搜索
[CourseClub.Me] Udacity - Data Analyst Nanodegree
磁力链接/BT种子名称
[CourseClub.Me] Udacity - Data Analyst Nanodegree
磁力链接/BT种子简介
种子哈希:
88f80a1ad6a0ec4fe039cb7db5ff9574e8079842
文件大小:
9.77G
已经下载:
2198
次
下载速度:
极快
收录时间:
2021-03-09
最近下载:
2025-08-25
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:88F80A1AD6A0EC4FE039CB7DB5FF9574E8079842
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
哆哔涩漫
呦乐园
萝莉岛
最近搜索
大潮喷
老公不在
姬野
熊猫班多视角
566
上门小姐
早期
中国男人
系列种子
大尺
ts性感
mojo
디비디
顶级真实调教
车震内射肥穴
调教炮机
一不小心
还小
無碼 中文
日式
越南屠夫
洗澡啪啪
沈先森深夜场
姐毛性感
insidious
lo
操小姨子
山鬼
转生成
量子危机
文件列表
Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-qRv1wrtgsmM.mp4
118.9 MB
Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-i3RTW83wI1Q.mp4
112.4 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.mp4
110.1 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/08. Coding 2-qEteyPNRSwU.mp4
109.7 MB
Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.mp4
92.2 MB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.mp4
59.4 MB
Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.mp4
53.6 MB
Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.mp4
52.2 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.mp4
52.0 MB
Part 03-Module 04-Lesson 01_Investigate a Dataset/05. Investigate A Dataset Project Walkthrough Final-OtDZCYxbHB4.mp4
51.8 MB
Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-cXluuqCVg18.mp4
44.2 MB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It-7IKqdW30GvQ.mp4
42.7 MB
Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.mp4
36.5 MB
Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.mp4
36.4 MB
Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-Uy89Ff49pRc.mp4
34.9 MB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.mp4
34.1 MB
Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.mp4
34.0 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.mp4
33.2 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.mp4
32.6 MB
Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.mp4
32.0 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.mp4
26.7 MB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.mp4
26.5 MB
Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.mp4
26.3 MB
Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.mp4
26.3 MB
Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.mp4
26.1 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.mp4
25.9 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.mp4
24.9 MB
Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.mp4
24.4 MB
Part 04-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.mp4
23.9 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.mp4
23.2 MB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.mp4
23.1 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.mp4
23.0 MB
Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.mp4
22.9 MB
Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.mp4
22.8 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.mp4
22.7 MB
Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.mp4
22.0 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.mp4
22.0 MB
Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.mp4
21.9 MB
Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.mp4
21.8 MB
Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.mp4
21.7 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.mp4
21.7 MB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.mp4
21.6 MB
Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview-wg535YU4jFw.mp4
21.3 MB
Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.mp4
21.3 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.mp4
21.1 MB
Part 02-Module 02-Lesson 01_Python Project/08. Classroom DAND-Explore US Bikeshare Data Walkthrough-0yuglNRWyKs.mp4
21.1 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.mp4
21.0 MB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.mp4
20.9 MB
Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.mp4
20.9 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.mp4
20.9 MB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.mp4
20.3 MB
Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.mp4
20.2 MB
Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.mp4
20.0 MB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.mp4
19.9 MB
Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.mp4
19.9 MB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/06. Explore And Summarize Data Walkthrough Final-_OwKKL6SI38.mp4
19.8 MB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.mp4
19.7 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.mp4
19.7 MB
Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.mp4
19.3 MB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.mp4
19.3 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.mp4
19.3 MB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure-Qb4o_4hCuyg.mp4
19.3 MB
Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.mp4
19.3 MB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.mp4
19.2 MB
Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.mp4
19.2 MB
Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.mp4
19.2 MB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.mp4
19.1 MB
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.mp4
19.0 MB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.mp4
18.9 MB
Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.mp4
18.5 MB
Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.mp4
18.4 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.mp4
18.4 MB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.mp4
18.2 MB
Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.mp4
18.2 MB
Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.mp4
18.2 MB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.mp4
18.2 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.mp4
18.1 MB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.mp4
18.1 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.mp4
18.1 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.mp4
18.1 MB
Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.mp4
17.8 MB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.mp4
17.8 MB
Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.mp4
17.7 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.mp4
17.6 MB
Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.mp4
17.6 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.mp4
17.5 MB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.mp4
17.5 MB
Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.mp4
17.5 MB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.mp4
17.4 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.mp4
17.3 MB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4
17.2 MB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/01. Sparta Science-MkjoaUmdOXc.mp4
17.1 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.mp4
17.0 MB
Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-R9AtVBq2Z5E.mp4
16.9 MB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative-29mkriaGT0E.mp4
16.9 MB
Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.mp4
16.9 MB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.mp4
16.7 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.mp4
16.7 MB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.mp4
16.7 MB
Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.mp4
16.7 MB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.mp4
16.7 MB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.mp4
16.6 MB
Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.mp4
16.5 MB
Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.mp4
16.3 MB
Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.mp4
16.2 MB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.mp4
16.2 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.mp4
16.2 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.mp4
16.1 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.mp4
16.1 MB
Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.mp4
16.1 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.mp4
16.0 MB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.mp4
16.0 MB
Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.mp4
15.9 MB
Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.mp4
15.9 MB
Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.mp4
15.8 MB
Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.mp4
15.7 MB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.mp4
15.7 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.mp4
15.7 MB
Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.mp4
15.6 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.mp4
15.4 MB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.mp4
15.3 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.mp4
15.3 MB
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.mp4
15.3 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.mp4
15.3 MB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.mp4
15.3 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.mp4
15.2 MB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.mp4
15.1 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.mp4
15.1 MB
Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.mp4
15.1 MB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.mp4
15.1 MB
Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.mp4
15.0 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.mp4
14.9 MB
Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.mp4
14.7 MB
Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.mp4
14.6 MB
Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.mp4
14.6 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.mp4
14.5 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.mp4
14.5 MB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.mp4
14.4 MB
Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.mp4
14.4 MB
Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.mp4
14.3 MB
Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.mp4
14.3 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.mp4
14.1 MB
Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.mp4
14.0 MB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.mp4
14.0 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.mp4
14.0 MB
Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.mp4
14.0 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.mp4
14.0 MB
Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.mp4
13.9 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.mp4
13.9 MB
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.mp4
13.9 MB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.mp4
13.9 MB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.mp4
13.9 MB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.mp4
13.9 MB
Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.mp4
13.9 MB
Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4
13.8 MB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.mp4
13.7 MB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.mp4
13.6 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.mp4
13.6 MB
Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.mp4
13.5 MB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.mp4
13.5 MB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.mp4
13.5 MB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.mp4
13.5 MB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.mp4
13.5 MB
Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.mp4
13.4 MB
Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.mp4
13.3 MB
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.mp4
13.3 MB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.mp4
13.3 MB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.mp4
13.3 MB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.mp4
13.3 MB
Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.mp4
13.2 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.mp4
13.2 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.mp4
13.2 MB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.mp4
13.1 MB
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.mp4
13.1 MB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company-CcTfHemUvbM.mp4
13.1 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.mp4
13.0 MB
Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.mp4
12.9 MB
Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.mp4
12.8 MB
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.mp4
12.8 MB
Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.mp4
12.8 MB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.mp4
12.8 MB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.mp4
12.8 MB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.mp4
12.8 MB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.mp4
12.7 MB
Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.mp4
12.7 MB
Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.mp4
12.6 MB
Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.mp4
12.6 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.mp4
12.6 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.mp4
12.5 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/24. What If Our Sample Is Large-WoTCeSTL1eM.mp4
12.5 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.mp4
12.5 MB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.mp4
12.5 MB
Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.mp4
12.4 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.mp4
12.4 MB
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.mp4
12.4 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.mp4
12.4 MB
Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.mp4
12.3 MB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.mp4
12.3 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.mp4
12.2 MB
Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.mp4
12.2 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.mp4
12.1 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.mp4
12.1 MB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.mp4
12.1 MB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.mp4
12.1 MB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.mp4
12.1 MB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.mp4
12.1 MB
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.mp4
12.1 MB
Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.mp4
12.1 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types Of Errors - Part II-mbdSQ5CjdFs.mp4
12.0 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.mp4
12.0 MB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.mp4
12.0 MB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.mp4
12.0 MB
Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.mp4
12.0 MB
Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.mp4
12.0 MB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.mp4
11.9 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.mp4
11.9 MB
Part 04-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.mp4
11.8 MB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.mp4
11.8 MB
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.mp4
11.8 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.mp4
11.7 MB
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.mp4
11.6 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.mp4
11.6 MB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.mp4
11.6 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.mp4
11.5 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.mp4
11.5 MB
Part 04-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.mp4
11.5 MB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.mp4
11.5 MB
Part 18-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.mp4
11.4 MB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.mp4
11.3 MB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.mp4
11.3 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests-8hv8KnvQ6JY.mp4
11.3 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.mp4
11.3 MB
Part 04-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.mp4
11.3 MB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.mp4
11.3 MB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.mp4
11.3 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.mp4
11.3 MB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-pDELcPTP2BI.mp4
11.2 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.mp4
11.2 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.mp4
11.2 MB
Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.mp4
11.2 MB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.mp4
11.2 MB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.mp4
11.1 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.mp4
11.1 MB
Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.mp4
11.1 MB
Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.mp4
11.0 MB
Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.mp4
11.0 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.mp4
10.9 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.mp4
10.9 MB
Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.mp4
10.8 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.mp4
10.8 MB
Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.mp4
10.8 MB
Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.mp4
10.8 MB
Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.mp4
10.8 MB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.mp4
10.8 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.mp4
10.7 MB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.mp4
10.7 MB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.mp4
10.7 MB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Kaggle Project Final For Classroom-Ssttix340C8.mp4
10.6 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.mp4
10.6 MB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.mp4
10.6 MB
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.mp4
10.6 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/12. Meet the Careers Team-cuKecPpZ7PM.mp4
10.6 MB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/13. Meet the Careers Team-cuKecPpZ7PM.mp4
10.6 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.mp4
10.6 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.mp4
10.6 MB
Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.mp4
10.5 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.mp4
10.5 MB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.mp4
10.5 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.mp4
10.4 MB
Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.mp4
10.4 MB
Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.mp4
10.4 MB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.mp4
10.4 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.mp4
10.3 MB
Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.mp4
10.3 MB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace-Aa9SFwiRbho.mp4
10.3 MB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.mp4
10.3 MB
Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.mp4
10.3 MB
Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.mp4
10.3 MB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/02. DSND Trailer Final-X2xQnb-bR8A.mp4
10.2 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.mp4
10.2 MB
Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.mp4
10.2 MB
Part 04-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.mp4
10.2 MB
Part 04-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.mp4
10.2 MB
Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.mp4
10.1 MB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.mp4
10.1 MB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.mp4
10.1 MB
Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.mp4
10.1 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.mp4
10.0 MB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.mp4
9.9 MB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.mp4
9.9 MB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.mp4
9.9 MB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.mp4
9.9 MB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.mp4
9.9 MB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.mp4
9.9 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.mp4
9.9 MB
Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-wkWDrSBBtz0.mp4
9.9 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.mp4
9.9 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.mp4
9.8 MB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.mp4
9.8 MB
Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.mp4
9.8 MB
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.mp4
9.8 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.mp4
9.8 MB
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.mp4
9.7 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.mp4
9.7 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.mp4
9.7 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.mp4
9.7 MB
Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.mp4
9.6 MB
Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.mp4
9.6 MB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.mp4
9.5 MB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.mp4
9.5 MB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.mp4
9.5 MB
Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.mp4
9.5 MB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.mp4
9.4 MB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.mp4
9.4 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.mp4
9.4 MB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.mp4
9.4 MB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.mp4
9.3 MB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.mp4
9.3 MB
Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.mp4
9.3 MB
Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.mp4
9.3 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.mp4
9.2 MB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.mp4
9.2 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.mp4
9.1 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.mp4
9.1 MB
Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.mp4
9.1 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.mp4
9.1 MB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.mp4
9.1 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values-hFNjd5l9CLs.mp4
9.0 MB
Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.mp4
9.0 MB
Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.mp4
9.0 MB
Part 09-Module 01-Lesson 02_Design/13. Using Color-6bAedqD3ilw.mp4
8.9 MB
Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.mp4
8.8 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.mp4
8.8 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.mp4
8.7 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.mp4
8.7 MB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.mp4
8.7 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.mp4
8.7 MB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.mp4
8.6 MB
Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.mp4
8.6 MB
Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.mp4
8.6 MB
Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.mp4
8.6 MB
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.mp4
8.6 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.mp4
8.6 MB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.mp4
8.6 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.mp4
8.6 MB
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.mp4
8.5 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.mp4
8.5 MB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.mp4
8.5 MB
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.mp4
8.4 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.mp4
8.4 MB
Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.mp4
8.4 MB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.mp4
8.4 MB
Part 18-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.mp4
8.4 MB
Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.mp4
8.3 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.mp4
8.3 MB
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.mp4
8.3 MB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.mp4
8.3 MB
Part 05-Module 01-Lesson 01_Congratulations & Next Steps/img/party-v1-1.gif
8.3 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.mp4
8.3 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.mp4
8.3 MB
Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.mp4
8.2 MB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.mp4
8.2 MB
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.mp4
8.2 MB
Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.mp4
8.1 MB
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.mp4
8.1 MB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.mp4
8.1 MB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-resolve-merge-conflict.gif
8.1 MB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.mp4
8.1 MB
Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.mp4
8.1 MB
Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.mp4
8.1 MB
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.mp4
8.1 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses - Part II-nByvHz77GiA.mp4
8.0 MB
Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.mp4
8.0 MB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.mp4
8.0 MB
Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.mp4
8.0 MB
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.mp4
8.0 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.mp4
8.0 MB
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.mp4
8.0 MB
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.mp4
8.0 MB
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.mp4
8.0 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.mp4
8.0 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.mp4
7.9 MB
Part 04-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.mp4
7.9 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.mp4
7.9 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.mp4
7.9 MB
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.mp4
7.9 MB
Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.mp4
7.9 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.mp4
7.9 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.mp4
7.8 MB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.mp4
7.8 MB
Part 04-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.mp4
7.8 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions In Hypothesis Testing-I0Mo7hcxahY.mp4
7.8 MB
Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.mp4
7.8 MB
Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.mp4
7.8 MB
Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.mp4
7.8 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.mp4
7.8 MB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.mp4
7.7 MB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.mp4
7.7 MB
Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.mp4
7.7 MB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.mp4
7.7 MB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4
7.7 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Multiple Testing Corrections-DuMgeHrkIF0.mp4
7.7 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.mp4
7.7 MB
Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.mp4
7.7 MB
Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.mp4
7.6 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.mp4
7.6 MB
Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.mp4
7.6 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What Is A P-value Anyway-eU6pUZjqviA.mp4
7.6 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.mp4
7.6 MB
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.mp4
7.6 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.mp4
7.6 MB
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.mp4
7.6 MB
Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.mp4
7.6 MB
Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.mp4
7.6 MB
Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.mp4
7.6 MB
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.mp4
7.5 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.mp4
7.5 MB
Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.mp4
7.5 MB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.mp4
7.5 MB
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.mp4
7.4 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.mp4
7.4 MB
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.mp4
7.4 MB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.mp4
7.4 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.mp4
7.4 MB
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.mp4
7.4 MB
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.mp4
7.3 MB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.mp4
7.3 MB
Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.mp4
7.3 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/26. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.mp4
7.3 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.mp4
7.3 MB
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.mp4
7.3 MB
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.mp4
7.3 MB
Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.mp4
7.3 MB
Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.mp4
7.3 MB
Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.mp4
7.2 MB
Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.mp4
7.2 MB
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.mp4
7.2 MB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.mp4
7.1 MB
Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.mp4
7.1 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.mp4
7.1 MB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.mp4
7.1 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.mp4
7.1 MB
Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.mp4
7.1 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.mp4
7.1 MB
Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.mp4
7.1 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.mp4
7.1 MB
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.mp4
7.0 MB
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.mp4
7.0 MB
Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.mp4
7.0 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.mp4
7.0 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.mp4
7.0 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.mp4
7.0 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.mp4
7.0 MB
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.mp4
7.0 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.mp4
7.0 MB
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.mp4
7.0 MB
Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.mp4
7.0 MB
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.mp4
6.9 MB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.mp4
6.9 MB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.mp4
6.9 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.mp4
6.9 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.mp4
6.9 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.mp4
6.9 MB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.mp4
6.9 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.mp4
6.9 MB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.mp4
6.9 MB
Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.mp4
6.9 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.mp4
6.9 MB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.mp4
6.8 MB
Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.mp4
6.8 MB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.mp4
6.8 MB
Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.mp4
6.8 MB
Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.mp4
6.8 MB
Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.mp4
6.8 MB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.mp4
6.7 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.mp4
6.7 MB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.mp4
6.7 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.mp4
6.6 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.mp4
6.6 MB
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.mp4
6.6 MB
Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.mp4
6.6 MB
Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.mp4
6.6 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.mp4
6.6 MB
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.mp4
6.6 MB
Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.mp4
6.6 MB
Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.mp4
6.6 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.mp4
6.6 MB
Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.mp4
6.6 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.mp4
6.5 MB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.mp4
6.5 MB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.mp4
6.5 MB
Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.mp4
6.5 MB
Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.mp4
6.5 MB
Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.mp4
6.5 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4
6.5 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4
6.5 MB
Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.mp4
6.4 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.mp4
6.4 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.mp4
6.4 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.mp4
6.4 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.mp4
6.4 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.mp4
6.4 MB
Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.mp4
