.vtt 2.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.zh-CN.vtt 2.6 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.ar.vtt 2.6 kB
  • Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.zh-CN.vtt 2.6 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.en.vtt 2.6 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests-8hv8KnvQ6JY.en.vtt 2.6 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.ar.vtt 2.6 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.pt-BR.vtt 2.6 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.zh-CN.vtt 2.6 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.pt-BR.vtt 2.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.zh-CN.vtt 2.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.zh-CN.vtt 2.6 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.en.vtt 2.6 kB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.ar.vtt 2.6 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.pt-BR.vtt 2.6 kB
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.pt-BR.vtt 2.6 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt 2.6 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.ar.vtt 2.6 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.ar.vtt 2.6 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.zh-CN.vtt 2.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.ar.vtt 2.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.pt-BR.vtt 2.6 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.zh-CN.vtt 2.6 kB
  • Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.pt-BR.vtt 2.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.ar.vtt 2.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.ar.vtt 2.6 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.th.vtt 2.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.ja.vtt 2.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.pt-BR.vtt 2.6 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.zh-CN.vtt 2.6 kB
  • Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.ja.vtt 2.6 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.ar.vtt 2.6 kB
  • Part 04-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.en.vtt 2.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.en.vtt 2.6 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.en.vtt 2.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.ar.vtt 2.6 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.en.vtt 2.6 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.ar.vtt 2.6 kB
  • Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.en-US.vtt 2.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.pt-BR.vtt 2.6 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.zh-CN.vtt 2.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.en.vtt 2.6 kB
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.ar.vtt 2.6 kB
  • Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.en.vtt 2.6 kB
  • Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.en.vtt 2.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.ar.vtt 2.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.ar.vtt 2.6 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types Of Errors - Part III-Z-srkCPsdaM.zh-CN.vtt 2.6 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.zh-CN.vtt 2.6 kB
  • Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.pt-BR.vtt 2.6 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.pt-BR.vtt 2.6 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.es-MX.vtt 2.6 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.es-MX.vtt 2.6 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.es-MX.vtt 2.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.zh-CN.vtt 2.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.en.vtt 2.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.ar.vtt 2.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.pt-BR.vtt 2.6 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.zh-CN.vtt 2.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.en.vtt 2.6 kB
  • Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.zh-CN.vtt 2.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.pt-BR.vtt 2.6 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.en.vtt 2.6 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.en.vtt 2.6 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.en.vtt 2.6 kB
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.en.vtt 2.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.en.vtt 2.6 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.ar.vtt 2.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.ar.vtt 2.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.pt-BR.vtt 2.6 kB
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.pt-BR.vtt 2.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.en.vtt 2.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.zh-CN.vtt 2.6 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.en.vtt 2.6 kB
  • Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.en-US.vtt 2.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.en.vtt 2.6 kB
  • Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.en.vtt 2.6 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ar.vtt 2.6 kB
  • Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.ar.vtt 2.6 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.en-US.vtt 2.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.en.vtt 2.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.zh-CN.vtt 2.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.ar.vtt 2.6 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.en.vtt 2.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.pt-BR.vtt 2.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.en.vtt 2.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.en.vtt 2.6 kB
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.zh-CN.vtt 2.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.zh-CN.vtt 2.6 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.en-US.vtt 2.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.pt-BR.vtt 2.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.pt-BR.vtt 2.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.pt-BR.vtt 2.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.pt-BR.vtt 2.6 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.pt-BR.vtt 2.6 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.en.vtt 2.6 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.zh-CN.vtt 2.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.en-US.vtt 2.6 kB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.pt-BR.vtt 2.6 kB
  • Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.pt-BR.vtt 2.6 kB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.pt-BR.vtt 2.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.ar.vtt 2.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.ar.vtt 2.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.ar.vtt 2.6 kB
  • Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.pt-BR.vtt 2.6 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.pt-BR.vtt 2.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.en.vtt 2.6 kB
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.en.vtt 2.6 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.ar.vtt 2.6 kB
  • Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.pt-BR.vtt 2.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.zh-CN.vtt 2.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.zh-CN.vtt 2.5 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.zh-CN.vtt 2.5 kB
  • Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.en-US.vtt 2.5 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.pt-BR.vtt 2.5 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure-Qb4o_4hCuyg.en.vtt 2.5 kB
  • Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.en.vtt 2.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.ar.vtt 2.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.ar.vtt 2.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.ar.vtt 2.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.en.vtt 2.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ar.vtt 2.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.ar.vtt 2.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.zh-CN.vtt 2.5 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.en.vtt 2.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.en.vtt 2.5 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.en.vtt 2.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.pt-BR.vtt 2.5 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview-wg535YU4jFw.zh-CN.vtt 2.5 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.pt-BR.vtt 2.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ar.vtt 2.5 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-R9AtVBq2Z5E.en.vtt 2.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.en.vtt 2.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.ja.vtt 2.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.pt-BR.vtt 2.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.zh-CN.vtt 2.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.zh-CN.vtt 2.5 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.pt-BR.vtt 2.5 kB
  • Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.en-US.vtt 2.5 kB
  • Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.en.vtt 2.5 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.zh-CN.vtt 2.5 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.zh-CN.vtt 2.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests-8hv8KnvQ6JY.pt-BR.vtt 2.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.en.vtt 2.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.pt-BR.vtt 2.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.zh-CN.vtt 2.5 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.pt-BR.vtt 2.5 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.en.vtt 2.5 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.pt-BR.vtt 2.5 kB
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.zh-CN.vtt 2.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.ar.vtt 2.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.en.vtt 2.5 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.en.vtt 2.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.pt-BR.vtt 2.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.ar.vtt 2.5 kB
  • Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.pt-BR.vtt 2.5 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.ar.vtt 2.5 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.es-MX.vtt 2.5 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.en.vtt 2.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.pt-BR.vtt 2.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.pt-BR.vtt 2.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.zh-CN.vtt 2.5 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.ar.vtt 2.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.zh-CN.vtt 2.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.ja.vtt 2.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.pt-BR.vtt 2.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.en.vtt 2.5 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.en.vtt 2.5 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure-Qb4o_4hCuyg.pt-BR.vtt 2.5 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.zh-CN.vtt 2.5 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ar.vtt 2.5 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.ar.vtt 2.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.ja.vtt 2.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.en.vtt 2.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.zh-CN.vtt 2.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.en.vtt 2.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.zh-CN.vtt 2.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.ar.vtt 2.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.ar.vtt 2.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.ar.vtt 2.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.pt-BR.vtt 2.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.pt-BR.vtt 2.5 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.zh-CN.vtt 2.5 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.ar.vtt 2.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.zh-CN.vtt 2.5 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.zh-CN.vtt 2.5 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.en.vtt 2.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.pt-BR.vtt 2.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.ja.vtt 2.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.pt-BR.vtt 2.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.pt-BR.vtt 2.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.pt-BR.vtt 2.5 kB
  • Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.zh-CN.vtt 2.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ar.vtt 2.5 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company-CcTfHemUvbM.pt-BR.vtt 2.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.ja.vtt 2.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.en.vtt 2.5 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.pt-BR.vtt 2.5 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.ar.vtt 2.5 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.zh-CN.vtt 2.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.en-US.vtt 2.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.en.vtt 2.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.en.vtt 2.5 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.zh-CN.vtt 2.5 kB
  • Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.pt-BR.vtt 2.5 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.pt-BR.vtt 2.5 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.ar.vtt 2.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.pt-BR.vtt 2.5 kB
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.ar.vtt 2.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.pt-BR.vtt 2.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.pt-BR.vtt 2.5 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.pt-BR.vtt 2.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.ar.vtt 2.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.pt-BR.vtt 2.5 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.ar.vtt 2.5 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.ar.vtt 2.5 kB
  • Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.pt-BR.vtt 2.5 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.zh-CN.vtt 2.5 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.pt-BR.vtt 2.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.ja.vtt 2.5 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.zh-CN.vtt 2.5 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.zh-CN.vtt 2.5 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.zh-CN.vtt 2.5 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.en.vtt 2.5 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt 2.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.en.vtt 2.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.ja.vtt 2.5 kB
  • Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.pt-BR.vtt 2.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.en.vtt 2.5 kB
  • Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.zh-CN.vtt 2.5 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.pt-BR.vtt 2.5 kB
  • Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.en.vtt 2.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.ja.vtt 2.5 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.en.vtt 2.5 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.en.vtt 2.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.pt-BR.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.ar.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.en.vtt 2.4 kB
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.ar.vtt 2.4 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.ar.vtt 2.4 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.ar.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.ja.vtt 2.4 kB
  • Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.en.vtt 2.4 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.ar.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.zh-CN.vtt 2.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.zh-CN.vtt 2.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.zh-CN.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.ja.vtt 2.4 kB
  • Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.en-US.vtt 2.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.pt-BR.vtt 2.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.zh-CN.vtt 2.4 kB
  • Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.pt-BR.vtt 2.4 kB
  • Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.en.vtt 2.4 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.zh-CN.vtt 2.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.zh-CN.vtt 2.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.ar.vtt 2.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.en.vtt 2.4 kB
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.zh-CN.vtt 2.4 kB
  • Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.zh-CN.vtt 2.4 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.en-US.vtt 2.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ja.vtt 2.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.en.vtt 2.4 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.ar.vtt 2.4 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.en.vtt 2.4 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.en.vtt 2.4 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.en.vtt 2.4 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.zh-CN.vtt 2.4 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.zh-CN.vtt 2.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.zh-CN.vtt 2.4 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.zh-CN.vtt 2.4 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-R9AtVBq2Z5E.pt-BR.vtt 2.4 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure-Qb4o_4hCuyg.zh-CN.vtt 2.4 kB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.en.vtt 2.4 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.en-US.vtt 2.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.pt-BR.vtt 2.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.ar.vtt 2.4 kB
  • Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.zh-CN.vtt 2.4 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.en.vtt 2.4 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.en.vtt 2.4 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.zh-CN.vtt 2.4 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.en.vtt 2.4 kB
  • Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.ar.vtt 2.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.pt-BR.vtt 2.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.pt-BR.vtt 2.4 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.zh-CN.vtt 2.4 kB
  • Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.ja.vtt 2.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.zh-CN.vtt 2.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.pt-BR.vtt 2.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.en.vtt 2.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.zh-CN.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.zh-CN.vtt 2.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.ar.vtt 2.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.en.vtt 2.4 kB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.en.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.pt-BR.vtt 2.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.ar.vtt 2.4 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.en.vtt 2.4 kB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.en.vtt 2.4 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.zh-CN.vtt 2.4 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.zh-CN.vtt 2.4 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.zh-CN.vtt 2.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.pt-BR.vtt 2.4 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.ar.vtt 2.4 kB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.pt-BR.vtt 2.4 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.pt-BR.vtt 2.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.pt-BR.vtt 2.4 kB
  • Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.pt-BR.vtt 2.4 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.pt-BR.vtt 2.4 kB
  • Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.pt-BR.vtt 2.4 kB
  • Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.en.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.pt-BR.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.en.vtt 2.4 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.zh-CN.vtt 2.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.pt-BR.vtt 2.4 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.en.vtt 2.4 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.en.vtt 2.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.pt-BR.vtt 2.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.en.vtt 2.4 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.en.vtt 2.4 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.en.vtt 2.4 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.en.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.ja.vtt 2.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.zh-CN.vtt 2.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.zh-CN.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.pt-BR.vtt 2.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.ar.vtt 2.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.ar.vtt 2.4 kB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.pt-BR.vtt 2.4 kB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.ar.vtt 2.4 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.en.vtt 2.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.en.vtt 2.4 kB
  • Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.ar.vtt 2.4 kB
  • Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.en-US.vtt 2.4 kB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.ar.vtt 2.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.ar.vtt 2.4 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.zh-CN.vtt 2.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.ar.vtt 2.4 kB
  • Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.zh-CN.vtt 2.4 kB
  • Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.en.vtt 2.4 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/13. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.zh-CN.vtt 2.4 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.en-US.vtt 2.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.ja.vtt 2.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.ja.vtt 2.3 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company-CcTfHemUvbM.en.vtt 2.3 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.en.vtt 2.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.ja.vtt 2.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.zh-CN.vtt 2.3 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.zh-CN.vtt 2.3 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.en.vtt 2.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.pt-BR.vtt 2.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.en.vtt 2.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.en.vtt 2.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.en.vtt 2.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.pt-BR.vtt 2.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.en.vtt 2.3 kB
  • Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.pt-BR.vtt 2.3 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses - Part II-nByvHz77GiA.zh-CN.vtt 2.3 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.ar.vtt 2.3 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.zh-CN.vtt 2.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.pt-BR.vtt 2.3 kB
  • Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.ar.vtt 2.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.pt-BR.vtt 2.3 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.pt-BR.vtt 2.3 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.pt-BR.vtt 2.3 kB
  • Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.en-US.vtt 2.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.en.vtt 2.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.pt-BR.vtt 2.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.pt-BR.vtt 2.3 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.en.vtt 2.3 kB
  • Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.en.vtt 2.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.zh-CN.vtt 2.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.pt-BR.vtt 2.3 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.en.vtt 2.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ar.vtt 2.3 kB
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.zh-CN.vtt 2.3 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.pt-BR.vtt 2.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.ar.vtt 2.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.pt-BR.vtt 2.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.ja.vtt 2.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.ar.vtt 2.3 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.ar.vtt 2.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.pt-BR.vtt 2.3 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.pt-BR.vtt 2.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.pt-BR.vtt 2.3 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.en.vtt 2.3 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.zh-CN.vtt 2.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.pt-BR.vtt 2.3 kB
  • Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.ar.vtt 2.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.en.vtt 2.3 kB
  • Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.zh-CN.vtt 2.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.zh-CN.vtt 2.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.en.vtt 2.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.ar.vtt 2.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.zh-CN.vtt 2.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.en.vtt 2.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.zh-CN.vtt 2.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.pt-BR.vtt 2.3 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.ja.vtt 2.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.en.vtt 2.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.pt-BR.vtt 2.3 kB
  • Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.pt-BR.vtt 2.3 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.pt-BR.vtt 2.3 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.es-MX.vtt 2.3 kB
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.zh-CN.vtt 2.3 kB
  • Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.pt-BR.vtt 2.3 kB
  • Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.zh-CN.vtt 2.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.ar.vtt 2.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.ar.vtt 2.3 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.ar.vtt 2.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.zh-CN.vtt 2.3 kB
  • Part 15-Module 02-Lesson 05_Trees/13. BST Complications-pcB0wV7myy4.zh-CN.vtt 2.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.en.vtt 2.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.ar.vtt 2.3 kB
  • Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.en.vtt 2.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.ar.vtt 2.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.en.vtt 2.3 kB
  • Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.en-US.vtt 2.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.pt-BR.vtt 2.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.pt-BR.vtt 2.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.zh-CN.vtt 2.3 kB
  • Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.zh-CN.vtt 2.3 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.pt-BR.vtt 2.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.en.vtt 2.3 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.ar.vtt 2.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.en.vtt 2.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.en.vtt 2.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.zh-CN.vtt 2.3 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.zh-CN.vtt 2.3 kB
  • Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.zh-CN.vtt 2.3 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.en-US.vtt 2.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.zh-CN.vtt 2.3 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative-29mkriaGT0E.pt-BR.vtt 2.3 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.en.vtt 2.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.en.vtt 2.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.en.vtt 2.3 kB
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.zh-CN.vtt 2.3 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.pt-BR.vtt 2.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.en.vtt 2.3 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.en.vtt 2.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.zh-CN.vtt 2.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.pt-BR.vtt 2.3 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Multiple Testing Corrections-DuMgeHrkIF0.en.vtt 2.3 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.ja.vtt 2.3 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Multiple Testing Corrections-DuMgeHrkIF0.pt-BR.vtt 2.3 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.ar.vtt 2.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.pt-BR.vtt 2.3 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.zh-CN.vtt 2.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.ar.vtt 2.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.ar.vtt 2.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.zh-CN.vtt 2.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.ar.vtt 2.3 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.ar.vtt 2.3 kB
  • Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.en.vtt 2.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.zh-CN.vtt 2.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.zh-CN.vtt 2.3 kB
  • Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.zh-CN.vtt 2.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.zh-CN.vtt 2.3 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.pt-BR.vtt 2.3 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.th.vtt 2.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values-hFNjd5l9CLs.en.vtt 2.2 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.ar.vtt 2.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.en.vtt 2.2 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.ar.vtt 2.2 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ar.vtt 2.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.zh-CN.vtt 2.2 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.pt-BR.vtt 2.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.ja.vtt 2.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.ja.vtt 2.2 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.pt-BR.vtt 2.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.ar.vtt 2.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.ar.vtt 2.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.ar.vtt 2.2 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.ar.vtt 2.2 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.en.vtt 2.2 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.en.vtt 2.2 kB
  • Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.pt-BR.vtt 2.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.ar.vtt 2.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.ar.vtt 2.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.zh-CN.vtt 2.2 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt 2.2 kB
  • Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.zh-CN.vtt 2.2 kB
  • Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.pt-BR.vtt 2.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.pt-BR.vtt 2.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests-8hv8KnvQ6JY.zh-CN.vtt 2.2 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.pt-BR.vtt 2.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.pt-BR.vtt 2.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.en.vtt 2.2 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.zh-CN.vtt 2.2 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.pt-BR.vtt 2.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.ar.vtt 2.2 kB
  • Part 18-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.en.vtt 2.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.en.vtt 2.2 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.zh-CN.vtt 2.2 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.ar.vtt 2.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.pt-BR.vtt 2.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.en.vtt 2.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt 2.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt 2.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt 2.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.en.vtt 2.2 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.en.vtt 2.2 kB
  • Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.ar.vtt 2.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.en.vtt 2.2 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.ar.vtt 2.2 kB
  • Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.es-ES.vtt 2.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.pt-BR.vtt 2.2 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.pt-BR.vtt 2.2 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.pt-BR.vtt 2.2 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.pt-BR.vtt 2.2 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.pt-BR.vtt 2.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.zh-CN.vtt 2.2 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.ar.vtt 2.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.pt-BR.vtt 2.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.ar.vtt 2.2 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt 2.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.ja.vtt 2.2 kB
  • Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.ar.vtt 2.2 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.ar.vtt 2.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.zh-CN.vtt 2.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.en.vtt 2.2 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.ar.vtt 2.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.ar.vtt 2.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.ja.vtt 2.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.zh-CN.vtt 2.2 kB
  • Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.pt-BR.vtt 2.2 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.ar.vtt 2.2 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.ar.vtt 2.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.ar.vtt 2.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.en.vtt 2.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.en.vtt 2.2 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.ar.vtt 2.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.en.vtt 2.2 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.zh-CN.vtt 2.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.en.vtt 2.2 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.zh-CN.vtt 2.2 kB
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.ja.vtt 2.2 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.ar.vtt 2.2 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.pt-BR.vtt 2.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.zh-CN.vtt 2.2 kB
  • Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.ar.vtt 2.2 kB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.pt-BR.vtt 2.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.pt-BR.vtt 2.2 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.ar.vtt 2.2 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.zh-CN.vtt 2.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.ja.vtt 2.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.zh-CN.vtt 2.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.pt-BR.vtt 2.2 kB
  • Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types Of Errors - Part I-aw6GMxIvENc.en.vtt 2.2 kB
  • Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.en.vtt 2.2 kB
  • Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.zh-CN.vtt 2.2 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.zh-CN.vtt 2.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.ja.vtt 2.2 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.pt-BR.vtt 2.2 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.zh-CN.vtt 2.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.ja.vtt 2.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.en.vtt 2.2 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.pt-BR.vtt 2.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.es-ES.vtt 2.2 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.ar.vtt 2.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.zh-CN.vtt 2.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.zh-CN.vtt 2.2 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.pt-BR.vtt 2.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.en.vtt 2.2 kB
  • Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.ja.vtt 2.2 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.zh-CN.vtt 2.2 kB
  • Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.pt-BR.vtt 2.2 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ar.vtt 2.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.en.vtt 2.2 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.pt-BR.vtt 2.2 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.it.vtt 2.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.zh-CN.vtt 2.2 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.en.vtt 2.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.en-US.vtt 2.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.ja.vtt 2.2 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.ar.vtt 2.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.pt-BR.vtt 2.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.pt-BR.vtt 2.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.pt-BR.vtt 2.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.pt-BR.vtt 2.2 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company-CcTfHemUvbM.zh-CN.vtt 2.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.ar.vtt 2.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.en.vtt 2.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.pt-BR.vtt 2.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.es-ES.vtt 2.2 kB
  • Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.zh-CN.vtt 2.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.zh-CN.vtt 2.2 kB
  • Part 04-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.pt-BR.vtt 2.2 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.es-MX.vtt 2.2 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.es-MX.vtt 2.2 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.es-MX.vtt 2.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.pt-BR.vtt 2.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.en.vtt 2.2 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.pt-BR.vtt 2.2 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.zh-CN.vtt 2.2 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.zh-CN.vtt 2.2 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.zh-CN.vtt 2.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.en.vtt 2.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.pt-BR.vtt 2.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.zh-CN.vtt 2.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.it.vtt 2.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.ar.vtt 2.1 kB
  • Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.ar.vtt 2.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.ar.vtt 2.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.zh-CN.vtt 2.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.en.vtt 2.1 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.pt-BR.vtt 2.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.en.vtt 2.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.pt-BR.vtt 2.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.zh-CN.vtt 2.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.en.vtt 2.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.en.vtt 2.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.pt-BR.vtt 2.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.ar.vtt 2.1 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.zh-CN.vtt 2.1 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.pt-BR.vtt 2.1 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.zh-CN.vtt 2.1 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.zh-CN.vtt 2.1 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.zh-CN.vtt 2.1 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.zh-CN.vtt 2.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.pt-BR.vtt 2.1 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.pt-BR.vtt 2.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.ar.vtt 2.1 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.es-MX.vtt 2.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.ar.vtt 2.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.ja.vtt 2.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.en.vtt 2.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.en.vtt 2.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.ar.vtt 2.1 kB
  • Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.pt-BR.vtt 2.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.ar.vtt 2.1 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.en.vtt 2.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.zh-CN.vtt 2.1 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.pt-BR.vtt 2.1 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt 2.1 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative-29mkriaGT0E.en.vtt 2.1 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-R9AtVBq2Z5E.zh-CN.vtt 2.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.zh-CN.vtt 2.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.ja.vtt 2.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.en-US.vtt 2.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python-KS6cKoKe8ms.pt-BR.vtt 2.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.en.vtt 2.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.ar.vtt 2.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.ar.vtt 2.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.en.vtt 2.1 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.en.vtt 2.1 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.zh-CN.vtt 2.1 kB
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.ar.vtt 2.1 kB
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.en.vtt 2.1 kB
  • Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.zh-CN.vtt 2.1 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.en.vtt 2.1 kB