6.3 MB
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.mp4
6.3 MB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.mp4
6.3 MB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.mp4
6.3 MB
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.mp4
6.3 MB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.mp4
6.3 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.mp4
6.3 MB
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.mp4
6.3 MB
Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.mp4
6.3 MB
Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.mp4
6.3 MB
Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.mp4
6.3 MB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.mp4
6.3 MB
Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.mp4
6.3 MB
Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.mp4
6.3 MB
Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.mp4
6.2 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.mp4
6.2 MB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.mp4
6.2 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.mp4
6.2 MB
Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.mp4
6.2 MB
Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.mp4
6.2 MB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4
6.2 MB
Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.mp4
6.2 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.mp4
6.2 MB
Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.mp4
6.2 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.mp4
6.2 MB
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.mp4
6.1 MB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.mp4
6.1 MB
Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.mp4
6.1 MB
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.mp4
6.1 MB
Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.mp4
6.1 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/party.gif
6.1 MB
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.mp4
6.1 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.mp4
6.1 MB
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.mp4
6.0 MB
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.mp4
6.0 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.mp4
6.0 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.mp4
6.0 MB
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.mp4
6.0 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.mp4
6.0 MB
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.mp4
6.0 MB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.mp4
6.0 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.mp4
5.9 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.mp4
5.9 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.mp4
5.9 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.mp4
5.9 MB
Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.mp4
5.9 MB
Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.mp4
5.9 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.mp4
5.9 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.mp4
5.9 MB
Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.mp4
5.9 MB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.mp4
5.9 MB
Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.mp4
5.9 MB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.mp4
5.9 MB
Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.mp4
5.9 MB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.mp4
5.9 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.mp4
5.8 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.mp4
5.8 MB
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.mp4
5.8 MB
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.mp4
5.8 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.mp4
5.8 MB
Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.mp4
5.8 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.mp4
5.8 MB
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.mp4
5.8 MB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.mp4
5.7 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.mp4
5.7 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.mp4
5.7 MB
Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.mp4
5.7 MB
Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.mp4
5.7 MB
Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.mp4
5.7 MB
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.mp4
5.7 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.mp4
5.6 MB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.mp4
5.6 MB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.mp4
5.6 MB
Part 04-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.mp4
5.6 MB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.mp4
5.6 MB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.mp4
5.6 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.mp4
5.6 MB
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.mp4
5.6 MB
Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.mp4
5.6 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.mp4
5.6 MB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.mp4
5.6 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.mp4
5.6 MB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.mp4
5.6 MB
Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.mp4
5.6 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.mp4
5.6 MB
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.mp4
5.6 MB
Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.mp4
5.6 MB
Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.mp4
5.5 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.mp4
5.5 MB
Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.mp4
5.5 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.mp4
5.5 MB
Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.mp4
5.5 MB
Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.mp4
5.5 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.mp4
5.5 MB
Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.mp4
5.5 MB
Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.mp4
5.5 MB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.mp4
5.5 MB
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.mp4
5.5 MB
Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.mp4
5.5 MB
Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.mp4
5.5 MB
Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.mp4
5.5 MB
Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.mp4
5.5 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.mp4
5.5 MB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.mp4
5.5 MB
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.mp4
5.4 MB
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.mp4
5.4 MB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.mp4
5.4 MB
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.mp4
5.4 MB
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.mp4
5.4 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.mp4
5.4 MB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.mp4
5.4 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.mp4
5.3 MB
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.mp4
5.3 MB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.mp4
5.3 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.mp4
5.3 MB
Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.mp4
5.3 MB
Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.mp4
5.3 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.mp4
5.3 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.mp4
5.3 MB
Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.mp4
5.3 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.mp4
5.3 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.mp4
5.3 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.mp4
5.3 MB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.mp4
5.3 MB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.mp4
5.3 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.mp4
5.3 MB
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.mp4
5.3 MB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.mp4
5.3 MB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.mp4
5.2 MB
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.mp4
5.2 MB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.mp4
5.2 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.mp4
5.2 MB
Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.mp4
5.2 MB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.mp4
5.1 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.mp4
5.1 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.mp4
5.1 MB
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python-KS6cKoKe8ms.mp4
5.1 MB
Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.mp4
5.1 MB
Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.mp4
5.1 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.mp4
5.1 MB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.mp4
5.1 MB
Part 12-Module 01-Lesson 01_GitHub Review/16. Outro-dps7Ti6Lado.mp4
5.1 MB
Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.mp4
5.1 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.mp4
5.1 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.mp4
5.1 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.mp4
5.1 MB
Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.mp4
5.0 MB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.mp4
5.0 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.mp4
5.0 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.mp4
5.0 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.mp4
5.0 MB
Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.mp4
5.0 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.mp4
5.0 MB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.mp4
5.0 MB
Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video-68EGMItJiNM.mp4
5.0 MB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.mp4
5.0 MB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.mp4
5.0 MB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.mp4
4.9 MB
Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.mp4
4.9 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.mp4
4.9 MB
Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.mp4
4.9 MB
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.mp4
4.9 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.mp4
4.9 MB
Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.mp4
4.9 MB
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.mp4
4.9 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.mp4
4.9 MB
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.mp4
4.9 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.mp4
4.9 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.mp4
4.9 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.mp4
4.9 MB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.mp4
4.9 MB
Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.mp4
4.9 MB
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.mp4
4.8 MB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.mp4
4.8 MB
Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.mp4
4.8 MB
Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.mp4
4.8 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Download Tableau Public-2bXsg6SKHG8.mp4
4.8 MB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.mp4
4.8 MB
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.mp4
4.8 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.mp4
4.8 MB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.mp4
4.8 MB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.mp4
4.8 MB
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.mp4
4.8 MB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.mp4
4.8 MB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.mp4
4.8 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.mp4
4.8 MB
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.mp4
4.8 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.mp4
4.8 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.mp4
4.8 MB
Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.mp4
4.8 MB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.mp4
4.8 MB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.mp4
4.8 MB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.mp4
4.7 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.mp4
4.7 MB
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.mp4
4.7 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Tableau Desktop Download-End96VkLQc4.mp4
4.7 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.mp4
4.7 MB
Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.mp4
4.7 MB
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.mp4
4.7 MB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.mp4
4.7 MB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.mp4
4.7 MB
Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.mp4
4.7 MB
Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.mp4
4.7 MB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.mp4
4.7 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.mp4
4.7 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.mp4
4.7 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.mp4
4.7 MB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.mp4
4.7 MB
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.mp4
4.7 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.mp4
4.7 MB
Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.mp4
4.7 MB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.mp4
4.6 MB
Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.mp4
4.6 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.mp4
4.6 MB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.mp4
4.6 MB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.mp4
4.6 MB
Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.mp4
4.6 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion-nQFchD4XPPs.mp4
4.6 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.mp4
4.6 MB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.mp4
4.6 MB
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.mp4
4.6 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.mp4
4.6 MB
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.mp4
4.6 MB
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.mp4
4.6 MB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.mp4
4.5 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.mp4
4.5 MB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.mp4
4.5 MB
Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.mp4
4.5 MB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.mp4
4.5 MB
Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.mp4
4.5 MB
Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.mp4
4.5 MB
Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.mp4
4.5 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.mp4
4.5 MB
Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.mp4
4.5 MB
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.mp4
4.5 MB
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.mp4
4.5 MB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.mp4
4.5 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.mp4
4.5 MB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.mp4
4.4 MB
Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.mp4
4.4 MB
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.mp4
4.4 MB
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.mp4
4.4 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.mp4
4.4 MB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.mp4
4.4 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.mp4
4.4 MB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.mp4
4.4 MB
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.mp4
4.4 MB
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.mp4
4.4 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.mp4
4.4 MB
Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.mp4
4.4 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.mp4
4.4 MB
Part 04-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.mp4
4.4 MB
Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.mp4
4.4 MB
Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.mp4
4.4 MB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.mp4
4.4 MB
Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.mp4
4.4 MB
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.mp4
4.4 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.mp4
4.4 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.mp4
4.4 MB
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.mp4
4.4 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.mp4
4.4 MB
Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.mp4
4.4 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.mp4
4.4 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.mp4
4.4 MB
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.mp4
4.4 MB
Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.mp4
4.3 MB
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.mp4
4.3 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.mp4
4.3 MB
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.mp4
4.3 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.mp4
4.3 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.mp4
4.3 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.mp4
4.3 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.mp4
4.3 MB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.mp4
4.3 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.mp4
4.3 MB
Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.mp4
4.3 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.mp4
4.2 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.mp4
4.2 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.mp4
4.2 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.mp4
4.2 MB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.mp4
4.2 MB
Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.mp4
4.2 MB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.mp4
4.2 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.mp4
4.2 MB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.mp4
4.2 MB
Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.mp4
4.2 MB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.mp4
4.2 MB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.mp4
4.2 MB
Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.mp4
4.2 MB
Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.mp4
4.2 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.mp4
4.2 MB
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.mp4
4.2 MB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.mp4
4.2 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.mp4
4.2 MB
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.mp4
4.1 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.mp4
4.1 MB
Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.mp4
4.1 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.mp4
4.1 MB
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.mp4
4.1 MB
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.mp4
4.1 MB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.mp4
4.1 MB
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.mp4
4.1 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4
4.1 MB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4
4.1 MB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4
4.1 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types Of Errors - Part III-Z-srkCPsdaM.mp4
4.1 MB
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.mp4
4.1 MB
Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.mp4
4.1 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses-JkXTwS-5Daw.mp4
4.1 MB
Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.mp4
4.1 MB
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.mp4
4.1 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.mp4
4.1 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.mp4
4.1 MB
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.mp4
4.1 MB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.mp4
4.1 MB
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.mp4
4.1 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.mp4
4.1 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.mp4
4.0 MB
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.mp4
4.0 MB
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.mp4
4.0 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.mp4
4.0 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.mp4
4.0 MB
Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.mp4
4.0 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.mp4
4.0 MB
Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.mp4
4.0 MB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.mp4
4.0 MB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.mp4
4.0 MB
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.mp4
4.0 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.mp4
4.0 MB
Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.mp4
4.0 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.mp4
4.0 MB
Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.mp4
4.0 MB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.mp4
4.0 MB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.mp4
4.0 MB
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.mp4
4.0 MB
Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.mp4
4.0 MB
Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.mp4
4.0 MB
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.mp4
4.0 MB
Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.mp4
4.0 MB
Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.mp4
4.0 MB
Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.mp4
4.0 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.mp4
4.0 MB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.mp4
4.0 MB
Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.mp4
4.0 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Simulating From the Null-sL2yJtHZd8Y.mp4
3.9 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.mp4
3.9 MB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.mp4
3.9 MB
Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.mp4
3.9 MB
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.mp4
3.9 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.mp4
3.9 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.mp4
3.9 MB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.mp4
3.9 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.mp4
3.9 MB
Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.mp4
3.9 MB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.mp4
3.9 MB
Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.mp4
3.9 MB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.mp4
3.9 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.mp4
3.9 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.mp4
3.9 MB
Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.mp4
3.9 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.mp4
3.9 MB
Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.mp4
3.9 MB
Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.mp4
3.9 MB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.mp4
3.9 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.mp4
3.9 MB
Part 04-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.mp4
3.9 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.mp4
3.9 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.mp4
3.8 MB
Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.mp4
3.8 MB
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.mp4
3.8 MB
Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.mp4
3.8 MB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.mp4
3.8 MB
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.mp4
3.8 MB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.mp4
3.8 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Calculating the p-value-_W3Jg7jQ8jI.mp4
3.8 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.mp4
3.8 MB
Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.mp4
3.8 MB
Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.mp4
3.8 MB
Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.mp4
3.8 MB
Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.mp4
3.8 MB
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.mp4
3.8 MB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.mp4
3.8 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.mp4
3.8 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.mp4
3.8 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.mp4
3.8 MB
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.mp4
3.8 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.mp4
3.8 MB
Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.mp4
3.7 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.mp4
3.7 MB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.mp4
3.7 MB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.mp4
3.7 MB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.mp4
3.7 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.mp4
3.7 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.mp4
3.7 MB
Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.mp4
3.7 MB
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.mp4
3.7 MB
Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.mp4
3.7 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.mp4
3.7 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.mp4
3.7 MB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.mp4
3.7 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.mp4
3.7 MB
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.mp4
3.7 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.mp4
3.7 MB
Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.mp4
3.7 MB
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.mp4
3.7 MB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/01. DAND 01 Congrats V1-QS1jKmZWdTk.mp4
3.7 MB
Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.mp4
3.6 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.mp4
3.6 MB
Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.mp4
3.6 MB
Part 04-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.mp4
3.6 MB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.mp4
3.6 MB
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.mp4
3.6 MB
Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.mp4
3.6 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.mp4
3.6 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.mp4
3.6 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.mp4
3.6 MB
Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.mp4
3.6 MB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.mp4
3.6 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.mp4
3.6 MB
Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.mp4
3.6 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.mp4
3.6 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.mp4
3.6 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.mp4
3.6 MB
Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.mp4
3.6 MB
Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.mp4
3.5 MB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.mp4
3.5 MB
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.mp4
3.5 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.mp4
3.5 MB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.mp4
3.5 MB
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.mp4
3.5 MB
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.mp4
3.5 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.mp4
3.5 MB
Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.mp4
3.5 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.mp4
3.5 MB
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.mp4
3.5 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.mp4
3.5 MB
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.mp4
3.5 MB
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.mp4
3.5 MB
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.mp4
3.5 MB
Part 04-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.mp4
3.5 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.mp4
3.5 MB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.mp4
3.5 MB
Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.mp4
3.5 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.mp4
3.5 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.mp4
3.5 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.mp4
3.4 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.mp4
3.4 MB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.mp4
3.4 MB
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.mp4
3.4 MB
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.mp4
3.4 MB
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.mp4
3.4 MB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.mp4
3.4 MB
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.mp4
3.4 MB
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.mp4
3.4 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.mp4
3.4 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.mp4
3.4 MB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.mp4
3.4 MB
Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.mp4
3.4 MB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.mp4
3.4 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.mp4
3.4 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.mp4
3.4 MB
Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.mp4
3.4 MB
Part 04-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.mp4
3.4 MB
Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.mp4
3.4 MB
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.mp4
3.3 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.mp4
3.3 MB
Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.mp4
3.3 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.mp4
3.3 MB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.mp4
3.3 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.mp4
3.3 MB
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.mp4
3.3 MB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.mp4
3.3 MB
Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.mp4
3.3 MB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.mp4
3.3 MB
Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.mp4
3.3 MB
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.mp4
3.3 MB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.mp4
3.3 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.mp4
3.3 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.mp4
3.3 MB
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.mp4
3.3 MB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.mp4
3.3 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.mp4
3.3 MB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.mp4
3.3 MB
Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.mp4
3.3 MB
Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.mp4
3.2 MB
Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.mp4
3.2 MB
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.mp4
3.2 MB
Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.mp4
3.2 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.mp4
3.2 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types Of Errors - Part I-aw6GMxIvENc.mp4
3.2 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.mp4
3.2 MB
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.mp4
3.2 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.mp4
3.2 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.mp4
3.2 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.mp4
3.2 MB
Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.mp4
3.2 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.mp4
3.2 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.mp4
3.2 MB
Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.mp4
3.2 MB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Instructor Introduction Charlie And Phillip-8ar0mETDrZw.mp4
3.2 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.mp4
3.2 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.mp4
3.1 MB
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.mp4
3.1 MB
Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.mp4
3.1 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.mp4
3.1 MB
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.mp4
3.1 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.mp4
3.1 MB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.mp4
3.1 MB
Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.mp4
3.1 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.mp4
3.1 MB
Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.mp4
3.1 MB
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.mp4
3.1 MB
Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.mp4
3.1 MB
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.mp4
3.1 MB
Part 04-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.mp4
3.1 MB
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.mp4
3.1 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.mp4
3.1 MB
Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.mp4
3.1 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.mp4
3.0 MB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.mp4
3.0 MB
Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.mp4
3.0 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.mp4
3.0 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.mp4
3.0 MB
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.mp4
3.0 MB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.mp4
3.0 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.mp4