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.ar.vtt 2.1 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.zh-CN.vtt 2.1 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.en.vtt 2.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.zh-CN.vtt 2.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt 2.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt 2.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt 2.1 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.en-US.vtt 2.1 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.zh-CN.vtt 2.1 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt 2.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.en.vtt 2.1 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.zh-CN.vtt 2.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.ja.vtt 2.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.zh-CN.vtt 2.1 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.en.vtt 2.1 kB
  • Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.en.vtt 2.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.en.vtt 2.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.ar.vtt 2.1 kB
  • Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.zh-CN.vtt 2.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.ar.vtt 2.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.zh-CN.vtt 2.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.zh-CN.vtt 2.1 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.en.vtt 2.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.th.vtt 2.1 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.en.vtt 2.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.pt-BR.vtt 2.1 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.ar.vtt 2.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.ar.vtt 2.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.ar.vtt 2.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.en.vtt 2.1 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.zh-CN.vtt 2.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.zh-CN.vtt 2.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.ja.vtt 2.1 kB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.en.vtt 2.1 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.ja.vtt 2.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.zh-CN.vtt 2.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.zh-CN.vtt 2.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.pt-BR.vtt 2.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.en.vtt 2.1 kB
  • Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.zh-CN.vtt 2.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.en.vtt 2.1 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.en.vtt 2.1 kB
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.pt-BR.vtt 2.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.ar.vtt 2.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.pt-BR.vtt 2.1 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.pt-BR.vtt 2.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.zh-CN.vtt 2.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.ar.vtt 2.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.ja.vtt 2.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.zh-CN.vtt 2.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.ja.vtt 2.1 kB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.en.vtt 2.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.ar.vtt 2.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.en.vtt 2.1 kB
  • Part 04-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.en.vtt 2.1 kB
  • Part 04-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.en.vtt 2.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.zh-CN.vtt 2.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.ja.vtt 2.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.en.vtt 2.1 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.en.vtt 2.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.ar.vtt 2.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.en.vtt 2.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.pt-BR.vtt 2.1 kB
  • Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.en.vtt 2.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.zh-CN.vtt 2.1 kB
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.pt-BR.vtt 2.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.pt-BR.vtt 2.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.en.vtt 2.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ja.vtt 2.1 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.en.vtt 2.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.pt-BR.vtt 2.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.ja.vtt 2.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.zh-CN.vtt 2.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.es-ES.vtt 2.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.pt-BR.vtt 2.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.pt-BR.vtt 2.1 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.pt-BR.vtt 2.1 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.zh-CN.vtt 2.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.zh-CN.vtt 2.1 kB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.zh-CN.vtt 2.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.en.vtt 2.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.ar.vtt 2.1 kB
  • Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.zh-CN.vtt 2.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.zh-CN.vtt 2.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.zh-CN.vtt 2.1 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ar.vtt 2.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.ja.vtt 2.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.en-US.vtt 2.1 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.en-US.vtt 2.1 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.pt-BR.vtt 2.1 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.pt-BR.vtt 2.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.pt-BR.vtt 2.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.en.vtt 2.0 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.zh-CN.vtt 2.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.zh-CN.vtt 2.0 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.ar.vtt 2.0 kB
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.th.vtt 2.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.pt-BR.vtt 2.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.ar.vtt 2.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.pt-BR.vtt 2.0 kB
  • Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.ar.vtt 2.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.en.vtt 2.0 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.en.vtt 2.0 kB
  • Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.pt-BR.vtt 2.0 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.zh-CN.vtt 2.0 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.pt-BR.vtt 2.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.it.vtt 2.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.en.vtt 2.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.ja.vtt 2.0 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.ar.vtt 2.0 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.es-MX.vtt 2.0 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.en.vtt 2.0 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt 2.0 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.en-US.vtt 2.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.zh-CN.vtt 2.0 kB
  • Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.en-US.vtt 2.0 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions In Hypothesis Testing-I0Mo7hcxahY.pt-BR.vtt 2.0 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types Of Errors - Part I-aw6GMxIvENc.pt-BR.vtt 2.0 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.en.vtt 2.0 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.pt-BR.vtt 2.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.pt-BR.vtt 2.0 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.en.vtt 2.0 kB
  • Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.en-US.vtt 2.0 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.zh-CN.vtt 2.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.ar.vtt 2.0 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.pt-BR.vtt 2.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.pt-BR.vtt 2.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.pt-BR.vtt 2.0 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.pt-BR.vtt 2.0 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.pt-BR.vtt 2.0 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.pt-BR.vtt 2.0 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.ar.vtt 2.0 kB
  • Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.pt-BR.vtt 2.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ja.vtt 2.0 kB
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.es-ES.vtt 2.0 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ar.vtt 2.0 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions In Hypothesis Testing-I0Mo7hcxahY.en.vtt 2.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.ar.vtt 2.0 kB
  • Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.zh-CN.vtt 2.0 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.zh-CN.vtt 2.0 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.pt-BR.vtt 2.0 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.ar.vtt 2.0 kB
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.pt-BR.vtt 2.0 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.pt-BR.vtt 2.0 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.zh-CN.vtt 2.0 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.ar.vtt 2.0 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.ar.vtt 2.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.ar.vtt 2.0 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values-hFNjd5l9CLs.pt-BR.vtt 2.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.ar.vtt 2.0 kB
  • Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.zh-CN.vtt 2.0 kB
  • Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.pt-BR.vtt 2.0 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.pt-BR.vtt 2.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.ar.vtt 2.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.pt-BR.vtt 2.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.ja.vtt 2.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.zh-CN.vtt 2.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.en.vtt 2.0 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.en.vtt 2.0 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.es-ES.vtt 2.0 kB
  • Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.pt-BR.vtt 2.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.pt-BR.vtt 2.0 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.ar.vtt 2.0 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.es-MX.vtt 2.0 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.es-MX.vtt 2.0 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.es-MX.vtt 2.0 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.en.vtt 2.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.zh-CN.vtt 2.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.pt-BR.vtt 2.0 kB
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.pt-BR.vtt 2.0 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.ar.vtt 2.0 kB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.ar.vtt 2.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.th.vtt 2.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.zh-CN.vtt 2.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt 2.0 kB
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.zh-CN.vtt 2.0 kB
  • Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.zh-CN.vtt 2.0 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.ja.vtt 2.0 kB
  • Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.zh-CN.vtt 2.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.ja.vtt 2.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.en.vtt 2.0 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt 2.0 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt 2.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.pt-BR.vtt 2.0 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.pt-BR.vtt 2.0 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.en.vtt 2.0 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en-GB.vtt 2.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.ar.vtt 2.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.ja.vtt 2.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.en.vtt 2.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.ar.vtt 2.0 kB
  • Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.zh-CN.vtt 2.0 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.zh-CN.vtt 2.0 kB
  • Part 18-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.ar.vtt 2.0 kB
  • Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.pt-BR.vtt 2.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.ar.vtt 2.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.en.vtt 2.0 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.ar.vtt 2.0 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.ar.vtt 2.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.ar.vtt 2.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.zh-CN.vtt 2.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python-KS6cKoKe8ms.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.zh-CN.vtt 2.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.ar.vtt 2.0 kB
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.zh-CN.vtt 2.0 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.en.vtt 2.0 kB
  • Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.pt-BR.vtt 2.0 kB
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.en.vtt 2.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.ar.vtt 2.0 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.zh-CN.vtt 2.0 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.pt-BR.vtt 2.0 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.pt-BR.vtt 2.0 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.ar.vtt 2.0 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.pt-BR.vtt 2.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.zh-CN.vtt 2.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.zh-CN.vtt 2.0 kB
  • Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.en-US.vtt 2.0 kB
  • Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.ar.vtt 2.0 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.en.vtt 2.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.en.vtt 2.0 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.en.vtt 2.0 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.pt-BR.vtt 2.0 kB
  • Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.en.vtt 2.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.en.vtt 2.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.ja.vtt 2.0 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.zh-CN.vtt 2.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.ar.vtt 2.0 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.ar.vtt 2.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.ar.vtt 2.0 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.pt-BR.vtt 1.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.pt-BR.vtt 1.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.ar.vtt 1.9 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.zh-CN.vtt 1.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.zh-CN.vtt 1.9 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.en.vtt 1.9 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Multiple Testing Corrections-DuMgeHrkIF0.zh-CN.vtt 1.9 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.zh-CN.vtt 1.9 kB
  • Part 04-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.zh-CN.vtt 1.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.ja.vtt 1.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.ar.vtt 1.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.en.vtt 1.9 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.es-MX.vtt 1.9 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.en.vtt 1.9 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.zh-CN.vtt 1.9 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.en.vtt 1.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.pt-BR.vtt 1.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.zh-CN.vtt 1.9 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.pt-BR.vtt 1.9 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.ar.vtt 1.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.pt-BR.vtt 1.9 kB
  • Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.en.vtt 1.9 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.ja.vtt 1.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.ja.vtt 1.9 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ar.vtt 1.9 kB
  • Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.zh-CN.vtt 1.9 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.pt-BR.vtt 1.9 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.zh-CN.vtt 1.9 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.zh-CN.vtt 1.9 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.ar.vtt 1.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.en.vtt 1.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.en.vtt 1.9 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.zh-CN.vtt 1.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.ar.vtt 1.9 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.ja.vtt 1.9 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.ar.vtt 1.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.ja.vtt 1.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.pt-BR.vtt 1.9 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.ar.vtt 1.9 kB
  • Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.pt-BR.vtt 1.9 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.ar.vtt 1.9 kB
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.ar.vtt 1.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.ar.vtt 1.9 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.pt-BR.vtt 1.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.pt-BR.vtt 1.9 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.ar.vtt 1.9 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.pt-BR.vtt 1.9 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.ar.vtt 1.9 kB
  • Part 04-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.ja.vtt 1.9 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.ar.vtt 1.9 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt 1.9 kB
  • Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.zh-CN.vtt 1.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.zh-CN.vtt 1.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.ja.vtt 1.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.ar.vtt 1.9 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.zh-CN.vtt 1.9 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.zh-CN.vtt 1.9 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.ar.vtt 1.9 kB
  • Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.ar.vtt 1.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.en.vtt 1.9 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.ar.vtt 1.9 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.it.vtt 1.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.zh-CN.vtt 1.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.zh-CN.vtt 1.9 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/26. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.en.vtt 1.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.zh-CN.vtt 1.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.zh-CN.vtt 1.9 kB
  • Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.ar.vtt 1.9 kB
  • Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.en.vtt 1.9 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.pt-BR.vtt 1.9 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.zh-CN.vtt 1.9 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.zh-CN.vtt 1.9 kB
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.ar.vtt 1.9 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.pt-BR.vtt 1.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.en.vtt 1.9 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ja.vtt 1.9 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.en.vtt 1.9 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.pt-BR.vtt 1.9 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.pt-BR.vtt 1.9 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ja.vtt 1.9 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.en.vtt 1.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.ar.vtt 1.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.ar.vtt 1.9 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.es-ES.vtt 1.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.zh-CN.vtt 1.9 kB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.pt-BR.vtt 1.9 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.ar.vtt 1.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.zh-CN.vtt 1.9 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.en.vtt 1.9 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ar.vtt 1.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.th.vtt 1.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.pt-BR.vtt 1.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.pt-BR.vtt 1.9 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.zh-CN.vtt 1.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.zh-CN.vtt 1.9 kB
  • Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.zh-CN.vtt 1.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.en.vtt 1.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.ar.vtt 1.9 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.en-US.vtt 1.9 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.zh-CN.vtt 1.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.pt-BR.vtt 1.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.pt-BR.vtt 1.9 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.pt-BR.vtt 1.9 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.zh-CN.vtt 1.9 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.es-MX.vtt 1.9 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.zh-CN.vtt 1.9 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.ar.vtt 1.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.ar.vtt 1.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.zh-CN.vtt 1.9 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.zh-CN.vtt 1.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.zh-CN.vtt 1.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.zh-CN.vtt 1.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.pt-BR.vtt 1.9 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.en.vtt 1.9 kB
  • Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.en.vtt 1.9 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.en.vtt 1.9 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.en.vtt 1.9 kB
  • Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.en-US.vtt 1.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.ja.vtt 1.9 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.zh-CN.vtt 1.9 kB
  • Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.ja.vtt 1.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.ar.vtt 1.9 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.en.vtt 1.9 kB
  • Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.ar.vtt 1.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.ar.vtt 1.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.zh-CN.vtt 1.9 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.en.vtt 1.9 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.pt-BR.vtt 1.9 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.en.vtt 1.9 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.zh-CN.vtt 1.9 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.pt-BR.vtt 1.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.en.vtt 1.9 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.zh-CN.vtt 1.9 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.ar.vtt 1.9 kB
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.pt-BR.vtt 1.9 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.en.vtt 1.9 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.pt-BR.vtt 1.9 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values-hFNjd5l9CLs.zh-CN.vtt 1.9 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.zh-CN.vtt 1.9 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.pt-BR.vtt 1.9 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.en.vtt 1.9 kB
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.ar.vtt 1.9 kB
  • Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.zh-CN.vtt 1.9 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.pt-BR.vtt 1.9 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.zh-CN.vtt 1.9 kB
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.ar.vtt 1.9 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.zh-CN.vtt 1.9 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.pt-BR.vtt 1.9 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.th.vtt 1.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.ar.vtt 1.8 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.es-MX.vtt 1.8 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.es-MX.vtt 1.8 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.es-MX.vtt 1.8 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.en.vtt 1.8 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types Of Errors - Part I-aw6GMxIvENc.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.pt-BR.vtt 1.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.ar.vtt 1.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.ar.vtt 1.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.ar.vtt 1.8 kB
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.en.vtt 1.8 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.en.vtt 1.8 kB
  • Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.zh-CN.vtt 1.8 kB
  • Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.pt-BR.vtt 1.8 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.zh-CN.vtt 1.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.zh-CN.vtt 1.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.zh-CN.vtt 1.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.en.vtt 1.8 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.es-ES.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.en.vtt 1.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.en.vtt 1.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.zh-CN.vtt 1.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.ar.vtt 1.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.ar.vtt 1.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.en.vtt 1.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.en.vtt 1.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.pt-BR.vtt 1.8 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.ja.vtt 1.8 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.pt-BR.vtt 1.8 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.ar.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.zh-CN.vtt 1.8 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative-29mkriaGT0E.zh-CN.vtt 1.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.pt-BR.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.zh-CN.vtt 1.8 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.ar.vtt 1.8 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ja.vtt 1.8 kB
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.th.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.ar.vtt 1.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.pt-BR.vtt 1.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.en.vtt 1.8 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.zh-CN.vtt 1.8 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.ja.vtt 1.8 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.en.vtt 1.8 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.ja.vtt 1.8 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.pt-BR.vtt 1.8 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.ar.vtt 1.8 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.zh-CN.vtt 1.8 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ja.vtt 1.8 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.zh-CN.vtt 1.8 kB
  • Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.zh-CN.vtt 1.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.ar.vtt 1.8 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.en.vtt 1.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.en.vtt 1.8 kB
  • Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.en.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.ja.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.en-US.vtt 1.8 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.en.vtt 1.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.zh-CN.vtt 1.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.it.vtt 1.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.ja.vtt 1.8 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.en.vtt 1.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.pt-BR.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.en.vtt 1.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.ar.vtt 1.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.pt-BR.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.en.vtt 1.8 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.zh-CN.vtt 1.8 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.zh-CN.vtt 1.8 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.en.vtt 1.8 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.en.vtt 1.8 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.en.vtt 1.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.ar.vtt 1.8 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions In Hypothesis Testing-I0Mo7hcxahY.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.pt-BR.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.en.vtt 1.8 kB
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.ar.vtt 1.8 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.en.vtt 1.8 kB
  • Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.en.vtt 1.8 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.ar.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.en-US.vtt 1.8 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.zh-CN.vtt 1.8 kB
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.ar.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.pt-BR.vtt 1.8 kB
  • Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.en.vtt 1.8 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.pt-BR.vtt 1.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.zh-CN.vtt 1.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.pt-BR.vtt 1.8 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.ja.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.ja.vtt 1.8 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.es-ES.vtt 1.8 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.zh-CN.vtt 1.8 kB
  • Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.ja.vtt 1.8 kB
  • Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.ar.vtt 1.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.ar.vtt 1.8 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.en.vtt 1.8 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.ja.vtt 1.8 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.pt-BR.vtt 1.8 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.ja.vtt 1.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.en.vtt 1.8 kB
  • Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.ar.vtt 1.8 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.en.vtt 1.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ar.vtt 1.8 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.pt-BR.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.ar.vtt 1.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.es-ES.vtt 1.8 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.ar.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.pt-BR.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.en.vtt 1.8 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.en.vtt 1.8 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.en.vtt 1.8 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.ar.vtt 1.8 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.en.vtt 1.8 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.zh-CN.vtt 1.8 kB
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.zh-CN.vtt 1.8 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.en.vtt 1.8 kB
  • Part 04-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.zh-CN.vtt 1.8 kB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.en.vtt 1.8 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.zh-CN.vtt 1.8 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.pt-BR.vtt 1.8 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.pt-BR.vtt 1.8 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.en.vtt 1.8 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.zh-CN.vtt 1.8 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.pt-BR.vtt 1.8 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.en.vtt 1.8 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.pt-BR.vtt 1.8 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.pt-BR.vtt 1.8 kB
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.en.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.pt-BR.vtt 1.8 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.en.vtt 1.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.en.vtt 1.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.zh-CN.vtt 1.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.pt-BR.vtt 1.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.ja.vtt 1.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.ja.vtt 1.7 kB
  • Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.zh-CN.vtt 1.7 kB
  • Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.zh-CN.vtt 1.7 kB
  • Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.zh-CN.vtt 1.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.ar.vtt 1.7 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.pt-BR.vtt 1.7 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.zh-CN.vtt 1.7 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.ar.vtt 1.7 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/26. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.en.vtt 1.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.ar.vtt 1.7 kB
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.ar.vtt 1.7 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ja.vtt 1.7 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.en.vtt 1.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.en.vtt 1.7 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.zh-CN.vtt 1.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.en.vtt 1.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.en.vtt 1.7 kB
  • Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.pt-BR.vtt 1.7 kB
  • Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.pt-BR.vtt 1.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.ja.vtt 1.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.pt-BR.vtt 1.7 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.zh-CN.vtt 1.7 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.zh-CN.vtt 1.7 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.ja.vtt 1.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.zh-CN.vtt 1.7 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ar.vtt 1.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.ar.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.pt-BR.vtt 1.7 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt 1.7 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.ar.vtt 1.7 kB
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.th.vtt 1.7 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.en-US.vtt 1.7 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.zh-CN.vtt 1.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.en.vtt 1.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.zh-CN.vtt 1.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.en.vtt 1.7 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.es-ES.vtt 1.7 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.es-ES.vtt 1.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.zh-CN.vtt 1.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.en.vtt 1.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.zh-CN.vtt 1.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.ar.vtt 1.7 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ja.vtt 1.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.ar.vtt 1.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.ar.vtt 1.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.ja.vtt 1.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.hr.vtt 1.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.ar.vtt 1.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.zh-CN.vtt 1.7 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ar.vtt 1.7 kB
  • Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.zh-CN.vtt 1.7 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.ar.vtt 1.7 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.en.vtt 1.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.pt-BR.vtt 1.7 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.pt-BR.vtt 1.7 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.en.vtt 1.7 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.zh-CN.vtt 1.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.zh-CN.vtt 1.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.zh-CN.vtt 1.7 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.ar.vtt 1.7 kB
  • Part 04-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.en.vtt 1.7 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.ar.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.en.vtt 1.7 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.pt-BR.vtt 1.7 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.en.vtt 1.7 kB
  • Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.en.vtt 1.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.pt-BR.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.ja.vtt 1.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.en.vtt 1.7 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.en.vtt 1.7 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.en.vtt 1.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.ja.vtt 1.7 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.en.vtt 1.7 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.pt-BR.vtt 1.7 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.zh-CN.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.en.vtt 1.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.en-US.vtt 1.7 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.en.vtt 1.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.zh-CN.vtt 1.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.en.vtt 1.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.pt-BR.vtt 1.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.en.vtt 1.7 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.en.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.ja.vtt 1.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.ar.vtt 1.7 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.zh-CN.vtt 1.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.zh-CN.vtt 1.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.zh-CN.vtt 1.7 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.ar.vtt 1.7 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.ar.vtt 1.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.ar.vtt 1.7 kB
  • Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.pt-BR.vtt 1.7 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.pt-BR.vtt 1.7 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.zh-CN.vtt 1.7 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.th.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.it.vtt 1.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.zh-CN.vtt 1.7 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.en.vtt 1.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.zh-CN.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.pt-BR.vtt 1.7 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.pt-BR.vtt 1.7 kB
  • Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.zh-CN.vtt 1.7 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.en.vtt 1.7 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.en.vtt 1.7 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.pt-BR.vtt 1.7 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.en.vtt 1.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.zh-CN.vtt 1.7 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.en.vtt 1.7 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.ar.vtt 1.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.ar.vtt 1.7 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.ar.vtt 1.7 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.en.vtt 1.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.zh-CN.vtt 1.7 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.ar.vtt 1.7 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.zh-CN.vtt 1.7 kB
  • Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.ar.vtt 1.7 kB
  • Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.zh-CN.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.ja.vtt 1.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.pt-BR.vtt 1.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.zh-CN.vtt 1.7 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.ar.vtt 1.7 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.pt-BR.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.ar.vtt 1.7 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ar.vtt 1.7 kB
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.zh-CN.vtt 1.7 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.ar.vtt 1.7 kB
  • Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.pt-BR.vtt 1.7 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ja.vtt 1.7 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.en.vtt 1.7 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.pt-BR.vtt 1.7 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.pt-BR.vtt 1.7 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.ja.vtt 1.7 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.zh-CN.vtt 1.7 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.ar.vtt 1.7 kB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.ar.vtt 1.7 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.ar.vtt 1.7 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.ja.vtt 1.7 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.pt-BR.vtt 1.7 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ja.vtt 1.7 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.zh-CN.vtt 1.7 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.en.vtt 1.7 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.zh-CN.vtt 1.7 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.ar.vtt 1.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ar.vtt 1.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.pt-BR.vtt 1.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.pt-BR.vtt 1.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.en.vtt 1.6 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.en.vtt 1.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.pt-BR.vtt 1.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.zh-CN.vtt 1.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.en.vtt 1.6 kB
  • Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.zh-CN.vtt 1.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.ja.vtt 1.6 kB
  • Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.ar.vtt 1.6 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.pt-BR.vtt 1.6 kB
  • Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.ar.vtt 1.6 kB
  • Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.ja.vtt 1.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.ar.vtt 1.6 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.pt-BR.vtt 1.6 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.en.vtt 1.6 kB
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.th.vtt 1.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.en.vtt 1.6 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.en.vtt 1.6 kB
  • Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.zh-CN.vtt 1.6 kB
  • Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.zh-CN.vtt 1.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.zh-CN.vtt 1.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.zh-CN.vtt 1.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.en.vtt 1.6 kB
  • Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.zh-CN.vtt 1.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.ar.vtt 1.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.zh-CN.vtt 1.6 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.ar.vtt 1.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.zh-CN.vtt 1.6 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.en.vtt 1.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ja.vtt 1.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.ja.vtt 1.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.zh-CN.vtt 1.6 kB
  • Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.ja.vtt 1.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ar.vtt 1.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.ja.vtt 1.6 kB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.ar.vtt 1.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.zh-CN.vtt 1.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.zh-CN.vtt 1.6 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.en.vtt 1.6 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.en.vtt 1.6 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.ar.vtt 1.6 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.pt-BR.vtt 1.6 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.ar.vtt 1.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.en.vtt 1.6 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.ar.vtt 1.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.ja.vtt 1.6 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.pt-BR.vtt 1.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.pt-BR.vtt 1.6 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.pt-BR.vtt 1.6 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.en-US.vtt 1.6 kB
  • Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.ja.vtt 1.6 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.zh-CN.vtt 1.6 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.pt-BR.vtt 1.6 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.en.vtt 1.6 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.pt-BR.vtt 1.6 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.en.vtt 1.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.pt-BR.vtt 1.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.pt-BR.vtt 1.6 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.en.vtt 1.6 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.zh-CN.vtt 1.6 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.ar.vtt 1.6 kB
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.ar.vtt 1.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.pt-BR.vtt 1.6 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.ar.vtt 1.6 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.pt-BR.vtt 1.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.en.vtt 1.6 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.ar.vtt 1.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.zh-CN.vtt 1.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.zh-CN.vtt 1.6 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-wkWDrSBBtz0.en.vtt 1.6 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.zh-CN.vtt 1.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.ar.vtt 1.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.ar.vtt 1.6 kB
  • Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.pt-BR.vtt 1.6 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.ar.vtt 1.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.ar.vtt 1.6 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.pt-BR.vtt 1.6 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.es-ES.vtt 1.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.zh-CN.vtt 1.6 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.ar.vtt 1.6 kB
  • Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.zh-CN.vtt 1.6 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.ar.vtt 1.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.zh-CN.vtt 1.6 kB
  • Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.pt-BR.vtt 1.6 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.th.vtt 1.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.pt-BR.vtt 1.6 kB
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.zh-CN.vtt 1.6 kB
  • Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.pt-BR.vtt 1.6 kB
  • Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.pt-BR.vtt 1.6 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.ja.vtt 1.6 kB
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.pt-BR.vtt 1.6 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.en.vtt 1.6 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.pt-BR.vtt 1.6 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.ar.vtt 1.6 kB
  • Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.ar.vtt 1.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.ar.vtt 1.6 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.zh-CN.vtt 1.6 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-pDELcPTP2BI.en.vtt 1.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.ja.vtt 1.6 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.zh-CN.vtt 1.6 kB
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.ar.vtt 1.6 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.zh-CN.vtt 1.6 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.ar.vtt 1.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.ar.vtt 1.6 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.pt-BR.vtt 1.6 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.ar.vtt 1.6 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.pt-BR.vtt 1.6 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.ar.vtt 1.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.es-ES.vtt 1.6 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.zh-CN.vtt 1.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ja.vtt 1.6 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-pDELcPTP2BI.pt-BR.vtt 1.6 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace-Aa9SFwiRbho.pt-BR.vtt 1.6 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.en-US.vtt 1.6 kB
  • Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.zh-CN.vtt 1.6 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.zh-CN.vtt 1.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.en-US.vtt 1.6 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.en.vtt 1.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.zh-CN.vtt 1.6 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.zh-CN.vtt 1.6 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.zh-CN.vtt 1.6 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.zh-CN.vtt 1.6 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.zh-CN.vtt 1.6 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.pt-BR.vtt 1.6 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.en.vtt 1.6 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.zh-CN.vtt 1.6 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.zh-CN.vtt 1.6 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.en.vtt 1.6 kB
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.en-US.vtt 1.6 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.zh-CN.vtt 1.6 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.en.vtt 1.6 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.es-MX.vtt 1.6 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ar.vtt 1.6 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.pt-BR.vtt 1.6 kB
  • Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.en.vtt 1.6 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.ar.vtt 1.5 kB
  • Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.pt-BR.vtt 1.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.zh-CN.vtt 1.5 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.ar.vtt 1.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.pt-BR.vtt 1.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.zh-CN.vtt 1.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.ar.vtt 1.5 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.zh-CN.vtt 1.5 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.zh-CN.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.en.vtt 1.5 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.en.vtt 1.5 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt 1.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ar.vtt 1.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.en-US.vtt 1.5 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.hr.vtt 1.5 kB
  • Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.ar.vtt 1.5 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.pt-BR.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.ja.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.ar.vtt 1.5 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.zh-CN.vtt 1.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.ja.vtt 1.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.pt-BR.vtt 1.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.ar.vtt 1.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.ar.vtt 1.5 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.zh-CN.vtt 1.5 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.pt-BR.vtt 1.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.pt-BR.vtt 1.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.ja.vtt 1.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.zh-CN.vtt 1.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.pt-BR.vtt 1.5 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.zh-CN.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.ar.vtt 1.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.en.vtt 1.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.en.vtt 1.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.en.vtt 1.5 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.en.vtt 1.5 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.pt-BR.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.ar.vtt 1.5 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.ar.vtt 1.5 kB
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.pt-BR.vtt 1.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.ja.vtt 1.5 kB
  • Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.es-MX.vtt 1.5 kB
  • Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.zh-CN.vtt 1.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.zh-CN.vtt 1.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Tableau Desktop Download-End96VkLQc4.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.pt-BR.vtt 1.5 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt 1.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.zh-CN.vtt 1.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.en.vtt 1.5 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.zh-CN.vtt 1.5 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.zh-CN.vtt 1.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.en.vtt 1.5 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.pt-BR.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.pt-BR.vtt 1.5 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.pt-BR.vtt 1.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.ar.vtt 1.5 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.ar.vtt 1.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.ar.vtt 1.5 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.zh-CN.vtt 1.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.ar.vtt 1.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.ja.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.ar.vtt 1.5 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.en.vtt 1.5 kB
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.pt-BR.vtt 1.5 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.pt-BR.vtt 1.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ja.vtt 1.5 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.ar.vtt 1.5 kB
  • Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.pt-BR.vtt 1.5 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.ar.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.pt-BR.vtt 1.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.zh-CN.vtt 1.5 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.en.vtt 1.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.ar.vtt 1.5 kB
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.ar.vtt 1.5 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.ar.vtt 1.5 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.ar.vtt 1.5 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.zh-CN.vtt 1.5 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.pt-BR.vtt 1.5 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.ja.vtt 1.5 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.pt-BR.vtt 1.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.ar.vtt 1.5 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ar.vtt 1.5 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.ar.vtt 1.5 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.pt-BR.vtt 1.5 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.zh-CN.vtt 1.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.ja.vtt 1.5 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.pt-BR.vtt 1.5 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.es-ES.vtt 1.5 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.ar.vtt 1.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.en.vtt 1.5 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.ar.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.zh-CN.vtt 1.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.ja.vtt 1.5 kB
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.pt-BR.vtt 1.5 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/26. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.zh-CN.vtt 1.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.zh-CN.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.ja.vtt 1.5 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace-Aa9SFwiRbho.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.es-ES.vtt 1.5 kB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.ar.vtt 1.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.ar.vtt 1.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ar.vtt 1.5 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.zh-CN.vtt 1.5 kB
  • Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.zh-CN.vtt 1.5 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.ar.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.ja.vtt 1.5 kB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.zh-CN.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.en.vtt 1.5 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt 1.5 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.ar.vtt 1.5 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.en.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.zh-CN.vtt 1.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.en.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.zh-CN.vtt 1.5 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.en.vtt 1.5 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.zh-CN.vtt 1.5 kB
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.ja.vtt 1.5 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.ar.vtt 1.5 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.ar.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.pt-BR.vtt 1.5 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-pDELcPTP2BI.zh-CN.vtt 1.5 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.it.vtt 1.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.ar.vtt 1.5 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.zh-CN.vtt 1.5 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.ar.vtt 1.5 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.pt-BR.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.pt-BR.vtt 1.5 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.en.vtt 1.5 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.en.vtt 1.5 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.en.vtt 1.5 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.ar.vtt 1.5 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.pt-BR.vtt 1.5 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ar.vtt 1.5 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.en.vtt 1.5 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.en.vtt 1.5 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.zh-CN.vtt 1.5 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.ar.vtt 1.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.en.vtt 1.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.ar.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.pt-BR.vtt 1.4 kB
  • Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.ar.vtt 1.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.zh-CN.vtt 1.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.zh-CN.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.ja.vtt 1.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.ar.vtt 1.4 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.en.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.es-ES.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.en.vtt 1.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.en.vtt 1.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.en.vtt 1.4 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.ja.vtt 1.4 kB
  • Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.en.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.en.vtt 1.4 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.en.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ar.vtt 1.4 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ja.vtt 1.4 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.en.vtt 1.4 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt 1.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.ar.vtt 1.4 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ar.vtt 1.4 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.zh-CN.vtt 1.4 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.en.vtt 1.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.ar.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.en.vtt 1.4 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.en.vtt 1.4 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.zh-CN.vtt 1.4 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.ja.vtt 1.4 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.ja.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.zh-CN.vtt 1.4 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.en.vtt 1.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.ar.vtt 1.4 kB
  • Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.en.vtt 1.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.ja.vtt 1.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.en.vtt 1.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.it.vtt 1.4 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.en.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.en.vtt 1.4 kB
  • Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.en-US.vtt 1.4 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt 1.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.pt-BR.vtt 1.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.ja.vtt 1.4 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.en.vtt 1.4 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.en.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.zh-CN.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.pt-BR.vtt 1.4 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.pt-BR.vtt 1.4 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ja.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.ar.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.ar.vtt 1.4 kB
  • Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.ar.vtt 1.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.en.vtt 1.4 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.en.vtt 1.4 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.th.vtt 1.4 kB
  • Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.zh-CN.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.pt-BR.vtt 1.4 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.en.vtt 1.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.ar.vtt 1.4 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.ar.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.ar.vtt 1.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.zh-CN.vtt 1.4 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-wkWDrSBBtz0.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.pt-BR.vtt 1.4 kB
  • Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-wkWDrSBBtz0.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video-68EGMItJiNM.ar.vtt 1.4 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.ar.vtt 1.4 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.hr.vtt 1.4 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.ja.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.zh-CN.vtt 1.4 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.en.vtt 1.4 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.en.vtt 1.4 kB
  • Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace-Aa9SFwiRbho.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.ja.vtt 1.4 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.pt-BR.vtt 1.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.pt-BR.vtt 1.4 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.ja.vtt 1.4 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.pt-BR.vtt 1.4 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.pt-BR.vtt 1.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.pt-BR.vtt 1.4 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.en.vtt 1.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.pt-BR.vtt 1.4 kB
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.zh-CN.vtt 1.4 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.en.vtt 1.4 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.en.vtt 1.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.en.vtt 1.4 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.ar.vtt 1.4 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.ar.vtt 1.4 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.es-ES.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.ja.vtt 1.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.en.vtt 1.4 kB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.zh-CN.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.es-ES.vtt 1.4 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.en.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.ja.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.ja.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.zh-CN.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.ja.vtt 1.4 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.zh-CN.vtt 1.4 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt 1.4 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.pt-BR.vtt 1.4 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ar.vtt 1.4 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.en.vtt 1.4 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.ar.vtt 1.4 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.en.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.ar.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.ja.vtt 1.4 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.pt-BR.vtt 1.4 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.ar.vtt 1.4 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.en.vtt 1.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.ar.vtt 1.4 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.ar.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.ja.vtt 1.4 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.ar.vtt 1.4 kB
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.zh-CN.vtt 1.4 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.zh-CN.vtt 1.4 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.zh-CN.vtt 1.4 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.ar.vtt 1.4 kB
  • Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.ar.vtt 1.4 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.ar.vtt 1.4 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.pt-BR.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.en.vtt 1.4 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.en.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.ar.vtt 1.4 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.en-US.vtt 1.4 kB
  • Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.pt-BR.vtt 1.4 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ja.vtt 1.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.ar.vtt 1.4 kB
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.zh-CN.vtt 1.4 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.es-ES.vtt 1.4 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.en.vtt 1.4 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.zh-CN.vtt 1.4 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.zh-CN.vtt 1.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.zh-CN.vtt 1.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.zh-CN.vtt 1.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.ar.vtt 1.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.ar.vtt 1.3 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.en.vtt 1.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.en-US.vtt 1.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.zh-CN.vtt 1.3 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.pt-BR.vtt 1.3 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.ar.vtt 1.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.ar.vtt 1.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.ar.vtt 1.3 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.zh-CN.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.ja.vtt 1.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.ja.vtt 1.3 kB
  • Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.ar.vtt 1.3 kB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.en.vtt 1.3 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.zh-CN.vtt 1.3 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt 1.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.pt-BR.vtt 1.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.zh-CN.vtt 1.3 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.pt-BR.vtt 1.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.zh-CN.vtt 1.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.zh-CN.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.pt-BR.vtt 1.3 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt 1.3 kB
  • Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.pt-BR.vtt 1.3 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/01. DAND 01 Congrats V1-QS1jKmZWdTk.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.pt-BR.vtt 1.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.zh-CN.vtt 1.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.ar.vtt 1.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.en.vtt 1.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.en.vtt 1.3 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.zh-CN.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.zh-CN.vtt 1.3 kB
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.pt-BR.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.es-ES.vtt 1.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.ja.vtt 1.3 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.en.vtt 1.3 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.it.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.zh-CN.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.en.vtt 1.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.en.vtt 1.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.zh-CN.vtt 1.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.en.vtt 1.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.en.vtt 1.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-BR.vtt 1.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.en.vtt 1.3 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.pt-BR.vtt 1.3 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.pt-BR.vtt 1.3 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.zh-CN.vtt 1.3 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.pt-BR.vtt 1.3 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.pt-BR.vtt 1.3 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.pt-BR.vtt 1.3 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.pt-BR.vtt 1.3 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.es-ES.vtt 1.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.ar.vtt 1.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.ar.vtt 1.3 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.ar.vtt 1.3 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ja.vtt 1.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.en.vtt 1.3 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Instructor Introduction Charlie And Phillip-8ar0mETDrZw.ar.vtt 1.3 kB
  • Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.ar.vtt 1.3 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.ar.vtt 1.3 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.ar.vtt 1.3 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.ar.vtt 1.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.zh-CN.vtt 1.3 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ar.vtt 1.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en-GB.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.pt-BR.vtt 1.3 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.zh-CN.vtt 1.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.en-US.vtt 1.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.ar.vtt 1.3 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.ar.vtt 1.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.zh-CN.vtt 1.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.zh-CN.vtt 1.3 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.pt-BR.vtt 1.3 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.pt-BR.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.zh-CN.vtt 1.3 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.zh-CN.vtt 1.3 kB
  • Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.ar.vtt 1.3 kB
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.zh-CN.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.pt-BR.vtt 1.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.ar.vtt 1.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.pt-BR.vtt 1.3 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.ar.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.zh-CN.vtt 1.3 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.pt-BR.vtt 1.3 kB
  • Part 15-Module 02-Lesson 05_Trees/13. BST Complications-pcB0wV7myy4.pt-BR.vtt 1.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.ar.vtt 1.3 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.ar.vtt 1.3 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.zh-CN.vtt 1.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.en.vtt 1.3 kB
  • Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.zh-CN.vtt 1.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.ja.vtt 1.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.ar.vtt 1.3 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.en.vtt 1.3 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.zh-CN.vtt 1.3 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.pt-BR.vtt 1.3 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.pt-BR.vtt 1.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.pt-BR.vtt 1.3 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.pt-BR.vtt 1.3 kB
  • Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.pt-BR.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.zh-CN.vtt 1.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.zh-CN.vtt 1.3 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.zh-CN.vtt 1.3 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.ar.vtt 1.3 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.ar.vtt 1.3 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.es-ES.vtt 1.3 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.en.vtt 1.3 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.ar.vtt 1.3 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.pt-BR.vtt 1.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.zh-CN.vtt 1.3 kB
  • Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.zh-CN.vtt 1.3 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.pt-BR.vtt 1.3 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.en.vtt 1.3 kB
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.en.vtt 1.3 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.zh-CN.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ja.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.zh-CN.vtt 1.2 kB
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.th.vtt 1.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.ja.vtt 1.2 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.zh-CN.vtt 1.2 kB
  • Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.pt-BR.vtt 1.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.en.vtt 1.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.pt-BR.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.pt-BR.vtt 1.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.ar.vtt 1.2 kB
  • Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.es-MX.vtt 1.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.zh-CN.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.it.vtt 1.2 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.pt-BR.vtt 1.2 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.zh-CN.vtt 1.2 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.zh-CN.vtt 1.2 kB
  • Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.en-US.vtt 1.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.ar.vtt 1.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.zh-CN.vtt 1.2 kB
  • Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.en.vtt 1.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.zh-CN.vtt 1.2 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.zh-CN.vtt 1.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.zh-CN.vtt 1.2 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.pt-BR.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.pt-BR.vtt 1.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.en.vtt 1.2 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.zh-CN.vtt 1.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.en.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.en.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.ja.vtt 1.2 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.en.vtt 1.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.zh-CN.vtt 1.2 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.th.vtt 1.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.ar.vtt 1.2 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.ar.vtt 1.2 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.en-US.vtt 1.2 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.pt-BR.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.ar.vtt 1.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.zh-CN.vtt 1.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.en.vtt 1.2 kB
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.zh-CN.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.ja.vtt 1.2 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.pt-BR.vtt 1.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt 1.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt 1.2 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.en.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.ja.vtt 1.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.en.vtt 1.2 kB
  • Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.pt-BR.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.es-ES.vtt 1.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ja.vtt 1.2 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.pt-BR.vtt 1.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.zh-CN.vtt 1.2 kB
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ar.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.pt-BR.vtt 1.2 kB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.es-ES.vtt 1.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.zh-CN.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.en.vtt 1.2 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.zh-CN.vtt 1.2 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.th.vtt 1.2 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.zh-CN.vtt 1.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.en.vtt 1.2 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.pt-BR.vtt 1.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.pt-BR.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.pt-BR.vtt 1.2 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.zh-CN.vtt 1.2 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.it.vtt 1.2 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.es-ES.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ja.vtt 1.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.ar.vtt 1.2 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.es-MX.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.th.vtt 1.2 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.en-US.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.pt-BR.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.pt-BR.vtt 1.2 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.ar.vtt 1.2 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.en.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.pt-BR.vtt 1.2 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.en.vtt 1.2 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.ar.vtt 1.2 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.es-MX.vtt 1.2 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.zh-CN.vtt 1.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.zh-CN.vtt 1.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.zh-CN.vtt 1.2 kB
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.th.vtt 1.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.zh-CN.vtt 1.2 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.pt-BR.vtt 1.2 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.pt-BR.vtt 1.2 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ja.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.ar.vtt 1.2 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.ar.vtt 1.2 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.en.vtt 1.2 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.ja.vtt 1.2 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.en.vtt 1.2 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.en.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.zh-CN.vtt 1.2 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.zh-CN.vtt 1.2 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-PT.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.zh-CN.vtt 1.2 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.zh-CN.vtt 1.2 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.tr.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.es-ES.vtt 1.2 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.pt-BR.vtt 1.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.zh-CN.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.en.vtt 1.2 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ja.vtt 1.2 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.en.vtt 1.2 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.zh-CN.vtt 1.2 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ja.vtt 1.2 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.pt-BR.vtt 1.2 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.en.vtt 1.2 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.pt-BR.vtt 1.2 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ja.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.ja.vtt 1.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.ar.vtt 1.2 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.ja.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.pt-BR.vtt 1.2 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.ar.vtt 1.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.ar.vtt 1.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video-68EGMItJiNM.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.en.vtt 1.2 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.ja.vtt 1.2 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.zh-CN.vtt 1.2 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.zh-CN.vtt 1.2 kB
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.hr.vtt 1.2 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.zh-CN.vtt 1.2 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.pt-BR.vtt 1.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.ja.vtt 1.2 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.en-US.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.ja.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.ja.vtt 1.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.pt-BR.vtt 1.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.pt-BR.vtt 1.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.it.vtt 1.1 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.en.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.pt-BR.vtt 1.1 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.en.vtt 1.1 kB
  • Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.zh-CN.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.pt-BR.vtt 1.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.en.vtt 1.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.hr.vtt 1.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.pt-BR.vtt 1.1 kB
  • Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.zh-CN.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.it.vtt 1.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.es-ES.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.en.vtt 1.1 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.zh-CN.vtt 1.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.en.vtt 1.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.en.vtt 1.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion-nQFchD4XPPs.pt-BR.vtt 1.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.ja.vtt 1.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.es-ES.vtt 1.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.zh-CN.vtt 1.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.zh-CN.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.zh-CN.vtt 1.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.en.vtt 1.1 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.en.vtt 1.1 kB
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ja.vtt 1.1 kB