3.0 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.mp4
3.0 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.mp4
3.0 MB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.mp4
3.0 MB
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.mp4
3.0 MB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.mp4
3.0 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.mp4
3.0 MB
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.mp4
3.0 MB
Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.mp4
3.0 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.mp4
3.0 MB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.mp4
3.0 MB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.mp4
3.0 MB
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.mp4
3.0 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.mp4
3.0 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.mp4
3.0 MB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.mp4
3.0 MB
Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.mp4
3.0 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.mp4
3.0 MB
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.mp4
2.9 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.mp4
2.9 MB
Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.mp4
2.9 MB
Part 04-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.mp4
2.9 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.mp4
2.9 MB
Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.mp4
2.9 MB
Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.mp4
2.9 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.mp4
2.9 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.mp4
2.9 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.mp4
2.9 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.mp4
2.9 MB
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.mp4
2.9 MB
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.mp4
2.9 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.mp4
2.9 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.mp4
2.9 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.mp4
2.9 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.mp4
2.9 MB
Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.mp4
2.9 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.mp4
2.9 MB
Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.mp4
2.9 MB
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.mp4
2.9 MB
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.mp4
2.9 MB
Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.mp4
2.9 MB
Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.mp4
2.9 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.mp4
2.9 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.mp4
2.9 MB
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.mp4
2.9 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.mp4
2.9 MB
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.mp4
2.9 MB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.mp4
2.9 MB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.mp4
2.9 MB
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.mp4
2.8 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.mp4
2.8 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.mp4
2.8 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.mp4
2.8 MB
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.mp4
2.8 MB
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.mp4
2.8 MB
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.mp4
2.8 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.mp4
2.8 MB
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.mp4
2.8 MB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.mp4
2.8 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.mp4
2.8 MB
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.mp4
2.8 MB
Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.mp4
2.8 MB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.mp4
2.8 MB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.mp4
2.8 MB
Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.mp4
2.8 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.mp4
2.8 MB
Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.mp4
2.8 MB
Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.mp4
2.8 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.mp4
2.8 MB
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.mp4
2.8 MB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.mp4
2.8 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.mp4
2.8 MB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.mp4
2.7 MB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.mp4
2.7 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.mp4
2.7 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.mp4
2.7 MB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.mp4
2.7 MB
Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.mp4
2.7 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.mp4
2.7 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.mp4
2.7 MB
Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.mp4
2.7 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.mp4
2.7 MB
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.mp4
2.7 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.mp4
2.7 MB
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.mp4
2.7 MB
Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.mp4
2.7 MB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.mp4
2.7 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.mp4
2.7 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.mp4
2.7 MB
Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.mp4
2.7 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.mp4
2.7 MB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.mp4
2.6 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.mp4
2.6 MB
Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.mp4
2.6 MB
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.mp4
2.6 MB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.mp4
2.6 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.mp4
2.6 MB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.mp4
2.6 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.mp4
2.6 MB
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.mp4
2.6 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.mp4
2.6 MB
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.mp4
2.6 MB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.mp4
2.6 MB
Part 04-Module 01-Lesson 12_Hypothesis Testing/13. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.mp4
2.6 MB
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.mp4
2.6 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.mp4
2.6 MB
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.mp4
2.6 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.mp4
2.6 MB
Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.mp4
2.6 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.mp4
2.6 MB
Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.mp4
2.6 MB
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.mp4
2.6 MB
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.mp4
2.6 MB
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.mp4
2.6 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.mp4
2.5 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.mp4
2.5 MB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.mp4
2.5 MB
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.mp4
2.5 MB
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.mp4
2.5 MB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.mp4
2.5 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.mp4
2.5 MB
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.mp4
2.5 MB
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.mp4
2.5 MB
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.mp4
2.5 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.mp4
2.5 MB
Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.mp4
2.5 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.mp4
2.5 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.mp4
2.5 MB
Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.mp4
2.5 MB
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.mp4
2.5 MB
Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.mp4
2.5 MB
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.mp4
2.5 MB
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.mp4
2.5 MB
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.mp4
2.5 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.mp4
2.5 MB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.mp4
2.5 MB
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.mp4
2.5 MB
Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.mp4
2.4 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.mp4
2.4 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.mp4
2.4 MB
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.mp4
2.4 MB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.mp4
2.4 MB
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.mp4
2.4 MB
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.mp4
2.4 MB
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.mp4
2.4 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.mp4
2.4 MB
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.mp4
2.4 MB
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.mp4
2.4 MB
Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.mp4
2.4 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.mp4
2.4 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.mp4
2.4 MB
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.mp4
2.4 MB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.mp4
2.4 MB
Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.mp4
2.4 MB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.mp4
2.4 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.mp4
2.4 MB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.mp4
2.4 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.mp4
2.4 MB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.mp4
2.3 MB
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.mp4
2.3 MB
Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.mp4
2.3 MB
Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.mp4
2.3 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.mp4
2.3 MB
Part 04-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.mp4
2.3 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.mp4
2.3 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.mp4
2.3 MB
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.mp4
2.3 MB
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.mp4
2.3 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.mp4
2.3 MB
Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.mp4
2.3 MB
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.mp4
2.3 MB
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.mp4
2.3 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.mp4
2.3 MB
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.mp4
2.3 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.mp4
2.3 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.mp4
2.3 MB
Part 04-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.mp4
2.3 MB
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.mp4
2.3 MB
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.mp4
2.3 MB
Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.mp4
2.2 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.mp4
2.2 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.mp4
2.2 MB
Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.mp4
2.2 MB
Part 04-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.mp4
2.2 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.mp4
2.2 MB
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.mp4
2.2 MB
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.mp4
2.2 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.mp4
2.2 MB
Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.mp4
2.2 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.mp4
2.2 MB
Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.mp4
2.2 MB
Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.mp4
2.2 MB
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.mp4
2.2 MB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.mp4
2.2 MB
Part 04-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.mp4
2.2 MB
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.mp4
2.2 MB
Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.mp4
2.2 MB
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.mp4
2.2 MB
Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.mp4
2.2 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.mp4
2.2 MB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.mp4
2.2 MB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.mp4
2.2 MB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.mp4
2.2 MB
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.mp4
2.2 MB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.mp4
2.2 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.mp4
2.2 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.mp4
2.2 MB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.mp4
2.2 MB
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.mp4
2.2 MB
Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.mp4
2.2 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.mp4
2.1 MB
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.mp4
2.1 MB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.mp4
2.1 MB
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.mp4
2.1 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.mp4
2.1 MB
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.mp4
2.1 MB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.mp4
2.1 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.mp4
2.1 MB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.mp4
2.1 MB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.mp4
2.1 MB
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.mp4
2.1 MB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.mp4
2.1 MB
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.mp4
2.1 MB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-add-to-staging-recap.gif
2.1 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.mp4
2.1 MB
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.mp4
2.1 MB
Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.mp4
2.1 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.mp4
2.1 MB
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.mp4
2.1 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.mp4
2.0 MB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.mp4
2.0 MB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.mp4
2.0 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.mp4
2.0 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.mp4
2.0 MB
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.mp4
2.0 MB
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.mp4
2.0 MB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.mp4
2.0 MB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.mp4
2.0 MB
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.mp4
2.0 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.mp4
2.0 MB
Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.mp4
2.0 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.mp4
2.0 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.mp4
2.0 MB
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.mp4
2.0 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.mp4
2.0 MB
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.mp4
2.0 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.mp4
2.0 MB
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.mp4
2.0 MB
Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.mp4
2.0 MB
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.mp4
2.0 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.mp4
1.9 MB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.mp4
1.9 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.mp4
1.9 MB
Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.mp4
1.9 MB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.mp4
1.9 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.mp4
1.9 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.mp4
1.9 MB
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.mp4
1.9 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.mp4
1.9 MB
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.mp4
1.9 MB
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.mp4
1.9 MB
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.mp4
1.9 MB
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.mp4
1.9 MB
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.mp4
1.9 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.mp4
1.9 MB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.mp4
1.9 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.mp4
1.9 MB
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.mp4
1.9 MB
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.mp4
1.9 MB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.mp4
1.9 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.mp4
1.9 MB
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.mp4
1.9 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/wave.gif
1.9 MB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/wave.gif
1.9 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.mp4
1.8 MB
Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.mp4
1.8 MB
Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.mp4
1.8 MB
Part 15-Module 02-Lesson 05_Trees/13. BST Complications-pcB0wV7myy4.mp4
1.8 MB
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.mp4
1.8 MB
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.mp4
1.8 MB
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.mp4
1.8 MB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.mp4
1.8 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.mp4
1.8 MB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.mp4
1.8 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.mp4
1.8 MB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.mp4
1.8 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.mp4
1.8 MB
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.mp4
1.8 MB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.mp4
1.8 MB
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.mp4
1.8 MB
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.mp4
1.8 MB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.mp4
1.8 MB
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.mp4
1.8 MB
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.mp4
1.8 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.mp4
1.8 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.mp4
1.8 MB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.mp4
1.8 MB
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.mp4
1.8 MB
Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.mp4
1.7 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.mp4
1.7 MB
Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.mp4
1.7 MB
Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.mp4
1.7 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.mp4
1.7 MB
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.mp4
1.7 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.mp4
1.7 MB
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.mp4
1.7 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.mp4
1.7 MB
Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.mp4
1.7 MB
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.mp4
1.7 MB
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.mp4
1.7 MB
Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.mp4
1.7 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.mp4
1.7 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.mp4
1.7 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.mp4
1.7 MB
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4
1.7 MB
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.mp4
1.7 MB
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.mp4
1.7 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.mp4
1.7 MB
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.mp4
1.7 MB
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.mp4
1.7 MB
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.mp4
1.7 MB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.mp4
1.7 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.mp4
1.6 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.mp4
1.6 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.mp4
1.6 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.mp4
1.6 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.mp4
1.6 MB
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.mp4
1.6 MB
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.mp4
1.6 MB
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.mp4
1.6 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.mp4
1.6 MB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.mp4
1.6 MB
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.mp4
1.6 MB
Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.mp4
1.6 MB
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.mp4
1.6 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.mp4
1.6 MB
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.mp4
1.6 MB
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.mp4
1.6 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.mp4
1.6 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.mp4
1.6 MB
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.mp4
1.6 MB
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.mp4
1.6 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.mp4
1.6 MB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.mp4
1.5 MB
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.mp4
1.5 MB
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.mp4
1.5 MB
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.mp4
1.5 MB
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.mp4
1.5 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.mp4
1.5 MB
Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.mp4
1.5 MB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.mp4
1.5 MB
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.mp4
1.5 MB
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.mp4
1.5 MB
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.mp4
1.5 MB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.mp4
1.5 MB
Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.mp4
1.5 MB
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.mp4
1.5 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.mp4
1.5 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.mp4
1.5 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.mp4
1.5 MB
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.mp4
1.5 MB
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.mp4
1.5 MB
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.mp4
1.4 MB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.mp4
1.4 MB
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.mp4
1.4 MB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.mp4
1.4 MB
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.mp4
1.4 MB
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.mp4
1.4 MB
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.mp4
1.4 MB
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.mp4
1.4 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.mp4
1.4 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.mp4
1.4 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.mp4
1.4 MB
Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.mp4
1.4 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.mp4
1.4 MB
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.mp4
1.4 MB
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.mp4
1.4 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.mp4
1.4 MB
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.mp4
1.4 MB
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.mp4
1.4 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.mp4
1.4 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.mp4
1.4 MB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.mp4
1.3 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.mp4
1.3 MB
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.mp4
1.3 MB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.mp4
1.3 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.mp4
1.3 MB
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.mp4
1.3 MB
Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.mp4
1.3 MB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.mp4
1.3 MB
Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.mp4
1.3 MB
Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.mp4
1.3 MB
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.mp4
1.3 MB
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.mp4
1.3 MB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/dogtionary-combined.png
1.3 MB
Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.mp4
1.3 MB
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.mp4
1.3 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.mp4
1.3 MB
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.mp4
1.3 MB
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.mp4
1.3 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.mp4
1.3 MB
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.mp4
1.3 MB
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.mp4
1.3 MB
Part 12-Module 01-Lesson 01_GitHub Review/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 13-Module 01-Lesson 02_LinkedIn Review/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 14-Module 01-Lesson 01_Conduct a Job Search/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 15-Module 01-Lesson 05_Interview Practice/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 15-Module 02-Lesson 08_Technical Interview - Python/img/screen-shot-2017-10-31-at-1.06.42-pm.png
1.3 MB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.mp4
1.3 MB
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.mp4
1.2 MB
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.mp4
1.2 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.mp4
1.2 MB
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.mp4
1.2 MB
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.mp4
1.2 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.mp4
1.2 MB
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.mp4
1.2 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.mp4
1.2 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.mp4
1.2 MB
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.mp4
1.2 MB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.mp4
1.2 MB
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.mp4
1.2 MB
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.mp4
1.2 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.mp4
1.2 MB
Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.mp4
1.2 MB
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.mp4
1.2 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.mp4
1.2 MB
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.mp4
1.2 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.mp4
1.2 MB
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.mp4
1.2 MB
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.mp4
1.2 MB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.mp4
1.2 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.mp4
1.2 MB
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.mp4
1.2 MB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.mp4
1.2 MB
Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.mp4
1.1 MB
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.mp4
1.1 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.mp4
1.1 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.mp4
1.1 MB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.mp4
1.1 MB
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.mp4
1.1 MB
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.mp4
1.1 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.mp4
1.1 MB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.mp4
1.1 MB
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.mp4
1.1 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.mp4
1.1 MB
Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.mp4
1.1 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.mp4
1.1 MB
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.mp4
1.1 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.mp4
1.1 MB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.mp4
1.1 MB
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.mp4
1.1 MB
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron--dT9dztM-Lc.mp4
1.1 MB
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.mp4
1.1 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.mp4
1.1 MB
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.mp4
1.1 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.mp4
1.1 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2018-01-15-17.36.32.png
1.1 MB
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.mp4
1.1 MB
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.mp4
1.1 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.mp4
1.1 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.mp4
1.1 MB
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.mp4
1.1 MB
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.mp4
1.0 MB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.mp4
1.0 MB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48713571.gif
1.0 MB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.mp4
1.0 MB
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.mp4
1.0 MB
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.mp4
1.0 MB
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.mp4
1.0 MB
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.mp4
1.0 MB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/img/inner-outer.png
1.0 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/oblstsm-imgur.gif
1.0 MB
Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.mp4
1.0 MB
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.mp4
1.0 MB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.mp4
999.1 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.mp4
999.0 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.mp4
998.8 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-course-git-blog-project-in-browser.png
991.8 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/img/left-right.png
987.6 kB
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.mp4
983.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.mp4
977.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.48.20-pm.png
947.6 kB
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.mp4
942.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.mp4
940.9 kB
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.mp4
940.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.mp4
940.4 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.mp4
937.1 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.mp4
930.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.mp4
919.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.mp4
918.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.mp4
914.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.mp4
912.6 kB
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.mp4
907.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.mp4
907.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.17.08-pm.png
903.8 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Projects-1-E_ZYovKeI.mp4
888.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.mp4
884.7 kB
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.mp4
884.0 kB
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-Thj7e55iSlA.mp4
874.1 kB
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.mp4
862.9 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.mp4
856.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.mp4
852.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.18.27-pm.png
852.0 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.mp4
851.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.mp4
848.2 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.mp4
845.4 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.mp4
844.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.mp4
837.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.mp4
836.9 kB
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.mp4
824.8 kB
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.mp4
823.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.mp4
823.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.mp4
819.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3011778732.gif
817.5 kB
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.mp4
817.0 kB
Part 01-Module 02-Lesson 02_Explore Weather Trends/img/earth.png
814.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.mp4
811.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.mp4
811.8 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/screenshot-2017-10-10-18.43.41.png
807.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.mp4
806.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.mp4
806.7 kB
Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.mp4
800.8 kB
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.mp4
799.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.mp4