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ar.vtt 1.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.en.vtt 1.1 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.zh-CN.vtt 1.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ja.vtt 1.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.en.vtt 1.1 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Instructor Introduction Charlie And Phillip-8ar0mETDrZw.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.pt-BR.vtt 1.1 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.en.vtt 1.1 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.pt-BR.vtt 1.1 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.en.vtt 1.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.pt-BR.vtt 1.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.ja.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.ja.vtt 1.1 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.zh-CN.vtt 1.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.es-ES.vtt 1.1 kB
  • Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ar.vtt 1.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.pt-BR.vtt 1.1 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.zh-CN.vtt 1.1 kB
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.zh-CN.vtt 1.1 kB
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.en.vtt 1.1 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.zh-CN.vtt 1.1 kB
  • Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.zh-CN.vtt 1.1 kB
  • Part 04-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.ar.vtt 1.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.en.vtt 1.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.zh-CN.vtt 1.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.th.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.zh-CN.vtt 1.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.en.vtt 1.1 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.en.vtt 1.1 kB
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.ar.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.ja.vtt 1.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.zh-CN.vtt 1.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.ja.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-Hans.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.ja.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ja.vtt 1.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.it.vtt 1.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.en-US.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.en.vtt 1.1 kB
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.th.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.en.vtt 1.1 kB
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.zh-CN.vtt 1.1 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.en.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ja.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.zh-CN.vtt 1.1 kB
  • Part 18-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.zh-CN.vtt 1.1 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.en.vtt 1.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ja.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.zh-CN.vtt 1.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.ar.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.pt-BR.vtt 1.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.ja.vtt 1.1 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.zh-CN.vtt 1.1 kB
  • Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses-JkXTwS-5Daw.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.pt-BR.vtt 1.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.es-ES.vtt 1.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.ar.vtt 1.1 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.en.vtt 1.1 kB
  • Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.pt-BR.vtt 1.1 kB
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.zh-CN.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.ja.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.zh-CN.vtt 1.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.ja.vtt 1.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.en-US.vtt 1.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion-nQFchD4XPPs.en.vtt 1.1 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.ja.vtt 1.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.en.vtt 1.1 kB
  • Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ja.vtt 1.1 kB
  • Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.zh-CN.vtt 1.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.en.vtt 1.1 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.pt-BR.vtt 1.1 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.pt-BR.vtt 1.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.en-US.vtt 1.1 kB
  • Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.en.vtt 1.1 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.ja.vtt 1.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.en.vtt 1.1 kB
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.zh-CN.vtt 1.1 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-CN.vtt 1.1 kB
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ar.vtt 1.1 kB
  • Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.en-US.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.en.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.ja.vtt 1.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.en.vtt 1.1 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.ar.vtt 1.1 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.hr.vtt 1.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.zh-CN.vtt 1.1 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.en.vtt 1.1 kB
  • Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.zh-CN.vtt 1.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.en.vtt 1.1 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.en.vtt 1.1 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ar.vtt 1.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.pt-BR.vtt 1.1 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.pt-BR.vtt 1.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.zh-CN.vtt 1.1 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.zh-CN.vtt 1.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.ar.vtt 1.1 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.pt-BR.vtt 1.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ja.vtt 1.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.ar.vtt 1.1 kB
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Download Tableau Public-2bXsg6SKHG8.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.ar.vtt 1.1 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.zh-CN.vtt 1.1 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.ar.vtt 1.1 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.en.vtt 1.1 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.pt-BR.vtt 1.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.zh-CN.vtt 1.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.en.vtt 1.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.ar.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.zh-CN.vtt 1.1 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.th.vtt 1.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.ja.vtt 1.1 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.pt-BR.vtt 1.1 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.zh-CN.vtt 1.1 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.pt-BR.vtt 1.1 kB
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.zh-CN.vtt 1.1 kB
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.zh-CN.vtt 1.1 kB
  • Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.pt-BR.vtt 1.1 kB
  • Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.en.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.ja.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.ar.vtt 1.1 kB
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video-68EGMItJiNM.en.vtt 1.1 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.en.vtt 1.1 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.ar.vtt 1.1 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.zh-CN.vtt 1.1 kB
  • Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.zh-CN.vtt 1.1 kB
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses-JkXTwS-5Daw.pt-BR.vtt 1.1 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.pt-BR.vtt 1.1 kB
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.pt-BR.vtt 1.1 kB
  • Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.en-US.vtt 1.1 kB
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.en-US.vtt 1.1 kB
  • Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.ar.vtt 1.1 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.pt-BR.vtt 1.1 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.zh-CN.vtt 1.1 kB
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.zh-CN.vtt 1.1 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.zh-CN.vtt 1.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.ja.vtt 1.0 kB
  • Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.en.vtt 1.0 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.ar.vtt 1.0 kB
  • Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.zh-CN.vtt 1.0 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.ar.vtt 1.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.pt-BR.vtt 1.0 kB
  • Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.es-MX.vtt 1.0 kB
  • Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.en.vtt 1.0 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.zh-CN.vtt 1.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.pt-BR.vtt 1.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.pt-BR.vtt 1.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.zh-CN.vtt 1.0 kB
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.zh-CN.vtt 1.0 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.ar.vtt 1.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.pt-BR.vtt 1.0 kB
  • Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.zh-CN.vtt 1.0 kB
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.ar.vtt 1.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.ar.vtt 1.0 kB
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.pt-BR.vtt 1.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.ja.vtt 1.0 kB
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.ar.vtt 1.0 kB
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.en.vtt 1.0 kB
  • Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.ar.vtt 1.0 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ar.vtt 1.0 kB
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.zh-CN.vtt 1.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.ja.vtt 1.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.zh-CN.vtt 1.0 kB
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.ar.vtt 1.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.zh-CN.vtt 1.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.zh-CN.vtt 1.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.th.vtt 1.0 kB
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.pt-BR.vtt 1.0 kB
  • Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.en.vtt 1.0 kB
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.zh-CN.vtt 1.0 kB
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.th.vtt 1.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.en.vtt 1.0 kB
  • Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.pt-BR.vtt 1.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.ar.vtt 1.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ja.vtt 1.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.pt-BR.vtt 1.0 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.zh-CN.vtt 1.0 kB
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.en.vtt 1.0 kB
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.ar.vtt 1.0 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.zh-CN.vtt 1.0 kB
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.th.vtt 1.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.en.vtt 1.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.pt-BR.vtt 1.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.zh-CN.vtt 1.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.zh-CN.vtt 1.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.en.vtt 1.0 kB
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.pt-BR.vtt 1.0 kB
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.en.vtt 1.0 kB
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.zh-CN.vtt 1.0 kB
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.zh-CN.vtt 1.0 kB
  • Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.zh-CN.vtt 1.0 kB
  • Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.en.vtt 1.0 kB
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.pt-BR.vtt 1.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.it.vtt 1.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.zh-CN.vtt 1.0 kB
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.ar.vtt 1.0 kB
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.ar.vtt 1.0 kB
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.en.vtt 1.0 kB
  • Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.en.vtt 1.0 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.en-US.vtt 1.0 kB
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.pt-BR.vtt 1.0 kB
  • Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.zh-CN.vtt 1.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.ar.vtt 1.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.ja.vtt 1.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.en.vtt 1.0 kB
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.zh-CN.vtt 1.0 kB
  • Part 02-Module 01-Lesson 01_Numbers and Strings/01. Instructor Introduction Charlie And Phillip-8ar0mETDrZw.en.vtt 1.0 kB
  • Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.zh-CN.vtt 1.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.zh-CN.vtt 1.0 kB
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.zh-CN.vtt 1.0 kB
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.en.vtt 1.0 kB
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.pt-BR.vtt 1.0 kB
  • Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.zh-CN.vtt 1.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.es-ES.vtt 1.0 kB
  • Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.zh-CN.vtt 1.0 kB
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.pt-BR.vtt 1.0 kB
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ar.vtt 1.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.pt-BR.vtt 1.0 kB
  • Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.pt-BR.vtt 1.0 kB
  • Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.zh-CN.vtt 1.0 kB
  • Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.ja.vtt 1.0 kB
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.en.vtt 1.0 kB
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ar.vtt 1.0 kB
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.ja.vtt 1.0 kB
  • Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.en.vtt 1.0 kB
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.ja.vtt 999 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.ar.vtt 999 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.zh-CN.vtt 999 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.ar.vtt 999 Bytes
  • Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.en.vtt 998 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.ar.vtt 998 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.zh-CN.vtt 998 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.en.vtt 997 Bytes
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.pt-BR.vtt 996 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.zh-CN.vtt 996 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.zh-CN.vtt 996 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.it.vtt 994 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.zh-CN.vtt 994 Bytes
  • Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.pt-BR.vtt 993 Bytes
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.ja.vtt 993 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.en.vtt 993 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.pt-BR.vtt 993 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.zh-CN.vtt 993 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.pt-BR.vtt 991 Bytes
  • Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.ar.vtt 991 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.en.vtt 991 Bytes
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.ja.vtt 989 Bytes
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.pt-BR.vtt 989 Bytes
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.pt-BR.vtt 989 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.en.vtt 988 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.pt-BR.vtt 988 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.pt-BR.vtt 987 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.zh-CN.vtt 987 Bytes
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.en.vtt 986 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ja.vtt 984 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.pt-BR.vtt 984 Bytes
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.en.vtt 984 Bytes
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.pt-BR.vtt 983 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.ja.vtt 983 Bytes
  • Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.pt-BR.vtt 983 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ar.vtt 982 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.zh-CN.vtt 982 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.pt-BR.vtt 980 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.zh-CN.vtt 980 Bytes
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.zh-CN.vtt 979 Bytes
  • Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.zh-CN.vtt 979 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.en.vtt 979 Bytes
  • Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.zh-CN.vtt 979 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.zh-CN.vtt 978 Bytes
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.pt-BR.vtt 977 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.en.vtt 976 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.zh-CN.vtt 976 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.ar.vtt 976 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.zh-CN.vtt 976 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.ar.vtt 975 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.es-ES.vtt 975 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.zh-CN.vtt 975 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.zh-CN.vtt 975 Bytes
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.pt-BR.vtt 975 Bytes
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.es-MX.vtt 975 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.pt-BR.vtt 974 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ar.vtt 974 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.ja.vtt 973 Bytes
  • Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.zh-CN.vtt 973 Bytes
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.ar.vtt 973 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.en.vtt 973 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.pt-BR.vtt 972 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.es-ES.vtt 971 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.ja.vtt 971 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.th.vtt 970 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.pt-BR.vtt 970 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.it.vtt 969 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.zh-CN.vtt 969 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.pt-BR.vtt 969 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.en.vtt 969 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.ar.vtt 969 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.it.vtt 967 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.es-ES.vtt 967 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.ar.vtt 967 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.ar.vtt 967 Bytes
  • Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.zh-CN.vtt 966 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.zh-CN.vtt 966 Bytes
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.pt-BR.vtt 966 Bytes
  • Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.en.vtt 966 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.ja.vtt 966 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.ja.vtt 966 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.pt-BR.vtt 965 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.en.vtt 965 Bytes
  • Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.zh-CN.vtt 965 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.ar.vtt 965 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.zh-CN.vtt 964 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.en.vtt 964 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.zh-CN.vtt 964 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.ar.vtt 964 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.en.vtt 964 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.en.vtt 963 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ar.vtt 963 Bytes
  • Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.pt-BR.vtt 963 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.zh-CN.vtt 962 Bytes
  • Part 04-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.pt-BR.vtt 962 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.zh-CN.vtt 962 Bytes
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.pt-BR.vtt 962 Bytes
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.en-US.vtt 960 Bytes
  • Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.pt-BR.vtt 960 Bytes
  • Part 04-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.en.vtt 959 Bytes
  • Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.ar.vtt 959 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/16. Outro-dps7Ti6Lado.pt-BR.vtt 959 Bytes
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.ar.vtt 958 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.en.vtt 958 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.en.vtt 958 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.es-ES.vtt 957 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.hr.vtt 957 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ja.vtt 957 Bytes
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.en.vtt 957 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.pt-BR.vtt 957 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.hr.vtt 956 Bytes
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.pt-BR.vtt 956 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.en.vtt 956 Bytes
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.pt-BR.vtt 954 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.pt-BR.vtt 953 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.en.vtt 953 Bytes
  • Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.zh-CN.vtt 953 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.ja.vtt 953 Bytes
  • Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.ar.vtt 953 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ja.vtt 952 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.en.vtt 952 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.ja.vtt 952 Bytes
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.pt-BR.vtt 951 Bytes
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.en.vtt 951 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.en.vtt 951 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.pt-BR.vtt 950 Bytes
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.pt-BR.vtt 950 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.ja.vtt 950 Bytes
  • Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.zh-CN.vtt 949 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ja.vtt 949 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.es-ES.vtt 948 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.es-ES.vtt 948 Bytes
  • Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.zh-CN.vtt 948 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.ar.vtt 948 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.zh-CN.vtt 947 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.ja.vtt 947 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.ar.vtt 946 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.it.vtt 945 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.ar.vtt 945 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.en.vtt 945 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.zh-CN.vtt 944 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.pt-BR.vtt 944 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.pt-BR.vtt 944 Bytes
  • Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.en.vtt 944 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.zh-CN.vtt 943 Bytes
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.en.vtt 943 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.ar.vtt 942 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.hr.vtt 942 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.en.vtt 942 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.zh-CN.vtt 942 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.en-US.vtt 942 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.ar.vtt 941 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.en.vtt 940 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.en.vtt 940 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.en.vtt 940 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.zh-CN.vtt 940 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.ja.vtt 940 Bytes
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.en.vtt 939 Bytes
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.en.vtt 939 Bytes
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.ar.vtt 938 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.pt-BR.vtt 937 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.pt-BR.vtt 937 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.en.vtt 937 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.pt-BR.vtt 937 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.pt-BR.vtt 937 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.en.vtt 936 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.pt-BR.vtt 935 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.zh-CN.vtt 935 Bytes
  • Part 04-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.pt-BR.vtt 935 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.en.vtt 935 Bytes
  • Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.zh-CN.vtt 935 Bytes
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.zh-CN.vtt 935 Bytes
  • Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.ja.vtt 935 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.zh-CN.vtt 935 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.ar.vtt 934 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.pt-BR.vtt 933 Bytes
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.en.vtt 933 Bytes
  • Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.zh-CN.vtt 933 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.ja.vtt 933 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.pt-BR.vtt 932 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.en.vtt 931 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.en.vtt 931 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.zh-CN.vtt 931 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.zh-CN.vtt 930 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.pt-BR.vtt 930 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.ar.vtt 930 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.pt-BR.vtt 930 Bytes
  • Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.zh-CN.vtt 928 Bytes
  • Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.pt-BR.vtt 928 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.en.vtt 928 Bytes
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.pt-BR.vtt 928 Bytes
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.ar.vtt 928 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.zh-CN.vtt 927 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.en.vtt 927 Bytes
  • Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.zh-CN.vtt 927 Bytes
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.ja.vtt 927 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.ar.vtt 926 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.ar.vtt 926 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.pt-BR.vtt 926 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.hr.vtt 925 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.pt-BR.vtt 925 Bytes
  • Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.zh-CN.vtt 925 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.en.vtt 924 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.ar.vtt 924 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.en.vtt 924 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.zh-CN.vtt 924 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.zh-CN.vtt 924 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ja.vtt 923 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.en.vtt 923 Bytes
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.ja.vtt 921 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.pt-BR.vtt 921 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.ar.vtt 920 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.en.vtt 920 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.pt-BR.vtt 919 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.ja.vtt 919 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.en.vtt 919 Bytes
  • Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.zh-CN.vtt 918 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.pt-BR.vtt 917 Bytes
  • Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.ja.vtt 917 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.ar.vtt 916 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.pt-BR.vtt 916 Bytes
  • Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.zh-CN.vtt 916 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.ar.vtt 916 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.it.vtt 915 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.pt-BR.vtt 914 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.zh-CN.vtt 914 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.en.vtt 914 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.pt-BR.vtt 914 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.zh-CN.vtt 913 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.zh-CN.vtt 913 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.ja.vtt 913 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.pt-BR.vtt 913 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.en-US.vtt 913 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.zh-CN.vtt 912 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.ja.vtt 912 Bytes
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.ar.vtt 912 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ja.vtt 911 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.th.vtt 910 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.en.vtt 909 Bytes
  • Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.zh-CN.vtt 908 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.en.vtt 908 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.ja.vtt 908 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.en.vtt 906 Bytes
  • Part 04-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.en.vtt 906 Bytes
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.zh-CN.vtt 906 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.zh-CN.vtt 905 Bytes
  • Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.ar.vtt 904 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.zh-CN.vtt 904 Bytes
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.pt-BR.vtt 904 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ar.vtt 903 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.pt-BR.vtt 903 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.pt-BR.vtt 903 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.ar.vtt 902 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ja.vtt 902 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.pt-BR.vtt 902 Bytes
  • Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.zh-CN.vtt 902 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.pt-BR.vtt 901 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.ja.vtt 901 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ar.vtt 900 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.es-ES.vtt 900 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.en.vtt 900 Bytes
  • Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.en-US.vtt 900 Bytes
  • Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.zh-CN.vtt 900 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.pt-BR.vtt 900 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.ar.vtt 900 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.en.vtt 900 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ar.vtt 899 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.pt-BR.vtt 899 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.ja.vtt 899 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.zh-CN.vtt 899 Bytes
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.en.vtt 898 Bytes
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.en.vtt 898 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.zh-CN.vtt 898 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.zh-CN.vtt 898 Bytes
  • Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.en.vtt 897 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.en.vtt 897 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.pt-BR.vtt 897 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ar.vtt 896 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.zh-CN.vtt 896 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.pt-BR.vtt 896 Bytes
  • Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.pt-BR.vtt 896 Bytes
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.en.vtt 896 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.en-US.vtt 895 Bytes
  • Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.pt-BR.vtt 895 Bytes
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.pt-BR.vtt 895 Bytes
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.en.vtt 895 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.ar.vtt 894 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.zh-CN.vtt 893 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.ar.vtt 893 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.en.vtt 893 Bytes
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.pt-BR.vtt 893 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.en.vtt 893 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.pt-BR.vtt 893 Bytes
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.en.vtt 892 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.zh-CN.vtt 892 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.pt-BR.vtt 892 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.en.vtt 891 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.zh-CN.vtt 891 Bytes
  • Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.en.vtt 891 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.pt-BR.vtt 891 Bytes
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion-nQFchD4XPPs.zh-CN.vtt 890 Bytes
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.pt-BR.vtt 890 Bytes
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.pt-BR.vtt 889 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.zh-CN.vtt 888 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.zh-CN.vtt 888 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.ar.vtt 888 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.zh-CN.vtt 888 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ja.vtt 887 Bytes
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses-JkXTwS-5Daw.zh-CN.vtt 887 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.zh-CN.vtt 886 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.es-ES.vtt 886 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ar.vtt 886 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.es-ES.vtt 885 Bytes
  • Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.ar.vtt 885 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.pt-BR.vtt 884 Bytes
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.en.vtt 884 Bytes
  • Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.zh-CN.vtt 884 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.en.vtt 883 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.zh-CN.vtt 883 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.en.vtt 883 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.ar.vtt 882 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.zh-CN.vtt 881 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.es-ES.vtt 880 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.zh-CN.vtt 880 Bytes
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.pt-BR.vtt 880 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.pt-BR.vtt 879 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.en.vtt 879 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.en.vtt 879 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.en.vtt 879 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.pt-BR.vtt 879 Bytes
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.en.vtt 879 Bytes
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.zh-CN.vtt 879 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.en.vtt 878 Bytes
  • Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.zh-CN.vtt 878 Bytes
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.zh-CN.vtt 876 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.en.vtt 876 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.ja.vtt 876 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.zh-CN.vtt 876 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.pt-BR.vtt 876 Bytes
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Download Tableau Public-2bXsg6SKHG8.en.vtt 875 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.en.vtt 874 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.ja.vtt 874 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.ja.vtt 874 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.en.vtt 874 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.ja.vtt 874 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.ar.vtt 874 Bytes
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.pt-BR.vtt 873 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ja.vtt 872 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.pt-BR.vtt 872 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.ar.vtt 872 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.ja.vtt 871 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.en.vtt 871 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.es-ES.vtt 870 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.zh-CN.vtt 870 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.zh-CN.vtt 870 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.zh-CN.vtt 869 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.pt-BR.vtt 869 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.ar.vtt 869 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en-GB.vtt 868 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.ar.vtt 868 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.en.vtt 868 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.pt-BR.vtt 867 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.pt-BR.vtt 867 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.pt-BR.vtt 867 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.pt-BR.vtt 866 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.it.vtt 866 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.en.vtt 865 Bytes
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.ar.vtt 865 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.pt-BR.vtt 864 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.ar.vtt 864 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.pt-BR.vtt 863 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.zh-CN.vtt 863 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.ar.vtt 863 Bytes
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.pt-BR.vtt 862 Bytes
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.zh-CN.vtt 862 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.zh-CN.vtt 862 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.zh-CN.vtt 862 Bytes
  • Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.zh-CN.vtt 862 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.ar.vtt 861 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.pt-BR.vtt 861 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.pt-BR.vtt 861 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.ar.vtt 861 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.en.vtt 861 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.zh-CN.vtt 860 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.zh-CN.vtt 859 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.zh-CN.vtt 858 Bytes
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.en.vtt 857 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.zh-CN.vtt 857 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.pt-BR.vtt 857 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.en.vtt 857 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.en.vtt 856 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.pt-BR.vtt 856 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.pt-BR.vtt 856 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.zh-CN.vtt 855 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.en.vtt 855 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.pt-BR.vtt 855 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.zh-CN.vtt 854 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.hr.vtt 854 Bytes
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.ar.vtt 854 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.ja.vtt 853 Bytes
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.pt-BR.vtt 853 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.zh-CN.vtt 852 Bytes
  • Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.ar.vtt 851 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.ja.vtt 851 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.es-ES.vtt 850 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.ar.vtt 850 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.zh-CN.vtt 850 Bytes
  • Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.pt-BR.vtt 850 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.ar.vtt 850 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.pt-BR.vtt 849 Bytes
  • Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.en.vtt 849 Bytes
  • Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.zh-CN.vtt 849 Bytes
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.zh-CN.vtt 848 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.pt-BR.vtt 848 Bytes
  • Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.pt-BR.vtt 847 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ar.vtt 847 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.ja.vtt 847 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.zh-CN.vtt 847 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.en.vtt 847 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ja.vtt 846 Bytes
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.en.vtt 846 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.ar.vtt 846 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ar.vtt 845 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.es-ES.vtt 845 Bytes
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.pt-BR.vtt 845 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.ja.vtt 845 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.zh-CN.vtt 845 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ar.vtt 844 Bytes
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.en.vtt 843 Bytes
  • Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.zh-CN.vtt 842 Bytes
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.ja.vtt 842 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.zh-CN.vtt 842 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.ar.vtt 842 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ja.vtt 841 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.ar.vtt 841 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.en.vtt 840 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.pt-BR.vtt 840 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.en.vtt 839 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.zh-CN.vtt 839 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.pt-BR.vtt 839 Bytes
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ar.vtt 838 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.ar.vtt 838 Bytes
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.pt-BR.vtt 837 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.es-ES.vtt 837 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.it.vtt 837 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.en.vtt 837 Bytes
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.ar.vtt 837 Bytes
  • Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.zh-CN.vtt 837 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.en.vtt 837 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.en.vtt 836 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.en.vtt 836 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.ar.vtt 836 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ja.vtt 835 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.ar.vtt 835 Bytes
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.pt-BR.vtt 834 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.zh-CN.vtt 834 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.ja.vtt 834 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.it.vtt 832 Bytes
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.es-MX.vtt 832 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.pt-BR.vtt 832 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.zh-CN.vtt 831 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.zh-CN.vtt 830 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.ja.vtt 830 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.pt-BR.vtt 830 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.zh-CN.vtt 830 Bytes
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.ar.vtt 830 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.pt-BR.vtt 830 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.pt-BR.vtt 829 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ar.vtt 829 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.zh-CN.vtt 829 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.en.vtt 828 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.zh-CN.vtt 828 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ja.vtt 828 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.ar.vtt 828 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.pt-BR.vtt 828 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.en.vtt 828 Bytes
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.zh-CN.vtt 827 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.ja.vtt 827 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.en.vtt 826 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.en.vtt 826 Bytes
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.pt-BR.vtt 826 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.pt-BR.vtt 825 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.en-US.vtt 825 Bytes
  • Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.en.vtt 824 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.es-ES.vtt 823 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.ar.vtt 822 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.en.vtt 821 Bytes
  • Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.en.vtt 821 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.ja.vtt 820 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.en.vtt 820 Bytes
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.ar.vtt 820 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ar.vtt 819 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ja.vtt 819 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.en.vtt 818 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.ja.vtt 818 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.en-US.vtt 818 Bytes
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.zh-CN.vtt 818 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.zh-CN.vtt 818 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.zh-CN.vtt 817 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.es-ES.vtt 817 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.zh-CN.vtt 817 Bytes
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.pt-BR.vtt 817 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.zh-CN.vtt 817 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.en.vtt 817 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.ar.vtt 816 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.en.vtt 816 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.ja.vtt 816 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.ar.vtt 816 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.ar.vtt 816 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.en.vtt 815 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.zh-CN.vtt 814 Bytes
  • Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.zh-CN.vtt 814 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.th.vtt 813 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ja.vtt 813 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.ja.vtt 813 Bytes
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.en.vtt 813 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.zh-CN.vtt 812 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt 812 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.zh-CN.vtt 812 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.pt-BR.vtt 812 Bytes
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.ja.vtt 812 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.zh-CN.vtt 812 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.zh-CN.vtt 812 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.zh-CN.vtt 811 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.pt-BR.vtt 811 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.en.vtt 811 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.en.vtt 810 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.pt-BR.vtt 810 Bytes
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.ar.vtt 810 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.en.vtt 810 Bytes
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.zh-CN.vtt 810 Bytes
  • Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.pt-BR.vtt 810 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.pt-BR.vtt 809 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.en.vtt 808 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.zh-CN.vtt 808 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.en.vtt 808 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.ar.vtt 807 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.ja.vtt 806 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.pt-BR.vtt 806 Bytes
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.zh-CN.vtt 806 Bytes
  • Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.en.vtt 806 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ja.vtt 805 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.ar.vtt 805 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en-GB.vtt 804 Bytes
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.en.vtt 804 Bytes
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.en.vtt 803 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.en.vtt 803 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.pt-BR.vtt 802 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ar.vtt 802 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.zh-CN.vtt 802 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.pt-BR.vtt 802 Bytes
  • Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.zh-CN.vtt 801 Bytes
  • Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.pt-BR.vtt 800 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.en.vtt 799 Bytes
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ar.vtt 799 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.ar.vtt 799 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.zh-CN.vtt 799 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.en.vtt 798 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.en.vtt 798 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.pt-BR.vtt 798 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.it.vtt 797 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.pt-BR.vtt 797 Bytes
  • Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.pt-BR.vtt 797 Bytes
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.zh-CN.vtt 797 Bytes
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.en.vtt 797 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.pt-BR.vtt 794 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.pt-BR.vtt 794 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.ar.vtt 794 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.ar.vtt 793 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.zh-CN.vtt 793 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.en.vtt 793 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.pt-BR.vtt 792 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.hr.vtt 792 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.en.vtt 792 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.ja.vtt 792 Bytes
  • Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.en.vtt 791 Bytes
  • Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.zh-CN.vtt 791 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.en.vtt 790 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.en.vtt 790 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.ar.vtt 790 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.pt-BR.vtt 790 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.en.vtt 789 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.pt-BR.vtt 788 Bytes
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.en.vtt 787 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.zh-CN.vtt 787 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.ar.vtt 787 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.zh-CN.vtt 787 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.en.vtt 787 Bytes
  • Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.zh-CN.vtt 785 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.zh-CN.vtt 785 Bytes
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.zh-CN.vtt 784 Bytes
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.ar.vtt 784 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.pt-BR.vtt 783 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ar.vtt 783 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.zh-CN.vtt 783 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.ja.vtt 783 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.ar.vtt 783 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.zh-CN.vtt 783 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.en.vtt 782 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.en.vtt 781 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.zh-CN.vtt 781 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.pt-BR.vtt 781 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.zh-CN.vtt 780 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.pt-BR.vtt 780 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.zh-CN.vtt 780 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.th.vtt 779 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.zh-CN.vtt 779 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.zh-CN.vtt 778 Bytes
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.zh-CN.vtt 778 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.zh-CN.vtt 778 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.en.vtt 778 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.th.vtt 777 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.es-ES.vtt 777 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/16. Outro-dps7Ti6Lado.en.vtt 777 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.ar.vtt 777 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.zh-CN.vtt 775 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.es-ES.vtt 775 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.pt-BR.vtt 775 Bytes
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.en.vtt 775 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.pt-BR.vtt 774 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.ar.vtt 774 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.ar.vtt 774 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.pt-BR.vtt 773 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.en.vtt 773 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.zh-CN.vtt 773 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.pt-BR.vtt 773 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.ar.vtt 773 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.th.vtt 772 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en.vtt 772 Bytes
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.pt-BR.vtt 772 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.en.vtt 772 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.ar.vtt 770 Bytes
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.en-US.vtt 770 Bytes
  • Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.en.vtt 770 Bytes
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.en.vtt 770 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.pt-BR.vtt 770 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.en.vtt 770 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.pt-BR.vtt 769 Bytes
  • Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.pt-BR.vtt 769 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.zh-CN.vtt 769 Bytes
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.ar.vtt 769 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.th.vtt 768 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.ar.vtt 768 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.en.vtt 768 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.it.vtt 767 Bytes
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.en.vtt 767 Bytes
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.en.vtt 766 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.en.vtt 766 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.pt-BR.vtt 766 Bytes
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ar.vtt 765 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-PT.vtt 765 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.ja.vtt 765 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.pt-BR.vtt 765 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.it.vtt 764 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.zh-CN.vtt 764 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.zh-CN.vtt 763 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.en.vtt 763 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.ja.vtt 763 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.zh-CN.vtt 763 Bytes
  • Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.en.vtt 763 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ja.vtt 762 Bytes
  • Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.zh-CN.vtt 761 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.pt-BR.vtt 761 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.en-US.vtt 761 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.zh-CN.vtt 761 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.ar.vtt 761 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ja.vtt 760 Bytes
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.pt-BR.vtt 760 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.zh-CN.vtt 759 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.en.vtt 759 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.en-US.vtt 759 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.ja.vtt 758 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.pt-BR.vtt 758 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.es-ES.vtt 757 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.en.vtt 757 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.en.vtt 757 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.en.vtt 757 Bytes
  • Part 04-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.en.vtt 756 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.en.vtt 756 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.en.vtt 756 Bytes
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.ar.vtt 755 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.en.vtt 754 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.zh-CN.vtt 754 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.pt-BR.vtt 753 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.pt-BR.vtt 753 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.zh-CN.vtt 752 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.en.vtt 752 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ar.vtt 752 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.zh-CN.vtt 752 Bytes
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.ar.vtt 751 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.zh-CN.vtt 751 Bytes
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.ar.vtt 751 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.ar.vtt 751 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.en.vtt 751 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.zh-CN.vtt 750 Bytes
  • Part 04-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.zh-CN.vtt 750 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.zh-CN.vtt 750 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.pt-BR.vtt 749 Bytes
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.zh-CN.vtt 749 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.hr.vtt 748 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.es-ES.vtt 748 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ja.vtt 748 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.zh-CN.vtt 748 Bytes
  • Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.zh-CN.vtt 748 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.ar.vtt 747 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.pt-BR.vtt 747 Bytes
  • Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.zh-CN.vtt 747 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.zh-CN.vtt 747 Bytes
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.en.vtt 747 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.ar.vtt 747 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.pt-BR.vtt 747 Bytes
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.zh-CN.vtt 746 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.es-ES.vtt 746 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.es-ES.vtt 746 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.pt-BR.vtt 746 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.pt-BR.vtt 746 Bytes
  • Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.pt-BR.vtt 746 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.zh-CN.vtt 745 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.pt-BR.vtt 745 Bytes
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.ar.vtt 745 Bytes
  • Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.zh-CN.vtt 745 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.zh-CN.vtt 744 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.zh-CN.vtt 743 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.pt-BR.vtt 743 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.it.vtt 742 Bytes
  • Part 04-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.zh-CN.vtt 742 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.zh-CN.vtt 742 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.en.vtt 742 Bytes
  • Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.zh-CN.vtt 742 Bytes
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.ar.vtt 741 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.zh-CN.vtt 741 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.pt-BR.vtt 741 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.es-ES.vtt 741 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.pt-BR.vtt 739 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.ar.vtt 739 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ar.vtt 738 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.en.vtt 738 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.pt-BR.vtt 737 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.pt-BR.vtt 737 Bytes
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.pt-BR.vtt 737 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.zh-CN.vtt 736 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.pt-BR.vtt 736 Bytes
  • Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.zh-CN.vtt 736 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.en.vtt 736 Bytes
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.pt-BR.vtt 736 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.en.vtt 736 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.pt-BR.vtt 735 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.pt-BR.vtt 735 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.ja.vtt 735 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.en.vtt 734 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.zh-CN.vtt 733 Bytes
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.pt-BR.vtt 733 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.en.vtt 732 Bytes
  • Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.zh-CN.vtt 732 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.ar.vtt 731 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.ar.vtt 731 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ja.vtt 730 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.th.vtt 729 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.es-ES.vtt 729 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.en.vtt 729 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.pt-BR.vtt 728 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.es-ES.vtt 728 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.en.vtt 728 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.pt-BR.vtt 728 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.en.vtt 728 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.ar.vtt 727 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.ja.vtt 727 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.ar.vtt 726 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.ar.vtt 726 Bytes
  • Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.zh-CN.vtt 724 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.th.vtt 723 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.zh-CN.vtt 723 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/16. Outro-dps7Ti6Lado.zh-CN.vtt 723 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.ar.vtt 722 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.en.vtt 722 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.zh-CN.vtt 722 Bytes
  • Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.en.vtt 720 Bytes
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.zh-CN.vtt 720 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.en.vtt 719 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.ar.vtt 719 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.en.vtt 717 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ar.vtt 717 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ja.vtt 717 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.th.vtt 717 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.pt-BR.vtt 717 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.en.vtt 717 Bytes
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.pt-BR.vtt 717 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ja.vtt 716 Bytes
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.pt-BR.vtt 716 Bytes
  • Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.zh-CN.vtt 715 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.en.vtt 715 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.en.vtt 715 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pl.vtt 715 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.en.vtt 714 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.zh-CN.vtt 713 Bytes
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.ar.vtt 713 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.ar.vtt 713 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.it.vtt 712 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.pt-BR.vtt 711 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.zh-CN.vtt 711 Bytes
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.ar.vtt 711 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ja.vtt 710 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.en.vtt 709 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.en.vtt 709 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ja.vtt 708 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.zh-CN.vtt 708 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.ja.vtt 708 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.ja.vtt 708 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.zh-CN.vtt 707 Bytes
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.es-MX.vtt 707 Bytes
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.pt-BR.vtt 707 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ar.vtt 706 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.pt-BR.vtt 705 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt 705 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.en.vtt 705 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.en.vtt 704 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.zh-CN.vtt 704 Bytes
  • Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.ar.vtt 704 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.zh-CN.vtt 704 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.ar.vtt 703 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.zh-CN.vtt 703 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.zh-CN.vtt 703 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.it.vtt 702 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.pt-BR.vtt 702 Bytes
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.en.vtt 702 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.zh-CN.vtt 701 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.ja.vtt 701 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.zh-CN.vtt 701 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.pt-BR.vtt 701 Bytes
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.zh-CN.vtt 701 Bytes
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.pt-BR.vtt 701 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.th.vtt 700 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.pt-BR.vtt 700 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.pt-BR.vtt 699 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.en.vtt 699 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.zh-CN.vtt 698 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.pt-BR.vtt 698 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.zh-CN.vtt 698 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.zh-CN.vtt 698 Bytes
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.it.vtt 697 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.pt-BR.vtt 697 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.ar.vtt 697 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.pt-BR.vtt 696 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.pt-BR.vtt 696 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.pt-BR.vtt 696 Bytes
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.it.vtt 695 Bytes
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.pt-BR.vtt 695 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.pt-BR.vtt 695 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.pt-BR.vtt 694 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.zh-CN.vtt 694 Bytes
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.ar.vtt 694 Bytes
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.pt-BR.vtt 693 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.pt-BR.vtt 693 Bytes
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.ar.vtt 693 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.pt-BR.vtt 692 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.pt-BR.vtt 692 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.zh-CN.vtt 692 Bytes
  • Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.zh-CN.vtt 692 Bytes
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.en.vtt 692 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.pt-BR.vtt 691 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.pt-BR.vtt 691 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.hr.vtt 690 Bytes
  • Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.en.vtt 690 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.pt-BR.vtt 690 Bytes
  • Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.zh-CN.vtt 688 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.pt-BR.vtt 688 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.zh-CN.vtt 688 Bytes
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.pt-BR.vtt 688 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.pt-BR.vtt 687 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.pt-BR.vtt 686 Bytes
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.es-ES.vtt 686 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.en.vtt 685 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.ar.vtt 685 Bytes
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.en.vtt 685 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ar.vtt 684 Bytes
  • Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.ar.vtt 684 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ar.vtt 684 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-BR.vtt 684 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.ar.vtt 683 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.zh-CN.vtt 683 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.pt-BR.vtt 683 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.ar.vtt 683 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.en.vtt 682 Bytes
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.en.vtt 682 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.es-ES.vtt 682 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.en.vtt 682 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.ar.vtt 682 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.es-ES.vtt 681 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.pt-BR.vtt 680 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.zh-CN.vtt 680 Bytes
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.ar.vtt 679 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.es-ES.vtt 679 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.es-ES.vtt 679 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.en.vtt 679 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.pt-BR.vtt 678 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt 678 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.th.vtt 677 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.en.vtt 677 Bytes
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.pt-BR.vtt 677 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.zh-CN.vtt 677 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.ar.vtt 677 Bytes
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.zh-CN.vtt 677 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.zh-CN.vtt 676 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.en.vtt 675 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.zh-CN.vtt 675 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.ar.vtt 675 Bytes
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.zh-CN.vtt 675 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.en.vtt 675 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.ar.vtt 675 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.ar.vtt 673 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.zh-CN.vtt 673 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.pt-BR.vtt 673 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.pt-BR.vtt 673 Bytes
  • Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.ar.vtt 673 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.zh-CN.vtt 672 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.pt-BR.vtt 672 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.es-ES.vtt 671 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.it.vtt 671 Bytes
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.es-ES.vtt 671 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.pt-BR.vtt 671 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ar.vtt 670 Bytes
  • Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.zh-CN.vtt 670 Bytes
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ja.vtt 669 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.ar.vtt 669 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.ar.vtt 669 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.en.vtt 668 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.en.vtt 668 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.zh-CN.vtt 668 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.th.vtt 667 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.en.vtt 666 Bytes
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.en.vtt 666 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.es-ES.vtt 665 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.ar.vtt 665 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.en.vtt 665 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.zh-CN.vtt 665 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.ar.vtt 665 Bytes
  • Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.zh-CN.vtt 664 Bytes
  • Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.zh-CN.vtt 664 Bytes
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.en.vtt 664 Bytes
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ar.vtt 663 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.en.vtt 663 Bytes
  • Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.en.vtt 663 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.hr.vtt 662 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.ar.vtt 662 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.ar.vtt 662 Bytes
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.zh-CN.vtt 662 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.ar.vtt 662 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.ar.vtt 662 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ja.vtt 661 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.zh-CN.vtt 661 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.pt-BR.vtt 661 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.zh-CN.vtt 660 Bytes
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.en.vtt 660 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.en.vtt 660 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.en.vtt 660 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.pt-BR.vtt 660 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.pt-BR.vtt 660 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.zh-CN.vtt 658 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.en.vtt 658 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.en.vtt 658 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.en.vtt 658 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.ar.vtt 658 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.en.vtt 658 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.th.vtt 657 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ja.vtt 657 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.en.vtt 656 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.es-ES.vtt 656 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.it.vtt 656 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ar.vtt 656 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.zh-CN.vtt 656 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.zh-CN.vtt 656 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.en.vtt 655 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.en.vtt 655 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.ja.vtt 655 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.zh-CN.vtt 655 Bytes
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.pt-BR.vtt 655 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.th.vtt 654 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ar.vtt 654 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.pt-BR.vtt 654 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.pt-BR.vtt 653 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.en.vtt 653 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.th.vtt 653 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.ja.vtt 653 Bytes
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.pt-BR.vtt 652 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.ar.vtt 652 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.en.vtt 652 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.ar.vtt 652 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.pt-BR.vtt 652 Bytes
  • Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.ar.vtt 652 Bytes
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.en.vtt 651 Bytes
  • Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.en.vtt 651 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.en.vtt 650 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ar.vtt 650 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ar.vtt 650 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.zh-CN.vtt 650 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.zh-CN.vtt 649 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.zh-CN.vtt 649 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.ja.vtt 647 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.en.vtt 646 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.pt-BR.vtt 646 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.ja.vtt 646 Bytes
  • Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.pt-BR.vtt 646 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.zh-CN.vtt 645 Bytes
  • Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.en.vtt 645 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.zh-CN.vtt 644 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.ja.vtt 644 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.pt-BR.vtt 644 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.zh-CN.vtt 644 Bytes
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.pt-BR.vtt 644 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.ar.vtt 644 Bytes
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.en.vtt 644 Bytes
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.pt-BR.vtt 643 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.zh-CN.vtt 643 Bytes
  • Part 04-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.zh-CN.vtt 643 Bytes
  • Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.zh-CN.vtt 643 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.pt-BR.vtt 642 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.pt-BR.vtt 641 Bytes
  • Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.zh-CN.vtt 641 Bytes
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.hr.vtt 640 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ar.vtt 640 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.en.vtt 640 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.en.vtt 639 Bytes
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.zh-CN.vtt 639 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.pt-BR.vtt 639 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.zh-CN.vtt 638 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.en.vtt 638 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.pt-BR.vtt 638 Bytes
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.en.vtt 637 Bytes
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.hr.vtt 637 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.ja.vtt 637 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.pt-BR.vtt 637 Bytes
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.pt-BR.vtt 636 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.pt-BR.vtt 636 Bytes
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.pt-BR.vtt 636 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.en.vtt 636 Bytes
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.en.vtt 635 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.en.vtt 635 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.ar.vtt 635 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.th.vtt 634 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.en.vtt 634 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt 634 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.zh-CN.vtt 633 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.en.vtt 633 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.zh-CN.vtt 633 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.zh-CN.vtt 633 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.zh-CN.vtt 632 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.ja.vtt 632 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.ja.vtt 632 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.en-US.vtt 632 Bytes
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.ar.vtt 632 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.ar.vtt 631 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.ar.vtt 631 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.en.vtt 630 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.zh-CN.vtt 630 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.pt-BR.vtt 630 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.pt-BR.vtt 629 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.zh-CN.vtt 629 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.es-ES.vtt 629 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.pt-BR.vtt 629 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.pt-BR.vtt 629 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.en.vtt 628 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.pt-BR.vtt 628 Bytes