795.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.mp4
793.6 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.mp4
793.6 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.mp4
790.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.mp4
789.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.mp4
789.1 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3013458575.gif
784.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3017968763.gif
784.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.mp4
784.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.mp4
784.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/groups-used-in-map.png
777.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.mp4
775.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/get-hired-with-the-udacity-career-portal.gif
774.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.mp4
772.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.mp4
771.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.mp4
769.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.mp4
765.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.mp4
765.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.mp4
763.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.mp4
761.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3013038717.gif
759.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3029558686.gif
756.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3046518548.gif
754.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.mp4
754.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.mp4
752.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.mp4
752.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.mp4
752.5 kB
Part 07-Module 01-Lesson 02_R Basics/img/805108698.gif
750.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.mp4
744.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.mp4
737.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.mp4
737.8 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.mp4
736.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.mp4
732.4 kB
Part 12-Module 01-Lesson 01_GitHub Review/img/6509638772.gif
728.1 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.mp4
725.0 kB
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.mp4
719.4 kB
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.mp4
718.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3007818802.gif
713.5 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.mp4
710.3 kB
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.mp4
710.0 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3000408954.gif
699.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.mp4
698.7 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/dog-pred.png
696.3 kB
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.mp4
693.3 kB
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.mp4
692.3 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3003048586.gif
692.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.mp4
691.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.mp4
688.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.mp4
688.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.mp4
688.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/866348580.gif
687.4 kB
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.mp4
684.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3028758556.gif
679.4 kB
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.mp4
679.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.mp4
677.8 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.mp4
677.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-field-rows.png
675.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.mp4
666.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.mp4
663.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.mp4
659.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.mp4
657.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.mp4
655.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.mp4
655.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-aggregation.png
645.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.mp4
642.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.mp4
638.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.mp4
635.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-aggregation-products.png
634.8 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-9.43.05-am.png
632.9 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-1.33.46-pm.png
632.8 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.56.39-pm.png
625.1 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3018068594.gif
625.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.mp4
624.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3006519007.gif
618.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.mp4
617.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3050828611.gif
614.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.mp4
614.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2952958620.gif
610.5 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-merge-fast-forward.gif
609.7 kB
Part 03-Module 01-Lesson 01_Anaconda/media/conda_default_install.mp4
609.6 kB
Part 16-Module 01-Lesson 03_SVM/img/2949888602.gif
607.7 kB
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.mp4
591.8 kB
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.mp4
583.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.mp4
582.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.mp4
582.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3037078563.gif
579.3 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.mp4
572.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.mp4
571.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-jO81hfubpXY.mp4
571.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.mp4
570.8 kB
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.mp4
570.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2960808631.gif
569.4 kB
Part 16-Module 01-Lesson 03_SVM/img/2950698619.gif
568.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.mp4
568.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.mp4
566.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.mp4
559.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3011168678.gif
557.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2950898595.gif
557.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.mp4
546.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.mp4
541.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.mp4
540.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-interactive.png
538.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3021038710.gif
538.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3054288537.gif
538.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-after-sub-categories.png
537.7 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.mp4
535.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3060688537.gif
534.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.mp4
531.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.mp4
530.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2968568545.gif
530.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-before.png
529.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.mp4
528.9 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3021598681.gif
528.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.mp4
526.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.mp4
526.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2951968606.gif
525.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/3219238538.gif
524.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/set-colors.png
523.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.mp4
520.9 kB
Part 18-Module 01-Lesson 01_Why Python Programming/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.mp4
518.2 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-vs-git-log-oneline.png
516.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/size-bubble-plot.png
516.1 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/img/5.dap-quiz-img5.png
515.4 kB
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.mp4
514.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.mp4
514.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.mp4
514.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/sheet-ui.png
513.7 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.mp4
511.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3010158775.gif
509.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/set-profits.png
508.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/3204138549.gif
508.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3010518798.gif
508.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2964588671.gif
508.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3065108611.gif
508.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-11-29-at-3.39.26-pm.png
508.0 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-project-in-editor.png
501.8 kB
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.mp4
499.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2961658665.gif
499.4 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2018-04-29-at-10.10.52-am.png
498.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/3078258540.gif
498.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.mp4
496.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-after.png
495.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.mp4
495.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3005068624.gif
493.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-dk3FxGVdP7Q.mp4
493.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2983928561.gif
492.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.mp4
491.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.mp4
490.2 kB
index.html
486.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.mp4
484.7 kB
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.mp4
484.4 kB
img/data-analyst-large.jpg
482.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.mp4
481.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/shape-scatter.png
481.7 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/3214548558.gif
479.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-profit-per-item.png
478.8 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.mp4
478.6 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/3204388552.gif
474.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3061868535.gif
474.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.mp4
474.6 kB
Part 16-Module 01-Lesson 14_Validation/img/2952658806.gif
472.1 kB
assets/img/udacimak.png
472.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/3215618544.gif
471.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.mp4
471.6 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3030118734.gif
471.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3030118734.gif
471.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.mp4
470.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3022688664.gif
470.3 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.mp4
469.3 kB
Part 12-Module 01-Lesson 01_GitHub Review/img/6485174133.gif
469.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/groups-created.png
467.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/profit-vs-quantity-countries.png
465.1 kB
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.mp4
462.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.mp4
459.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/878318589.gif
458.8 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.mp4
458.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3026198572.gif
457.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/img/6499079068.gif
456.6 kB
Part 12-Module 01-Lesson 01_GitHub Review/img/6551597473.gif
455.0 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/screenshot-2017-10-10-18.19.36.png
454.0 kB
Part 16-Module 01-Lesson 03_SVM/img/3380638551.gif
453.0 kB
Part 16-Module 01-Lesson 13_PCA/img/2991788616.gif
449.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/2949998599.gif
448.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/color-map-discrete.png
444.2 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/dog-rates-social.jpg
443.3 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3055608552.gif
442.0 kB
Part 03-Module 01-Lesson 01_Anaconda/img/conda-search.png
441.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2979408584.gif
440.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/color-map-sequential.png
439.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/3005648570.gif
438.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2962768598.gif
438.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3026648562.gif
435.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.mp4
433.9 kB
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.mp4
433.7 kB
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.mp4
432.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3015658890.gif
429.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.mp4
429.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-dyShKWpTo-c.mp4
429.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3039578581.gif
426.6 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3039578581.gif
426.6 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3070118550.gif
420.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3057568562.gif
418.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3043028606.gif
418.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3043028606.gif
418.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2965848544.gif
416.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3028588558.gif
414.8 kB
Part 16-Module 01-Lesson 09_Clustering/img/3013998667.gif
414.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/868608913.gif
414.3 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-vs-git-log-stat.png
414.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3020598730.gif
412.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/2968998545.gif
407.6 kB
Part 16-Module 01-Lesson 14_Validation/img/2967458615.gif
405.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3079918535.gif
404.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/869219044.gif
403.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/2949388589.gif
402.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-field-.png
401.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2954798550.gif
401.1 kB
Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.mp4
400.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.mp4
400.3 kB
Part 16-Module 01-Lesson 07_Regressions/img/2972788560.gif
400.3 kB
Part 11-Module 01-Lesson 01_What is Version Control/img/ud123-l1-google-docs-saving-progress.gif
399.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-field-panel.png
399.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.mp4
397.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/2970568555.gif
397.4 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/create-a-story.png
393.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2961648618.gif
390.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.mp4
390.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/876198587.gif
389.4 kB
Part 11-Module 01-Lesson 01_What is Version Control/img/ud123-l1-git-course-outline.png
387.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3034108583.gif
387.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3021738574.gif
384.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3021738574.gif
384.0 kB
Part 16-Module 01-Lesson 13_PCA/img/3015748699.gif
381.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3006898966.gif
374.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3006898966.gif
374.7 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-details-section.png
373.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2989458548.gif
372.9 kB
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-kNxZwfXwvuk.mp4
371.4 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3068368544.gif
371.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/img/882868605.gif
369.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.mp4
366.1 kB
Part 09-Module 01-Lesson 02_Design/img/bad-viz-2.png
365.0 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-2.48.52-pm.png
364.8 kB
Part 16-Module 01-Lesson 13_PCA/img/3509488559.gif
364.6 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3016528680.gif
363.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3016528680.gif
363.9 kB
Part 16-Module 01-Lesson 13_PCA/img/2944258660.gif