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.ja.vtt 628 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.pt-BR.vtt 628 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ja.vtt 627 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.zh-CN.vtt 627 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.pt-BR.vtt 627 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ar.vtt 626 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.zh-CN.vtt 626 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.pt-BR.vtt 626 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.en.vtt 626 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ja.vtt 625 Bytes
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.it.vtt 625 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.ar.vtt 624 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.ar.vtt 624 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ja.vtt 623 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ar.vtt 623 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.zh-CN.vtt 623 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.en.vtt 623 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.en.vtt 622 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.zh-CN.vtt 622 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.ar.vtt 622 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.zh-CN.vtt 622 Bytes
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.en.vtt 622 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ja.vtt 621 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.zh-CN.vtt 620 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.pt-BR.vtt 620 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.pt-BR.vtt 620 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.ar.vtt 620 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.ja.vtt 620 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.en.vtt 619 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.it.vtt 618 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ja.vtt 618 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.pt-BR.vtt 618 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.zh-CN.vtt 618 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.pt-BR.vtt 618 Bytes
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ja.vtt 617 Bytes
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ru.vtt 617 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.en.vtt 617 Bytes
  • Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.zh-CN.vtt 617 Bytes
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.en.vtt 617 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.en-US.vtt 617 Bytes
  • Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.pt-BR.vtt 617 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.en-US.vtt 617 Bytes
  • Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.zh-CN.vtt 616 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.zh-CN.vtt 616 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.zh-CN.vtt 616 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.ar.vtt 616 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ar.vtt 615 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.ja.vtt 614 Bytes
  • Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.zh-CN.vtt 613 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.en.vtt 613 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.en.vtt 613 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.pt-BR.vtt 612 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.es-ES.vtt 611 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.zh-CN.vtt 611 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.en.vtt 611 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.ja.vtt 611 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.en.vtt 610 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.zh-CN.vtt 610 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.en.vtt 610 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.zh-CN.vtt 609 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.en.vtt 609 Bytes
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.pt-BR.vtt 608 Bytes
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.es-ES.vtt 608 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ja.vtt 608 Bytes
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.pt-BR.vtt 608 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.ar.vtt 608 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.pt-BR.vtt 608 Bytes
  • Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.zh-CN.vtt 607 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ar.vtt 607 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.zh-CN.vtt 606 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.pt-BR.vtt 606 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.en.vtt 605 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.th.vtt 604 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.ar.vtt 604 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.th.vtt 603 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.pt-BR.vtt 602 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.ar.vtt 602 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.en.vtt 601 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.pt-BR.vtt 601 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.en.vtt 601 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.zh-CN.vtt 600 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.pt-BR.vtt 600 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.en.vtt 600 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.hr.vtt 599 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.pt-BR.vtt 599 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ar.vtt 599 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.en.vtt 599 Bytes
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.pt-BR.vtt 599 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.it.vtt 598 Bytes
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.pt-BR.vtt 598 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.en.vtt 598 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.en.vtt 598 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ja.vtt 597 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.pt-BR.vtt 597 Bytes
  • Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.zh-CN.vtt 597 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.ar.vtt 597 Bytes
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.ar.vtt 597 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ja.vtt 596 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.zh-CN.vtt 596 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.en.vtt 596 Bytes
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.en.vtt 596 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.es-ES.vtt 595 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.ar.vtt 595 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.en.vtt 595 Bytes
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ja.vtt 594 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.ja.vtt 594 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.zh-CN.vtt 594 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.pt-BR.vtt 593 Bytes
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.zh-CN.vtt 593 Bytes
  • Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.zh-CN.vtt 593 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.ja.vtt 592 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ar.vtt 591 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.en.vtt 591 Bytes
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.en.vtt 591 Bytes
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.en.vtt 589 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.pt-BR.vtt 589 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ja.vtt 589 Bytes
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.en.vtt 589 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.pt-BR.vtt 589 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.zh-CN.vtt 589 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.zh-CN.vtt 589 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.ja.vtt 588 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.ar.vtt 588 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ja.vtt 587 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.en.vtt 587 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.zh-CN.vtt 587 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.en.vtt 586 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ja.vtt 584 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ar.vtt 584 Bytes
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.pt-BR.vtt 584 Bytes
  • Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.zh-CN.vtt 584 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.ar.vtt 583 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.ar.vtt 583 Bytes
  • Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.pt-BR.vtt 583 Bytes
  • Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.zh-CN.vtt 582 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.zh-CN.vtt 582 Bytes
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.pt-BR.vtt 582 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.ar.vtt 582 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.ja.vtt 582 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.zh-CN.vtt 582 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.ar.vtt 582 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.en.vtt 581 Bytes
  • Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.zh-CN.vtt 580 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-Hans.vtt 579 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.th.vtt 579 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.pt-BR.vtt 579 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.zh-CN.vtt 579 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.zh-CN.vtt 579 Bytes
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.en.vtt 579 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.pt-BR.vtt 579 Bytes
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.en.vtt 579 Bytes
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.zh-CN.vtt 579 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.th.vtt 578 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.ja.vtt 578 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.zh-CN.vtt 578 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.zh-CN.vtt 577 Bytes
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.pt-BR.vtt 577 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.pt-BR.vtt 576 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.pt-BR.vtt 576 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.hr.vtt 575 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.es-ES.vtt 575 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.en.vtt 575 Bytes
  • Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.zh-CN.vtt 575 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.en.vtt 575 Bytes
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.en.vtt 574 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.en-US.vtt 574 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.ja.vtt 573 Bytes
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.en.vtt 573 Bytes
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.pt-BR.vtt 573 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ja.vtt 572 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.zh-CN.vtt 572 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.en.vtt 572 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.it.vtt 571 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.en.vtt 571 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.pt-BR.vtt 571 Bytes
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.pt-BR.vtt 570 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.zh-CN.vtt 570 Bytes
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.ar.vtt 570 Bytes
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.en.vtt 569 Bytes
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.en.vtt 569 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.en-US.vtt 569 Bytes
  • Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.zh-CN.vtt 569 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.pt-BR.vtt 568 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.pt-BR.vtt 568 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.pt-BR.vtt 567 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.pt-BR.vtt 567 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.pt-BR.vtt 567 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.zh-CN.vtt 566 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.es-ES.vtt 566 Bytes
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.ar.vtt 566 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.en.vtt 566 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.en.vtt 566 Bytes
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.hr.vtt 565 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.es-ES.vtt 565 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.en.vtt 565 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.en.vtt 564 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.pt-BR.vtt 563 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.zh-CN.vtt 563 Bytes
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.ar.vtt 563 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.pt-BR.vtt 563 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ar.vtt 562 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.zh-CN.vtt 562 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.en.vtt 561 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.pt-BR.vtt 561 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.ar.vtt 561 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.es-ES.vtt 560 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.pt-BR.vtt 560 Bytes
  • Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.zh-CN.vtt 560 Bytes
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.ar.vtt 559 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.zh-CN.vtt 558 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.en.vtt 558 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ar.vtt 558 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ja.vtt 557 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-CN.vtt 556 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt 556 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.en.vtt 555 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.zh-CN.vtt 554 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.th.vtt 554 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.en.vtt 553 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.zh-CN.vtt 553 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.ar.vtt 553 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.zh-CN.vtt 553 Bytes
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.it.vtt 552 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.pt-BR.vtt 552 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.zh-CN.vtt 552 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.zh-CN.vtt 552 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.zh-CN.vtt 552 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt 551 Bytes
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.en.vtt 550 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.zh-CN.vtt 549 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ar.vtt 549 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.en.vtt 549 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.en.vtt 549 Bytes
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.pt-BR.vtt 549 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.th.vtt 548 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.ar.vtt 548 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.zh-CN.vtt 547 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ar.vtt 547 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.pt-BR.vtt 547 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.pt-BR.vtt 547 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.pt-BR.vtt 547 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.zh-CN.vtt 547 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.zh-CN.vtt 547 Bytes
  • Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.en.vtt 546 Bytes
  • Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.zh-CN.vtt 544 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ar.vtt 544 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.en.vtt 543 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.ar.vtt 543 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.ar.vtt 543 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.zh-CN.vtt 543 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.ar.vtt 542 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.th.vtt 541 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ja.vtt 541 Bytes
  • Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.pt-BR.vtt 541 Bytes
  • Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.pt-BR.vtt 541 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.en.vtt 540 Bytes
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.pt-BR.vtt 540 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.pt-BR.vtt 540 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.hr.vtt 539 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.ar.vtt 539 Bytes
  • Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.zh-CN.vtt 539 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.zh-CN.vtt 539 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.zh-CN.vtt 539 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.zh-CN.vtt 538 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.es-ES.vtt 538 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt 538 Bytes
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.ar.vtt 538 Bytes
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.pt-BR.vtt 538 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.en.vtt 537 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.zh-CN.vtt 537 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.zh-CN.vtt 536 Bytes
  • Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.zh-CN.vtt 536 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.en.vtt 536 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.ar.vtt 536 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.en.vtt 536 Bytes
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.es-ES.vtt 535 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.ar.vtt 535 Bytes
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.ja.vtt 535 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.ar.vtt 535 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.en.vtt 534 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.zh-CN.vtt 534 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.en.vtt 534 Bytes
  • Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.ar.vtt 534 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ar.vtt 533 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.es-ES.vtt 533 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.pt-BR.vtt 533 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.ar.vtt 533 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.pt-BR.vtt 533 Bytes
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ja.vtt 532 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ar.vtt 532 Bytes
  • Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.zh-CN.vtt 532 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.zh-CN.vtt 532 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.ar.vtt 532 Bytes
  • Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.zh-CN.vtt 531 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ja.vtt 531 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.es-ES.vtt 531 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.zh-CN.vtt 531 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.ar.vtt 531 Bytes
  • Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.zh-CN.vtt 530 Bytes
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.hr.vtt 530 Bytes
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.pt-BR.vtt 530 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.en.vtt 530 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.zh-CN.vtt 530 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.es-ES.vtt 529 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.pt-BR.vtt 529 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.zh-CN.vtt 529 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.pt-BR.vtt 529 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.en.vtt 528 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.zh-CN.vtt 528 Bytes
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.zh-CN.vtt 528 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.en.vtt 527 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ja.vtt 527 Bytes
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Projects-1-E_ZYovKeI.en.vtt 527 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.ja.vtt 527 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.ar.vtt 526 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.pt-BR.vtt 526 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.zh-CN.vtt 526 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.pt-BR.vtt 526 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ja.vtt 525 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ar.vtt 524 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en.vtt 524 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.en.vtt 524 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.pt-BR.vtt 523 Bytes
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.en.vtt 523 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.pt-BR.vtt 523 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.pt-BR.vtt 523 Bytes
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.en.vtt 523 Bytes
  • Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.pt-BR.vtt 522 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.zh-CN.vtt 522 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.zh-CN.vtt 522 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.zh-CN.vtt 521 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.ar.vtt 521 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.ar.vtt 521 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.pt-BR.vtt 520 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.en.vtt 518 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ar.vtt 518 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ar.vtt 518 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.pt-BR.vtt 518 Bytes
  • Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.hr.vtt 517 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.pt-BR.vtt 517 Bytes
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.zh-CN.vtt 516 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.pt-BR.vtt 516 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ar.vtt 516 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.es-ES.vtt 516 Bytes
  • Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Projects-1-E_ZYovKeI.pt-BR.vtt 516 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.ar.vtt 515 Bytes
  • Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.zh-CN.vtt 513 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.en.vtt 513 Bytes
  • Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.zh-CN.vtt 513 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.en.vtt 513 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.ar.vtt 512 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.en.vtt 512 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.ar.vtt 511 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.zh-CN.vtt 510 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.ar.vtt 510 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.en.vtt 510 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ar.vtt 509 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.en.vtt 508 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.zh-CN.vtt 508 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.zh-CN.vtt 508 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.ar.vtt 508 Bytes
  • Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.pt-BR.vtt 508 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.en.vtt 507 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.zh-CN.vtt 507 Bytes
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.pt-BR.vtt 507 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.zh-CN.vtt 505 Bytes
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.ar.vtt 505 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.zh-CN.vtt 505 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.it.vtt 504 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.zh-CN.vtt 504 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.zh-CN.vtt 504 Bytes
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.pt-BR.vtt 503 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.zh-CN.vtt 503 Bytes
  • Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.zh-CN.vtt 503 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.zh-CN.vtt 503 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.es-ES.vtt 502 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.en.vtt 502 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.zh-CN.vtt 502 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.pt-BR.vtt 501 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.ja.vtt 501 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.ar.vtt 501 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.en.vtt 501 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.pt-BR.vtt 500 Bytes
  • Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.zh-CN.vtt 499 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.zh-CN.vtt 499 Bytes
  • Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.zh-CN.vtt 499 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.pt-BR.vtt 498 Bytes
  • Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.zh-CN.vtt 498 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.en.vtt 497 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.pt-BR.vtt 497 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ar.vtt 497 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.pt-BR.vtt 497 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.zh-CN.vtt 497 Bytes
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.pt-BR.vtt 497 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.pt-BR.vtt 496 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.en.vtt 496 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.ar.vtt 496 Bytes
  • Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.en.vtt 495 Bytes
  • Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.zh-CN.vtt 495 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.pt-BR.vtt 495 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.en.vtt 495 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.ja.vtt 494 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.ar.vtt 494 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.pt-BR.vtt 494 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ar.vtt 493 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.es-ES.vtt 493 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.zh-CN.vtt 492 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ja.vtt 492 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.pt-BR.vtt 492 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ar.vtt 491 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ja.vtt 491 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.en.vtt 491 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.pt-BR.vtt 491 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.en.vtt 491 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.zh-CN.vtt 490 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt 490 Bytes
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.ar.vtt 490 Bytes
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.en.vtt 490 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.zh-CN.vtt 490 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.pt-BR.vtt 489 Bytes
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.en.vtt 489 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.pt-BR.vtt 488 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.zh-CN.vtt 488 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.pt-BR.vtt 488 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.ja.vtt 487 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.pt-BR.vtt 486 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.en.vtt 486 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.en.vtt 486 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.zh-CN.vtt 485 Bytes
  • Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.zh-CN.vtt 485 Bytes
  • Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.zh-CN.vtt 485 Bytes
  • Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.en.vtt 484 Bytes
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.pt-BR.vtt 484 Bytes
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.zh-CN.vtt 484 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ja.vtt 483 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.pt-BR.vtt 483 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.pt-BR.vtt 483 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.en.vtt 483 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.ar.vtt 483 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en-US.vtt 482 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.pt-BR.vtt 482 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.ar.vtt 482 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.en.vtt 482 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.en-US.vtt 482 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.pt-BR.vtt 482 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ar.vtt 481 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.pt-BR.vtt 481 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.es-ES.vtt 480 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.th.vtt 480 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.ar.vtt 480 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.en.vtt 479 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.ar.vtt 479 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.ar.vtt 479 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.es-ES.vtt 478 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.pt-BR.vtt 478 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.en.vtt 478 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.ja.vtt 478 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.pt-BR.vtt 478 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.pt-BR.vtt 478 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.it.vtt 476 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.ja.vtt 476 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.en.vtt 476 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.pt-BR.vtt 474 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.ar.vtt 474 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.ar.vtt 474 Bytes
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.pt-BR.vtt 474 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.es-ES.vtt 473 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ja.vtt 473 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.pt-BR.vtt 473 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ar.vtt 473 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ar.vtt 473 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.pt-BR.vtt 473 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.zh-CN.vtt 473 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt 473 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.en.vtt 473 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.ar.vtt 473 Bytes
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.en.vtt 473 Bytes
  • Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.en.vtt 473 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.zh-CN.vtt 472 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ar.vtt 472 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.en-US.vtt 472 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.ja.vtt 472 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.ja.vtt 472 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.en.vtt 472 Bytes
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.en.vtt 472 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.en-US.vtt 472 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.es-ES.vtt 471 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.es-ES.vtt 471 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.ar.vtt 471 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.ar.vtt 471 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.en.vtt 470 Bytes
  • Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.en.vtt 470 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.zh-CN.vtt 470 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.hr.vtt 469 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.en.vtt 469 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.ja.vtt 469 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.en.vtt 469 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.en.vtt 468 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en.vtt 468 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.en.vtt 468 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.en.vtt 468 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.zh-CN.vtt 467 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.zh-CN.vtt 467 Bytes
  • Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.en.vtt 467 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.es-ES.vtt 466 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.ja.vtt 466 Bytes
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.ja.vtt 466 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.ar.vtt 466 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.pt-BR.vtt 465 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.en.vtt 464 Bytes
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.ar.vtt 464 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ar.vtt 463 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.ar.vtt 462 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.en.vtt 462 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.ar.vtt 462 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.en.vtt 461 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.ja.vtt 461 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.pt-BR.vtt 461 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.zh-CN.vtt 460 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.zh-CN.vtt 460 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt 460 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.ar.vtt 459 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ar.vtt 459 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.es-ES.vtt 459 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.en.vtt 458 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ja.vtt 458 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.zh-CN.vtt 458 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.zh-CN.vtt 458 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.en.vtt 458 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.ar.vtt 458 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.en.vtt 458 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt 457 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.pt-BR.vtt 457 Bytes
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.en.vtt 457 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.it.vtt 456 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ar.vtt 456 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.zh-CN.vtt 456 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.pt-BR.vtt 456 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.ar.vtt 456 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.zh-CN.vtt 456 Bytes
  • Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.zh-CN.vtt 456 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.es-ES.vtt 455 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en.vtt 455 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.ar.vtt 455 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.ar.vtt 455 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.pt-BR.vtt 454 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.zh-CN.vtt 454 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.pt-BR.vtt 454 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.pt-BR.vtt 454 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.hr.vtt 453 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.en.vtt 453 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.en.vtt 453 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt 453 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.it.vtt 452 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.pt-BR.vtt 452 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.es-ES.vtt 451 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.zh-CN.vtt 451 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.ja.vtt 451 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.pt-BR.vtt 451 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.en.vtt 451 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.zh-CN.vtt 451 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.ja.vtt 450 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ja.vtt 449 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.en.vtt 449 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.en-US.vtt 449 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.en.vtt 449 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.en.vtt 449 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.pt-BR.vtt 447 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.th.vtt 447 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.pt-BR.vtt 447 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.ar.vtt 447 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.ar.vtt 447 Bytes
  • Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.zh-CN.vtt 446 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.ar.vtt 446 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ar.vtt 445 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.en.vtt 445 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.pt-BR.vtt 445 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.it.vtt 444 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ja.vtt 444 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.pt-BR.vtt 444 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.ar.vtt 444 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.ja.vtt 443 Bytes
  • Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.zh-CN.vtt 442 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.pt-BR.vtt 442 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.en.vtt 442 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.th.vtt 441 Bytes
  • Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.zh-CN.vtt 441 Bytes
  • Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.zh-CN.vtt 440 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.pt-BR.vtt 440 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.en.vtt 440 Bytes
  • Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.zh-CN.vtt 440 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.pt-BR.vtt 439 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt 438 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.ar.vtt 438 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ar.vtt 437 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.en.vtt 437 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ar.vtt 436 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.en.vtt 436 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.pt-BR.vtt 436 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.ar.vtt 436 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.it.vtt 435 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.en.vtt 435 Bytes
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.en.vtt 435 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.pt-BR.vtt 435 Bytes
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.zh-CN.vtt 434 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.ja.vtt 434 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.en.vtt 433 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.it.vtt 433 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.pt-BR.vtt 433 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.ja.vtt 433 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.pt-BR.vtt 433 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.en.vtt 432 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.ja.vtt 432 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.pt-BR.vtt 432 Bytes
  • Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.zh-CN.vtt 432 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.zh-CN.vtt 431 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.ja.vtt 431 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.en.vtt 430 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.pt-BR.vtt 429 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.en.vtt 428 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ja.vtt 428 Bytes
  • Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.en.vtt 428 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.en.vtt 428 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.pt-BR.vtt 427 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.en.vtt 427 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.pt-BR.vtt 427 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.es-ES.vtt 426 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.zh-CN.vtt 426 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.zh-CN.vtt 426 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.zh-CN.vtt 426 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.pt-BR.vtt 426 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.zh-CN.vtt 426 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.hr.vtt 425 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.en.vtt 425 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.es-ES.vtt 425 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.zh-CN.vtt 425 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.ja.vtt 425 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.zh-CN.vtt 425 Bytes
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.ar.vtt 425 Bytes
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.ar.vtt 425 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.zh-CN.vtt 425 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.es-ES.vtt 424 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.en.vtt 424 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.ja.vtt 424 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.zh-CN.vtt 424 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.th.vtt 423 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.ar.vtt 423 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.ar.vtt 423 Bytes
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.pt-BR.vtt 423 Bytes
  • Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.en.vtt 423 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.zh-CN.vtt 422 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.it.vtt 422 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.pt-BR.vtt 422 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.ar.vtt 422 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.ar.vtt 422 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.en.vtt 422 Bytes
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.zh-CN.vtt 422 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.ar.vtt 422 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.ar.vtt 421 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.en.vtt 421 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.pt-BR.vtt 421 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ar.vtt 420 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ja.vtt 420 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.zh-CN.vtt 420 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.zh-CN.vtt 420 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ja.vtt 419 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.en.vtt 419 Bytes
  • Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.ar.vtt 419 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.en.vtt 419 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.pt-BR.vtt 418 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.en.vtt 418 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.es-ES.vtt 417 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ja.vtt 417 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.pt-BR.vtt 417 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.pt-BR.vtt 417 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.en.vtt 416 Bytes
  • Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.zh-CN.vtt 416 Bytes
  • Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.zh-CN.vtt 416 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.zh-CN.vtt 416 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.ja.vtt 416 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ja.vtt 415 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.th.vtt 415 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.en.vtt 415 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.pt-BR.vtt 415 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.zh-CN.vtt 415 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.it.vtt 414 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.en.vtt 414 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.zh-CN.vtt 414 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.zh-CN.vtt 414 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.ar.vtt 413 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.es-ES.vtt 412 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.en.vtt 412 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ar.vtt 411 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.zh-CN.vtt 411 Bytes
  • Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.pt-BR.vtt 411 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.pt-BR.vtt 410 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.pt-BR.vtt 410 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt 410 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.ja.vtt 410 Bytes
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.pt-BR.vtt 410 Bytes
  • Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.zh-CN.vtt 410 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.zh-CN.vtt 409 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.it.vtt 409 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.en.vtt 409 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.zh-CN.vtt 409 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.zh-CN.vtt 409 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.zh-CN.vtt 408 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.zh-CN.vtt 408 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.ar.vtt 408 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.zh-CN.vtt 408 Bytes
  • Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.zh-CN.vtt 408 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.ar.vtt 408 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.zh-CN.vtt 407 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.en.vtt 407 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.es-ES.vtt 406 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.pt-BR.vtt 406 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.ar.vtt 406 Bytes
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.en.vtt 406 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.pt-BR.vtt 406 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ar.vtt 405 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.pt-BR.vtt 405 Bytes
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.pt-BR.vtt 405 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.en.vtt 405 Bytes
  • Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.zh-CN.vtt 405 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.pt-BR.vtt 405 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ar.vtt 404 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.en.vtt 404 Bytes
  • Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.zh-CN.vtt 404 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ja.vtt 403 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.zh-CN.vtt 403 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.zh-CN.vtt 403 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.ar.vtt 402 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.ar.vtt 402 Bytes
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.pt-BR.vtt 402 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.ar.vtt 402 Bytes
  • Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.zh-CN.vtt 401 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.pt-BR.vtt 401 Bytes
  • Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.zh-CN.vtt 401 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.zh-CN.vtt 400 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ar.vtt 399 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.en.vtt 399 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ar.vtt 399 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.zh-CN.vtt 399 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.en.vtt 399 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.zh-CN.vtt 399 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.th.vtt 398 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.ja.vtt 398 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.ja.vtt 398 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ja.vtt 397 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.pt-BR.vtt 397 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.en.vtt 397 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.en.vtt 397 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ar.vtt 396 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.pt-BR.vtt 396 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.pt-BR.vtt 396 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.zh-CN.vtt 396 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ar.vtt 395 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ja.vtt 395 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.ja.vtt 395 Bytes
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.en.vtt 395 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.en.vtt 394 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.en.vtt 394 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.es-ES.vtt 393 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.pt-BR.vtt 393 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.th.vtt 393 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.pt-BR.vtt 393 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.en-US.vtt 393 Bytes
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.ar.vtt 393 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.pt-BR.vtt 392 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.ja.vtt 392 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt 392 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.pt-BR.vtt 391 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.ar.vtt 391 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.en.vtt 391 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ja.vtt 390 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.es-ES.vtt 390 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ja.vtt 389 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ja.vtt 389 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.zh-CN.vtt 389 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.es-ES.vtt 389 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.zh-CN.vtt 389 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.ja.vtt 389 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.pt-BR.vtt 389 Bytes
  • Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.zh-CN.vtt 389 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.es-ES.vtt 388 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.ar.vtt 388 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.en.vtt 387 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.ar.vtt 387 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.ar.vtt 387 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.en.vtt 386 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.pt-BR.vtt 386 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.zh-CN.vtt 385 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.ar.vtt 385 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.hr.vtt 384 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.hr.vtt 383 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.pt-BR.vtt 383 Bytes
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.pt-BR.vtt 383 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.it.vtt 382 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.en.vtt 382 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.pt-BR.vtt 382 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.en.vtt 382 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.pt-BR.vtt 381 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.zh-CN.vtt 380 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.zh-CN.vtt 380 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.zh-CN.vtt 379 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.pt-BR.vtt 379 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.zh-CN.vtt 378 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.zh-CN.vtt 378 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.pt-BR.vtt 377 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.pt-BR.vtt 377 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.pt-BR.vtt 377 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.en.vtt 377 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.zh-CN.vtt 376 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.pt-BR.vtt 376 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.pt-BR.vtt 376 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.it.vtt 375 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.pt-BR.vtt 375 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ja.vtt 374 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.pt-BR.vtt 374 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.en.vtt 373 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ja.vtt 373 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.pt-BR.vtt 373 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.zh-CN.vtt 373 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.ar.vtt 373 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.it.vtt 372 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.ja.vtt 372 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.zh-CN.vtt 372 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.zh-CN.vtt 372 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ja.vtt 371 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt 371 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.en.vtt 371 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.zh-CN.vtt 371 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ja.vtt 370 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.en.vtt 370 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.pt-BR.vtt 370 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.pt-BR.vtt 370 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.zh-CN.vtt 369 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.zh-CN.vtt 369 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.pt-BR.vtt 369 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.zh-CN.vtt 369 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.en.vtt 368 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.en.vtt 368 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.en.vtt 368 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.es-ES.vtt 367 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.zh-CN.vtt 367 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.ar.vtt 367 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.pt-BR.vtt 367 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.es-ES.vtt 366 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.zh-CN.vtt 366 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.pt-BR.vtt 366 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.zh-CN.vtt 366 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.zh-CN.vtt 366 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ar.vtt 364 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.en.vtt 364 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.zh-CN.vtt 364 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.en.vtt 364 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.zh-CN.vtt 364 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.pt-BR.vtt 363 Bytes
  • Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.zh-CN.vtt 362 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.pt-BR.vtt 362 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.zh-CN.vtt 362 Bytes
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.ar.vtt 362 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.en.vtt 362 Bytes
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.pt-BR.vtt 362 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.zh-CN.vtt 361 Bytes
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.zh-CN.vtt 361 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.pt-BR.vtt 360 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.es-ES.vtt 360 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.en.vtt 360 Bytes
  • Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.ja.vtt 360 Bytes
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.ar.vtt 360 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.th.vtt 359 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.it.vtt 359 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.ar.vtt 359 Bytes
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.ar.vtt 359 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.es-ES.vtt 358 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.en.vtt 358 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ja.vtt 357 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.es-ES.vtt 357 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.en.vtt 357 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.es-ES.vtt 357 Bytes
  • Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt 357 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.ar.vtt 357 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.ja.vtt 357 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.ja.vtt 357 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.ar.vtt 357 Bytes
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.ar.vtt 357 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.es-ES.vtt 356 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.pt-BR.vtt 356 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.ar.vtt 356 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.ar.vtt 356 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.zh-CN.vtt 356 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.zh-CN.vtt 355 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.es-ES.vtt 355 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.zh-CN.vtt 355 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.ar.vtt 355 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.pt-BR.vtt 355 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.zh-CN.vtt 355 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.en.vtt 355 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.zh-CN.vtt 355 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.pt-BR.vtt 355 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.th.vtt 354 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.pt-BR.vtt 354 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.en.vtt 354 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.pt-BR.vtt 354 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.ar.vtt 354 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.pt-BR.vtt 354 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ja.vtt 353 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.en.vtt 353 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.ar.vtt 352 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.zh-CN.vtt 352 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.zh-CN.vtt 352 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.ar.vtt 352 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.zh-CN.vtt 352 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.zh-CN.vtt 351 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.en.vtt 351 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.ja.vtt 351 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.ja.vtt 351 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.es-ES.vtt 350 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ja.vtt 350 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.en.vtt 350 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.ja.vtt 350 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.en.vtt 350 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.pt-BR.vtt 349 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.en.vtt 349 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.en.vtt 349 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.pt-BR.vtt 349 Bytes
  • Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.zh-CN.vtt 348 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.es-ES.vtt 348 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.es-ES.vtt 348 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.en.vtt 348 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.en.vtt 347 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.en.vtt 346 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.zh-CN.vtt 346 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.en.vtt 346 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ja.vtt 345 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.zh-CN.vtt 345 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.ja.vtt 345 Bytes
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.ar.vtt 345 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.pt-BR.vtt 344 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.zh-CN.vtt 344 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.pt-BR.vtt 344 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.en.vtt 343 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.th.vtt 342 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.en.vtt 342 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ar.vtt 342 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.en.vtt 342 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.pt-BR.vtt 342 Bytes
  • Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.zh-CN.vtt 342 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.en.vtt 341 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.zh-CN.vtt 341 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.it.vtt 341 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ar.vtt 341 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.pt-BR.vtt 341 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.en.vtt 340 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.ar.vtt 340 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.pt-BR.vtt 340 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.en.vtt 339 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ar.vtt 339 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.pt-BR.vtt 339 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.th.vtt 339 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.ja.vtt 339 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.en.vtt 339 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.zh-CN.vtt 339 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.it.vtt 338 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.es-ES.vtt 337 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.en.vtt 337 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.pt-BR.vtt 337 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.en.vtt 337 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.ar.vtt 337 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.en.vtt 337 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.pt-BR.vtt 337 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ar.vtt 336 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.en.vtt 336 Bytes
  • Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.zh-CN.vtt 336 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.ja.vtt 336 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.pt-BR.vtt 335 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.zh-CN.vtt 335 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.pt-BR.vtt 335 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.zh-CN.vtt 335 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.zh-CN.vtt 335 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ar.vtt 334 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.ja.vtt 334 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.es-ES.vtt 333 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.zh-CN.vtt 333 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.zh-CN.vtt 333 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.es-ES.vtt 332 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ja.vtt 332 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.pt-BR.vtt 332 Bytes
  • Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.zh-CN.vtt 332 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.en.vtt 332 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.en.vtt 332 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.zh-CN.vtt 332 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ja.vtt 331 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.zh-CN.vtt 331 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.zh-CN.vtt 331 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.en.vtt 331 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.en.vtt 331 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.pt-BR.vtt 331 Bytes
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.pt-BR.vtt 331 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.es-ES.vtt 329 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.pt-BR.vtt 329 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.ja.vtt 329 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.zh-CN.vtt 328 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.es-ES.vtt 327 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ja.vtt 327 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.zh-CN.vtt 327 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.ar.vtt 327 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ja.vtt 326 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ja.vtt 326 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.ar.vtt 326 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.pt-BR.vtt 326 Bytes
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.pt-BR.vtt 326 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.ar.vtt 326 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.en.vtt 325 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ar.vtt 325 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.zh-CN.vtt 325 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.ja.vtt 325 Bytes
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.en.vtt 325 Bytes
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.en.vtt 325 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.it.vtt 324 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.pt-BR.vtt 324 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.zh-CN.vtt 323 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ja.vtt 323 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.ar.vtt 323 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.en.vtt 322 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.en.vtt 321 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.en-US.vtt 321 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.zh-CN.vtt 320 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.en.vtt 320 Bytes
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.en.vtt 320 Bytes
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.en.vtt 320 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.hr.vtt 319 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ar.vtt 319 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.en.vtt 319 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.ar.vtt 319 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.zh-CN.vtt 319 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.zh-CN.vtt 319 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.en.vtt 319 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.ar.vtt 319 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.es-ES.vtt 318 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.pt-BR.vtt 318 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.en.vtt 318 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.en.vtt 317 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.pt-BR.vtt 317 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.ar.vtt 317 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.zh-CN.vtt 316 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.ja.vtt 316 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.en.vtt 316 Bytes
  • Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.zh-CN.vtt 316 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.it.vtt 315 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ja.vtt 315 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ar.vtt 315 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.en.vtt 315 Bytes
  • Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.zh-CN.vtt 315 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.en.vtt 315 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.it.vtt 314 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.zh-CN.vtt 314 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.ja.vtt 314 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.ja.vtt 314 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.en.vtt 313 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ar.vtt 312 Bytes
  • Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.hr.vtt 312 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.zh-CN.vtt 312 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.zh-CN.vtt 312 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.en.vtt 312 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.it.vtt 311 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.zh-CN.vtt 311 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.pt-BR.vtt 311 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.en.vtt 310 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ja.vtt 310 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.en.vtt 310 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.zh-CN.vtt 309 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.pt-BR.vtt 309 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.ar.vtt 309 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.pt-BR.vtt 309 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.it.vtt 308 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.ar.vtt 308 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.zh-CN.vtt 308 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.it.vtt 307 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.en.vtt 307 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.zh-CN.vtt 307 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.pt-BR.vtt 307 Bytes
  • Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.pt-BR.vtt 307 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.pt-BR.vtt 307 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.en.vtt 306 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.zh-CN.vtt 306 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.pt-BR.vtt 306 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.ar.vtt 306 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.en.vtt 306 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ja.vtt 305 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.hr.vtt 305 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ja.vtt 305 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.th.vtt 305 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.zh-CN.vtt 305 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.pt-BR.vtt 305 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.pt-BR.vtt 305 Bytes
  • Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.zh-CN.vtt 305 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.pt-BR.vtt 305 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ja.vtt 304 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.zh-CN.vtt 304 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ja.vtt 304 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.ar.vtt 304 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ar.vtt 303 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ar.vtt 303 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.zh-CN.vtt 303 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.zh-CN.vtt 303 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.zh-CN.vtt 303 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ar.vtt 302 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.zh-CN.vtt 302 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ar.vtt 302 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ja.vtt 302 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.en.vtt 302 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.ar.vtt 302 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.ar.vtt 302 Bytes
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.pt-BR.vtt 302 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.en.vtt 302 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ja.vtt 301 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ja.vtt 301 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.es-ES.vtt 301 Bytes
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.ar.vtt 301 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ja.vtt 300 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ja.vtt 300 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.th.vtt 299 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.ar.vtt 299 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.pt-BR.vtt 299 Bytes
  • Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.zh-CN.vtt 299 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ja.vtt 298 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.zh-CN.vtt 298 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.ar.vtt 298 Bytes
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.en.vtt 298 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.zh-CN.vtt 297 Bytes
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.ja.vtt 297 Bytes
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.pt-BR.vtt 297 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.ja.vtt 297 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.ja.vtt 297 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.zh-CN.vtt 296 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ja.vtt 296 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.en.vtt 296 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.ja.vtt 296 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.zh-CN.vtt 295 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.zh-CN.vtt 294 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.zh-CN.vtt 294 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ja.vtt 293 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.zh-CN.vtt 293 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.pt-BR.vtt 293 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.pt-BR.vtt 293 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.en.vtt 292 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.zh-CN.vtt 292 Bytes
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.en.vtt 292 Bytes
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.pt-BR.vtt 292 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.en.vtt 292 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.hr.vtt 291 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.it.vtt 291 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.pt-BR.vtt 291 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.zh-CN.vtt 291 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.ja.vtt 291 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.pt-BR.vtt 291 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.zh-CN.vtt 291 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.zh-CN.vtt 291 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.ar.vtt 291 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.zh-CN.vtt 291 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.en.vtt 290 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.en.vtt 290 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.hr.vtt 289 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.it.vtt 289 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.pt-BR.vtt 289 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.en.vtt 289 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.zh-CN.vtt 288 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.zh-CN.vtt 288 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.en.vtt 287 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.zh-CN.vtt 287 Bytes
  • Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.zh-CN.vtt 287 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ar.vtt 286 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.en.vtt 286 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.zh-CN.vtt 286 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.pt-BR.vtt 285 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.ja.vtt 285 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.zh-CN.vtt 285 Bytes
  • Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.en.vtt 285 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.en.vtt 285 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.ar.vtt 285 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.pt-BR.vtt 284 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.ar.vtt 284 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ar.vtt 283 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.zh-CN.vtt 283 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.ja.vtt 283 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.ar.vtt 283 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.zh-CN.vtt 283 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.zh-CN.vtt 282 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.en.vtt 282 Bytes
  • Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.zh-CN.vtt 282 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.ar.vtt 282 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.ar.vtt 282 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.en.vtt 282 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.en.vtt 281 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.es-ES.vtt 281 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.pt-BR.vtt 281 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.ar.vtt 281 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.ar.vtt 281 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.ja.vtt 281 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.pt-BR.vtt 281 Bytes
  • Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.zh-CN.vtt 280 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ar.vtt 279 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.en.vtt 279 Bytes
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.ja.vtt 279 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.pt-BR.vtt 279 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ar.vtt 278 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.ar.vtt 278 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.zh-CN.vtt 277 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.en.vtt 277 Bytes
  • Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.zh-CN.vtt 277 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.ja.vtt 277 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.zh-CN.vtt 277 Bytes
  • Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.zh-CN.vtt 277 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.en.vtt 277 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.pt-BR.vtt 276 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.pt-BR.vtt 276 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.zh-CN.vtt 275 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.pt-BR.vtt 274 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.ar.vtt 274 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.ar.vtt 273 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.pt-BR.vtt 273 Bytes
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.en.vtt 273 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.pt-BR.vtt 273 Bytes
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.en.vtt 273 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.es-ES.vtt 272 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.pt-BR.vtt 272 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.pt-BR.vtt 272 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.ar.vtt 271 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.zh-CN.vtt 271 Bytes
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.pt-BR.vtt 271 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.pt-BR.vtt 270 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.pt-BR.vtt 269 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.zh-CN.vtt 268 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.en.vtt 268 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.th.vtt 267 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.ar.vtt 266 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.zh-CN.vtt 266 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.pt-BR.vtt 266 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ar.vtt 265 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.pt-BR.vtt 265 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ar.vtt 265 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.ar.vtt 265 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.en.vtt 265 Bytes
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.ar.vtt 265 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.ar.vtt 265 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.ar.vtt 265 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ja.vtt 264 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.pt-BR.vtt 264 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.zh-CN.vtt 264 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.zh-CN.vtt 264 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.pt-BR.vtt 264 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.ja.vtt 263 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.ar.vtt 263 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.zh-CN.vtt 263 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.en.vtt 263 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.en.vtt 263 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.zh-CN.vtt 263 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ja.vtt 262 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.pt-BR.vtt 262 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.ar.vtt 262 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.en.vtt 262 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ja.vtt 261 Bytes
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.pt-BR.vtt 261 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.ja.vtt 261 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.pt-BR.vtt 261 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.en.vtt 260 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.pt-BR.vtt 260 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ja.vtt 260 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.es-ES.vtt 260 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.zh-CN.vtt 260 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.en.vtt 260 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.zh-CN.vtt 259 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.es-ES.vtt 258 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.ar.vtt 258 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.zh-CN.vtt 257 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.es-ES.vtt 257 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.en.vtt 256 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.en.vtt 256 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.zh-CN.vtt 256 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.ja.vtt 256 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.ar.vtt 256 Bytes
  • Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.zh-CN.vtt 256 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.ja.vtt 256 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.pt-BR.vtt 256 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.en.vtt 256 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.zh-CN.vtt 256 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.ja.vtt 255 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.pt-BR.vtt 255 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.zh-CN.vtt 255 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.zh-CN.vtt 255 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ar.vtt 254 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ja.vtt 254 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.pt-BR.vtt 254 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.ja.vtt 254 Bytes
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.en.vtt 254 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.pt-BR.vtt 253 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.zh-CN.vtt 253 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.hr.vtt 252 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.th.vtt 252 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.es-ES.vtt 252 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ar.vtt 252 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.en.vtt 252 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.en.vtt 252 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.en.vtt 252 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.es-ES.vtt 251 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.zh-CN.vtt 251 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.ja.vtt 251 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.ja.vtt 251 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.ar.vtt 251 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.zh-CN.vtt 251 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ar.vtt 250 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.zh-CN.vtt 250 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.pt-BR.vtt 250 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.en.vtt 250 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.ar.vtt 250 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.pt-BR.vtt 249 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.pt-BR.vtt 249 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.pt-BR.vtt 249 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.pt-BR.vtt 249 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.pt-BR.vtt 249 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.zh-CN.vtt 249 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.zh-CN.vtt 248 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.it.vtt 248 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ja.vtt 248 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.en.vtt 248 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.ar.vtt 248 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.zh-CN.vtt 248 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.pt-BR.vtt 248 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.pt-BR.vtt 248 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.ar.vtt 248 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ja.vtt 247 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.en.vtt 247 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ja.vtt 247 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.en.vtt 247 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.pt-BR.vtt 247 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.en.vtt 246 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.pt-BR.vtt 246 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.ja.vtt 246 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.en.vtt 246 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.en.vtt 245 Bytes
  • Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.zh-CN.vtt 245 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.en.vtt 244 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.zh-CN.vtt 244 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.th.vtt 244 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.ar.vtt 244 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.zh-CN.vtt 244 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ja.vtt 243 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.es-ES.vtt 243 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.ja.vtt 243 Bytes
  • Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.zh-CN.vtt 243 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.es-ES.vtt 242 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.zh-CN.vtt 241 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.en.vtt 241 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ja.vtt 241 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.zh-CN.vtt 241 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.ar.vtt 241 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.zh-CN.vtt 241 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.en.vtt 240 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.it.vtt 240 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.th.vtt 240 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.th.vtt 240 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.pt-BR.vtt 240 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.pt-BR.vtt 240 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.it.vtt 239 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.es-ES.vtt 239 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.pt-BR.vtt 239 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.en.vtt 239 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.hr.vtt 238 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.en.vtt 238 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.es-ES.vtt 238 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ar.vtt 238 Bytes
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.ar.vtt 238 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.en.vtt 238 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ja.vtt 237 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.pt-BR.vtt 237 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ja.vtt 236 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.es-ES.vtt 236 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.zh-CN.vtt 236 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.es-ES.vtt 234 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.it.vtt 234 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.es-ES.vtt 234 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.ar.vtt 234 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.ar.vtt 234 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.es-ES.vtt 233 Bytes
  • Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.zh-CN.vtt 233 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.pt-BR.vtt 233 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.zh-CN.vtt 232 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.ja.vtt 232 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.en.vtt 232 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.pt-BR.vtt 232 Bytes
  • Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.zh-CN.vtt 232 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.en.vtt 231 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.it.vtt 231 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.es-ES.vtt 231 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.ar.vtt 231 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.pt-BR.vtt 230 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.pt-BR.vtt 230 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.en.vtt 229 Bytes
  • Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.zh-CN.vtt 228 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.zh-CN.vtt 228 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.th.vtt 228 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.pt-BR.vtt 228 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.es-ES.vtt 227 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.zh-CN.vtt 226 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.pt-BR.vtt 226 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.ja.vtt 226 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-Thj7e55iSlA.ar.vtt 226 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.zh-CN.vtt 226 Bytes
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.pt-BR.vtt 226 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.zh-CN.vtt 225 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.ar.vtt 225 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.pt-BR.vtt 225 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.ja.vtt 225 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.pt-BR.vtt 224 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.en.vtt 224 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-BR.vtt 223 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.pt-BR.vtt 223 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ar.vtt 222 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ar.vtt 222 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.en.vtt 222 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ar.vtt 222 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.en.vtt 222 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.zh-CN.vtt 222 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.zh-CN.vtt 222 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.pt-BR.vtt 222 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.es-ES.vtt 221 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.en.vtt 221 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.pt-BR.vtt 221 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.en.vtt 221 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.en.vtt 220 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.en.vtt 220 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.ja.vtt 220 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.zh-CN.vtt 220 Bytes
  • Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.en.vtt 220 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ja.vtt 219 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.pt-BR.vtt 219 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.en.vtt 219 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.es-ES.vtt 219 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.en.vtt 219 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.pt-BR.vtt 219 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.en.vtt 219 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.zh-CN.vtt 219 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.pt-BR.vtt 219 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.en.vtt 219 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.pt-BR.vtt 218 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.zh-CN.vtt 218 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.ar.vtt 218 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.ar.vtt 218 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.ar.vtt 218 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.ar.vtt 218 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.en.vtt 217 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ja.vtt 217 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.es-ES.vtt 217 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.pt-BR.vtt 217 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.hr.vtt 216 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ja.vtt 216 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.zh-CN.vtt 216 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.pt-BR.vtt 216 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.en.vtt 216 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.en.vtt 216 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-PT.vtt 215 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.zh-CN.vtt 215 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.pt-BR.vtt 215 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.en.vtt 214 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.en.vtt 214 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.zh-CN.vtt 214 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.en.vtt 214 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.en.vtt 214 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.en.vtt 214 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.hr.vtt 213 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.it.vtt 213 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.en.vtt 213 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.zh-CN.vtt 213 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.en.vtt 213 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.it.vtt 212 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ja.vtt 212 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.zh-CN.vtt 212 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.zh-CN.vtt 212 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.pt-BR.vtt 212 Bytes
  • Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.zh-CN.vtt 212 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.zh-CN.vtt 212 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.en.vtt 212 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ar.vtt 211 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.ja.vtt 211 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.zh-CN.vtt 211 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.es-ES.vtt 210 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.en.vtt 210 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.it.vtt 210 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.zh-CN.vtt 210 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.ar.vtt 210 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.en.vtt 210 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.hr.vtt 209 Bytes
  • Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.pt-BR.vtt 209 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.zh-CN.vtt 209 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ar.vtt 208 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.zh-CN.vtt 208 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.en.vtt 208 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ar.vtt 207 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.zh-CN.vtt 207 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.en.vtt 207 Bytes
  • Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.en.vtt 207 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.zh-CN.vtt 207 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.zh-CN.vtt 207 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.pt-BR.vtt 207 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.en.vtt 207 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.en.vtt 207 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.zh-CN.vtt 206 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.pt-BR.vtt 206 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.zh-CN.vtt 206 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.it.vtt 205 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.th.vtt 205 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.ja.vtt 205 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.ja.vtt 205 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.pt-BR.vtt 205 Bytes
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.en.vtt 205 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ar.vtt 204 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.hr.vtt 204 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.th.vtt 204 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.zh-CN.vtt 204 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.zh-CN.vtt 204 Bytes
  • Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.pt-BR.vtt 204 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.ar.vtt 204 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.zh-CN.vtt 204 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.pt-BR.vtt 203 Bytes
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.en.vtt 203 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.en.vtt 203 Bytes
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-th34aboBOO0.ar.vtt 203 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.pt-BR.vtt 203 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ar.vtt 202 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.pt-BR.vtt 202 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ja.vtt 202 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ja.vtt 201 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.pt-BR.vtt 201 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.zh-CN.vtt 201 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.pt-BR.vtt 201 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.en.vtt 201 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.en.vtt 201 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ja.vtt 200 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.zh-CN.vtt 200 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ja.vtt 199 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.pt-BR.vtt 199 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.ja.vtt 199 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.en.vtt 199 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.en.vtt 198 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.zh-CN.vtt 198 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ja.vtt 198 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.zh-CN.vtt 197 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.hr.vtt 197 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ja.vtt 197 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.en.vtt 196 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.zh-CN.vtt 196 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.ar.vtt 196 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.ja.vtt 196 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.pt-BR.vtt 196 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.ar.vtt 196 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ja.vtt 194 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ja.vtt 194 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.en.vtt 194 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.zh-CN.vtt 194 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.en.vtt 193 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.ja.vtt 193 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.es-ES.vtt 192 Bytes
  • Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.zh-CN.vtt 192 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ar.vtt 191 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.zh-CN.vtt 191 Bytes
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.zh-CN.vtt 191 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.en.vtt 190 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ja.vtt 190 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ar.vtt 190 Bytes
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.ja.vtt 190 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.zh-CN.vtt 190 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-Hans.vtt 189 Bytes
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.zh-CN.vtt 189 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.pt-BR.vtt 189 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.pt-BR.vtt 188 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.zh-CN.vtt 188 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.pt-BR.vtt 188 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.ar.vtt 188 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.pt-BR.vtt 188 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.it.vtt 187 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ja.vtt 187 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.zh-CN.vtt 187 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.ar.vtt 187 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.ar.vtt 187 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.ja.vtt 187 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.zh-CN.vtt 187 Bytes
  • Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.pt-BR.vtt 186 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.zh-CN.vtt 186 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.en.vtt 186 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.pt-BR.vtt 186 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.en.vtt 186 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.es-ES.vtt 185 Bytes
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.pt-BR.vtt 185 Bytes
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.en.vtt 185 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.zh-CN.vtt 185 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ar.vtt 184 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.pt-BR.vtt 184 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ja.vtt 184 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.ar.vtt 184 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.en.vtt 184 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.pt-BR.vtt 183 Bytes
  • Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.zh-CN.vtt 183 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.zh-CN.vtt 182 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.en.vtt 182 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.zh-CN.vtt 182 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.en.vtt 182 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.ja.vtt 181 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.pt-BR.vtt 181 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.en.vtt 181 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-CN.vtt 180 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.en.vtt 180 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ja.vtt 180 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.zh-CN.vtt 180 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.pt-BR.vtt 180 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.zh-CN.vtt 180 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.it.vtt 178 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.th.vtt 178 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.en.vtt 178 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.en.vtt 178 Bytes
  • Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.zh-CN.vtt 177 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.th.vtt 177 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.pt-BR.vtt 177 Bytes
  • Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.pt-BR.vtt 177 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.pt-BR.vtt 177 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.zh-CN.vtt 177 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.pt-BR.vtt 177 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ar.vtt 176 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ja.vtt 176 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.zh-CN.vtt 176 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-dk3FxGVdP7Q.ar.vtt 176 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ar.vtt 175 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ja.vtt 175 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.es-ES.vtt 174 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.it.vtt 174 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.es-ES.vtt 174 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.en.vtt 174 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.en.vtt 174 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.it.vtt 173 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.pt-BR.vtt 173 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.pt-BR.vtt 173 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.pt-BR.vtt 173 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.pt-BR.vtt 173 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.zh-CN.vtt 172 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.it.vtt 171 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.it.vtt 171 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.pt-BR.vtt 171 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron--dT9dztM-Lc.ar.vtt 171 Bytes
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.pt-BR.vtt 171 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.es-ES.vtt 170 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.pt-BR.vtt 170 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.pt-BR.vtt 170 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.pt-BR.vtt 170 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.pt-BR.vtt 169 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.en.vtt 169 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.pt-BR.vtt 169 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.zh-CN.vtt 169 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.pt-BR.vtt 168 Bytes
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.ar.vtt 168 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ar.vtt 167 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.en.vtt 167 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.pt-BR.vtt 167 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.en.vtt 167 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.en.vtt 167 Bytes
  • Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.zh-CN.vtt 167 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.pt-BR.vtt 167 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ar.vtt 166 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.es-ES.vtt 166 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.zh-CN.vtt 166 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.zh-CN.vtt 166 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.zh-CN.vtt 166 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.zh-CN.vtt 166 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.en.vtt 165 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.es-ES.vtt 165 Bytes
  • Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.ja.vtt 165 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.pt-BR.vtt 165 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.zh-CN.vtt 165 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.zh-CN.vtt 164 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.th.vtt 164 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.it.vtt 164 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.pt-BR.vtt 164 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.pt-BR.vtt 164 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron--dT9dztM-Lc.pt-BR.vtt 164 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.en.vtt 164 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.hr.vtt 163 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.zh-CN.vtt 163 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ar.vtt 163 Bytes
  • Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.en.vtt 163 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.pt-BR.vtt 162 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ar.vtt 161 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.en.vtt 161 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.en.vtt 161 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.es-ES.vtt 160 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.pt-BR.vtt 160 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.th.vtt 160 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.zh-CN.vtt 160 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.pt-BR.vtt 160 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.zh-CN.vtt 160 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ja.vtt 159 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.pt-BR.vtt 159 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.pt-BR.vtt 159 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.pt-BR.vtt 158 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.zh-CN.vtt 158 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ar.vtt 158 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.zh-CN.vtt 158 Bytes
  • Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.hr.vtt 157 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ja.vtt 157 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.es-ES.vtt 157 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.pt-BR.vtt 157 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.zh-CN.vtt 157 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.zh-CN.vtt 157 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.ar.vtt 157 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.zh-CN.vtt 157 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ja.vtt 156 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.en.vtt 155 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.zh-CN.vtt 155 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.hr.vtt 155 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ja.vtt 155 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.es-ES.vtt 155 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.en.vtt 155 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.pt-BR.vtt 155 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-jO81hfubpXY.pt-BR.vtt 155 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ja.vtt 154 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.zh-CN.vtt 153 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ar.vtt 153 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.en.vtt 153 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.zh-CN.vtt 152 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.en.vtt 152 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.th.vtt 152 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ar.vtt 152 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.ja.vtt 152 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.zh-CN.vtt 152 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.it.vtt 151 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.zh-CN.vtt 150 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.zh-CN.vtt 150 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-jO81hfubpXY.zh-CN.vtt 150 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.pt-BR.vtt 149 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.hr.vtt 149 Bytes
  • Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ja.vtt 149 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.pt-BR.vtt 149 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.zh-CN.vtt 149 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.zh-CN.vtt 149 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.ja.vtt 149 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.en.vtt 148 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.en.vtt 147 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.en.vtt 146 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.pt-BR.vtt 146 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.hr.vtt 144 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ar.vtt 144 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.es-ES.vtt 143 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.en.vtt 143 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-Thj7e55iSlA.pt-BR.vtt 143 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.es-ES.vtt 142 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ja.vtt 142 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.en.vtt 142 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.zh-CN.vtt 142 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.en.vtt 142 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.zh-CN.vtt 142 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-jO81hfubpXY.en.vtt 142 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.es-ES.vtt 141 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ar.vtt 141 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ja.vtt 141 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ja.vtt 141 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.es-ES.vtt 141 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron--dT9dztM-Lc.en.vtt 141 Bytes
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-th34aboBOO0.pt-BR.vtt 141 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.en.vtt 140 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.es-ES.vtt 140 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-Thj7e55iSlA.en.vtt 140 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.ar.vtt 140 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ja.vtt 139 Bytes
  • Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-th34aboBOO0.en.vtt 139 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.en.vtt 138 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.it.vtt 138 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ja.vtt 138 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.es-ES.vtt 138 Bytes
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.en.vtt 138 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ja.vtt 137 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.th.vtt 137 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.en.vtt 137 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-dyShKWpTo-c.en.vtt 137 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.zh-CN.vtt 136 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.en.vtt 136 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.ar.vtt 136 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.th.vtt 135 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ja.vtt 134 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-dk3FxGVdP7Q.pt-BR.vtt 134 Bytes
  • Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.pt-BR.vtt 133 Bytes
  • Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-dyShKWpTo-c.pt-BR.vtt 133 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ar.vtt 132 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ja.vtt 132 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.ja.vtt 131 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.en.vtt 131 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.ja.vtt 131 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.es-ES.vtt 130 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.th.vtt 130 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.en.vtt 130 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.pt-BR.vtt 130 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.en.vtt 130 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-dk3FxGVdP7Q.en.vtt 130 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.it.vtt 129 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.en.vtt 129 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.zh-CN.vtt 129 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ar.vtt 129 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.es-ES.vtt 129 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.en.vtt 128 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.en.vtt 128 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.it.vtt 127 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.zh-CN.vtt 127 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.zh-CN.vtt 126 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ja.vtt 126 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ar.vtt 126 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.zh-CN.vtt 126 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.ar.vtt 126 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.es-ES.vtt 125 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.es-ES.vtt 125 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.pt-BR.vtt 125 Bytes
  • Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.zh-CN.vtt 125 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.zh-CN.vtt 125 Bytes
  • Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.zh-CN.vtt 125 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.pt-BR.vtt 124 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.zh-CN.vtt 123 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.zh-CN.vtt 123 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.pt-BR.vtt 123 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ja.vtt 123 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ja.vtt 123 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.ar.vtt 123 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.en.vtt 122 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ja.vtt 122 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ar.vtt 122 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.pt-BR.vtt 122 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.pt-BR.vtt 122 Bytes
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.ar.vtt 122 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.pt-BR.vtt 121 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-kNxZwfXwvuk.ar.vtt 121 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.en.vtt 120 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.es-ES.vtt 120 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-Hans.vtt 119 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.en.vtt 119 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.ja.vtt 119 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.en.vtt 118 Bytes
  • Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.zh-CN.vtt 118 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ar.vtt 118 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.es-ES.vtt 118 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ja.vtt 118 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.ar.vtt 118 Bytes
  • Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.zh-CN.vtt 117 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ja.vtt 116 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.zh-CN.vtt 116 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-CN.vtt 115 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.zh-CN.vtt 113 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ja.vtt 113 Bytes
  • Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.zh-CN.vtt 113 Bytes
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.zh-CN.vtt 113 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.zh-CN.vtt 111 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.pt-BR.vtt 111 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ar.vtt 110 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ja.vtt 110 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.en.vtt 110 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.zh-CN.vtt 110 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.ar.vtt 110 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.pt-BR.vtt 110 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.es-ES.vtt 109 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.es-ES.vtt 109 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.en.vtt 109 Bytes
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.en.vtt 109 Bytes
  • Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.pt-BR.vtt 109 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ar.vtt 108 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.th.vtt 108 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.pt-BR.vtt 108 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.es-ES.vtt 108 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.pt-BR.vtt 108 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.zh-CN.vtt 108 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.en.vtt 108 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.en.vtt 108 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.es-ES.vtt 107 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.en.vtt 107 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.ja.vtt 107 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.zh-CN.vtt 107 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.pt-BR.vtt 106 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.ja.vtt 106 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.pt-BR.vtt 105 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.es-ES.vtt 104 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.en.vtt 104 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.ja.vtt 104 Bytes
  • Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.en.vtt 104 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.en.vtt 103 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-BR.vtt 101 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-Hans.vtt 101 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.es-ES.vtt 101 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.zh-CN.vtt 101 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.en.vtt 101 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ja.vtt 100 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.pt-BR.vtt 100 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ar.vtt 99 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.pt-BR.vtt 99 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-CN.vtt 99 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.pt-BR.vtt 99 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.ar.vtt 99 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-Hans.vtt 98 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ar.vtt 98 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.zh-CN.vtt 98 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ja.vtt 97 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.en.vtt 97 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-kNxZwfXwvuk.pt-BR.vtt 97 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.it.vtt 96 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ar.vtt 96 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.es-ES.vtt 95 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.es-ES.vtt 95 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.en.vtt 95 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.hr.vtt 95 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ar.vtt 95 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.en.vtt 95 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-CN.vtt 94 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ar.vtt 94 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.it.vtt 94 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ja.vtt 94 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.pt-BR.vtt 94 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.ar.vtt 93 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ar.vtt 92 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.pt-BR.vtt 92 Bytes
  • Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-kNxZwfXwvuk.en.vtt 92 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.pt-BR.vtt 91 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ja.vtt 91 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.en.vtt 90 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ar.vtt 90 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.zh-CN.vtt 90 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.en.vtt 90 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.it.vtt 90 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.zh-CN.vtt 90 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.pt-BR.vtt 90 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.it.vtt 89 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-PT.vtt 89 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.it.vtt 89 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.it.vtt 89 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ja.vtt 89 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.pt-BR.vtt 89 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.pt-BR.vtt 89 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.en.vtt 89 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.zh-CN.vtt 89 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.ja.vtt 89 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.en.vtt 88 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.it.vtt 88 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ja.vtt 88 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ja.vtt 88 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.hr.vtt 87 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.it.vtt 87 Bytes
  • Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.zh-CN.vtt 87 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.en.vtt 86 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.hr.vtt 86 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.en.vtt 86 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.en.vtt 86 Bytes
  • Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.pt-BR.vtt 86 Bytes
  • Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.en.vtt 86 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.hr.vtt 85 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-Hans.vtt 85 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.hr.vtt 85 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.zh-CN.vtt 84 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.zh-CN.vtt 84 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-CN.vtt 83 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.hr.vtt 83 Bytes
  • Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.tr.vtt 81 Bytes
  • [DesireCourse.Net].url 51 Bytes
  • [CourseClub.Me].url 48 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!