363.4 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-add.gif
361.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3022688695.gif
359.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3022688695.gif
359.5 kB
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-th34aboBOO0.mp4
359.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2966188568.gif
358.1 kB
Part 16-Module 01-Lesson 13_PCA/img/2963418671.gif
356.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/tableau-initial-ui.png
354.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.mp4
353.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/864988793.gif
353.4 kB
Part 16-Module 01-Lesson 07_Regressions/img/2971108543.gif
352.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3022578615.gif
351.4 kB
Part 16-Module 01-Lesson 13_PCA/img/3075798615.gif
350.3 kB
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.mp4
349.8 kB
Part 16-Module 01-Lesson 03_SVM/img/3019898679.gif
349.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/2947418593.gif
349.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2949098585.gif
348.3 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.mp4
347.4 kB
Part 16-Module 01-Lesson 13_PCA/img/2970968572.gif
345.2 kB
Part 16-Module 01-Lesson 13_PCA/img/2985858609.gif
344.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/2967838699.gif
344.3 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-indicators.png
344.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3041298589.gif
343.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3041298589.gif
343.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3022138739.gif
342.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3022138739.gif
342.5 kB
Part 16-Module 01-Lesson 07_Regressions/img/2966938598.gif
341.3 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/img/kitty.png
340.5 kB
Part 02-Module 02-Lesson 01_Python Project/media/Markdown+cells.mp4
338.3 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/media/Markdown+cells.mp4
338.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/829028854.gif
337.3 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/2949288751.gif
336.9 kB
Part 16-Module 01-Lesson 13_PCA/img/3079068542.gif
335.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3031238602.gif
334.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3031238602.gif
334.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.mp4
334.9 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/img/7905614952.gif
333.3 kB
Part 16-Module 01-Lesson 07_Regressions/img/2955568614.gif
333.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-4.34.28-pm.png
332.7 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.mp4
330.8 kB
Part 16-Module 01-Lesson 09_Clustering/img/3044638608.gif
329.4 kB
Part 16-Module 01-Lesson 08_Outliers/img/3027808567.gif
329.2 kB
Part 09-Module 02-Lesson 01_Create a Tableau Story/img/madewithudacity-instagram.png
328.8 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-prep2.png
328.8 kB
Part 16-Module 01-Lesson 13_PCA/img/2966288580.gif
326.5 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-initial-commit.png
326.3 kB
Part 16-Module 01-Lesson 09_Clustering/img/3051818547.gif
324.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.mp4
324.7 kB
Part 16-Module 01-Lesson 07_Regressions/img/2948198572.gif
324.1 kB
Part 16-Module 01-Lesson 13_PCA/img/2946478670.gif
322.6 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-career-service-example.png
322.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-8.59.39-pm.png
322.0 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-editor.png
320.6 kB
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.mp4
320.1 kB
Part 16-Module 01-Lesson 07_Regressions/img/2951528674.gif
318.9 kB
Part 18-Module 01-Lesson 05_Scripting/img/generate-messages-output.png
318.0 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48665990.gif
316.7 kB
Part 16-Module 01-Lesson 13_PCA/img/2962878580.gif
316.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3007308918.gif
315.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3007308918.gif
315.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3017398561.gif
314.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3017398561.gif
314.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/814098656.gif
314.0 kB
Part 16-Module 01-Lesson 03_SVM/img/2953828563.gif
313.9 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/img/investigate.png
313.8 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-prep.png
311.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/2948108617.gif
309.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3004608562.gif
309.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3004608562.gif
309.1 kB
Part 16-Module 01-Lesson 11_Text Learning/img/2979378621.gif
306.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.mp4
305.6 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/img/7910014174.gif
304.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-9.00.30-pm.png
303.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/set-create.png
302.8 kB
Part 16-Module 01-Lesson 13_PCA/img/3005308759.gif
300.8 kB
Part 16-Module 01-Lesson 11_Text Learning/img/2971368663.gif
300.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/3015568660.gif
299.4 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/img/7881207114.gif
298.3 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48745039.gif
298.2 kB
Part 16-Module 01-Lesson 07_Regressions/img/2975168588.gif
296.1 kB
Part 16-Module 01-Lesson 14_Validation/img/2983948695.gif
295.8 kB
Part 16-Module 01-Lesson 11_Text Learning/img/2964618613.gif
295.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2967388588.gif
295.7 kB
Part 15-Module 02-Lesson 06_Graphs/img/7919804788.gif
295.6 kB
Part 15-Module 02-Lesson 06_Graphs/media/unnamed-69567-0.gif
295.6 kB
Part 16-Module 01-Lesson 13_PCA/img/3094188555.gif
294.2 kB
Part 16-Module 01-Lesson 03_SVM/img/2946788593.gif
293.7 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-output.png
293.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-3.21.13-pm.png
293.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2971928572.gif
292.7 kB
Part 16-Module 01-Lesson 07_Regressions/img/2961888679.gif
292.1 kB
Part 16-Module 01-Lesson 08_Outliers/img/3031408552.gif
291.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.mp4
291.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/814098645.gif
289.8 kB
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.mp4
289.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/2962508544.gif
288.1 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-editor-with-tag-message.png
287.6 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3075678542.gif
286.8 kB
Part 16-Module 01-Lesson 03_SVM/img/3010588684.gif
285.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/867518844.gif
285.4 kB
Part 16-Module 01-Lesson 14_Validation/img/2956889232.gif
284.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/2967348648.gif
283.7 kB
Part 16-Module 01-Lesson 13_PCA/img/2959748717.gif
282.8 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/img/3098298776.gif
280.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/2960588577.gif
279.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/866508792.gif
278.7 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/new-story-point.png
278.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/865278622.gif
277.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/2954438563.gif
276.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/3046488600.gif
276.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/img/867159460.gif
274.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/2975748546.gif
274.4 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48736116.gif
273.8 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a2.png
273.4 kB
Part 07-Module 01-Lesson 01_What is EDA/img/817709051.gif
272.4 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-p-lines-removed-annotated.png
272.3 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-decorate.png
271.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/img/screenshot-2017-10-10-11.43.11.png
271.6 kB
Part 16-Module 01-Lesson 03_SVM/img/3070498540.gif
271.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.mp4
271.1 kB
Part 16-Module 01-Lesson 07_Regressions/img/3187129350.gif
269.4 kB
Part 16-Module 01-Lesson 13_PCA/img/3090048570.gif
269.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/giphy.gif
269.3 kB
Part 16-Module 01-Lesson 13_PCA/img/3099598537.gif
269.1 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3007188710.gif
268.6 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3007188710.gif
268.6 kB
Part 16-Module 01-Lesson 13_PCA/img/3097488603.gif
268.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.mp4
267.5 kB
Part 16-Module 01-Lesson 07_Regressions/img/2977488698.gif
265.9 kB
Part 16-Module 01-Lesson 13_PCA/img/3073008570.gif
265.4 kB
Part 16-Module 01-Lesson 07_Regressions/img/2980468558.gif
264.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3023678781.gif
264.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3023678781.gif
264.5 kB
Part 16-Module 01-Lesson 03_SVM/img/3012778786.gif
264.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3016088789.gif
263.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3016088789.gif
263.8 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/2967238555.gif
263.1 kB
Part 16-Module 01-Lesson 03_SVM/img/3043168576.gif
262.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.mp4
261.7 kB
Part 16-Module 01-Lesson 13_PCA/img/3059748569.gif
261.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2978708547.gif
260.2 kB
Part 16-Module 01-Lesson 13_PCA/img/3095478574.gif
260.0 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/screen-shot-2017-09-13-at-3.17.47-pm.png
259.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/2951258711.gif
257.6 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3042228571.gif
255.7 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/3052628554.gif
255.1 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-graph-all.png
254.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3009678880.gif
254.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3009678880.gif
254.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/814098652.gif
253.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/connect-to-global-superstore.png
253.5 kB
Part 15-Module 02-Lesson 05_Trees/img/tree-traversal-practice.jpg
252.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/814098616.gif
252.2 kB
Part 07-Module 01-Lesson 02_R Basics/img/804129307.gif
251.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-select-regions.png
251.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-27-00.16.09.png
251.2 kB
Part 16-Module 01-Lesson 08_Outliers/img/3049918543.gif
250.3 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/868059009.gif
249.3 kB
Part 16-Module 01-Lesson 03_SVM/img/2975648542.gif
248.2 kB
Part 16-Module 01-Lesson 09_Clustering/img/3020868629.gif
247.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-4.35.54-pm.png
246.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/img/3050008540.gif
245.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3050008540.gif
245.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3035468616.gif
245.0 kB
Part 16-Module 01-Lesson 03_SVM/img/3062568546.gif
244.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/data-loaded.png
244.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2981638553.gif
243.2 kB
Part 16-Module 01-Lesson 07_Regressions/img/3006538680.gif
243.1 kB
Part 16-Module 01-Lesson 07_Regressions/img/3004708698.gif
242.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2953038697.gif
240.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/2981618588.gif
240.7 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3054638566.gif
239.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.mp4
238.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3005108633.gif
238.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.mp4
237.7 kB
assets/js/katex.min.js
236.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-4.31.30-pm.png
236.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/mat-david-images-bios.png
236.5 kB
Part 16-Module 01-Lesson 07_Regressions/img/3046538590.gif
235.5 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-11-16-at-3.54.06-pm.png
235.3 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/img/screen-shot-2017-11-16-at-3.54.06-pm.png
235.3 kB
Part 16-Module 01-Lesson 09_Clustering/img/2956218691.gif
235.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/3013728805.gif
234.1 kB
Part 16-Module 01-Lesson 13_PCA/img/3065198593.gif
233.4 kB
Part 16-Module 01-Lesson 08_Outliers/img/2943288781.gif
233.0 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/2971128561.gif
232.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3017908969.gif
232.7 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.45.19-pm.png
232.6 kB
Part 16-Module 01-Lesson 07_Regressions/img/2950318631.gif
231.6 kB
Part 16-Module 01-Lesson 08_Outliers/img/3000418740.gif
231.1 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/img/screen-shot-2017-09-08-at-4.51.27-am.png
230.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3011218770.gif
230.3 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a6.png
229.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/group-members.png
229.5 kB
Part 16-Module 01-Lesson 14_Validation/img/2984688679.gif
228.9 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-with-untracked.png
228.3 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-after-git-add.png
227.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/2944958630.gif
225.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-5.14.39-pm.png
225.6 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.mp4
225.6 kB
Part 16-Module 01-Lesson 07_Regressions/img/2958008562.gif
224.4 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/2988828554.gif
224.2 kB
Part 16-Module 01-Lesson 08_Outliers/img/2957208551.gif
224.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.mp4
223.5 kB
Part 16-Module 01-Lesson 09_Clustering/img/3048698569.gif
222.7 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/img/mat-image.jpg
222.6 kB
Part 07-Module 01-Lesson 01_What is EDA/img/mat-image.jpg
222.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/calculated-field-from-field-menu.png
222.2 kB
Part 16-Module 01-Lesson 03_SVM/img/3029798555.gif
221.2 kB
Part 02-Module 02-Lesson 01_Python Project/media/notebook+interface.mp4
220.6 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/media/notebook+interface.mp4
220.6 kB
Part 16-Module 01-Lesson 07_Regressions/img/2978828552.gif
220.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/set-edit.png
219.9 kB
Part 16-Module 01-Lesson 03_SVM/img/2955948581.gif
219.0 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/img/7889679710.gif
218.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/863268756.gif
218.7 kB
Part 16-Module 01-Lesson 13_PCA/img/3004818638.gif
216.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/2947678693.gif
216.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/864218870.gif
216.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3013508659.gif
216.3 kB
Part 16-Module 01-Lesson 07_Regressions/img/3083838538.gif
215.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/joins.png
214.7 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/img/3167718589.gif
214.1 kB
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.mp4
214.1 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-modified-files.png
213.5 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/img/bio.png
213.3 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-stat.gif
211.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.mp4
210.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3010808665.gif
210.8 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-.git-directory.png
210.7 kB
Part 16-Module 01-Lesson 14_Validation/img/3080558626.gif
210.5 kB
Part 16-Module 01-Lesson 08_Outliers/img/3051998535.gif
210.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/color-change.png
209.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-10-05-15.37.03.png
208.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-drag-region-cropped.png
208.3 kB
Part 16-Module 01-Lesson 09_Clustering/img/3081768538.gif
207.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/img/2956148584.gif
207.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3013408667.gif
206.8 kB
Part 03-Module 01-Lesson 01_Anaconda/media/conda_install.mp4
206.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/header-geo-numerical.png
206.5 kB
Part 16-Module 01-Lesson 03_SVM/img/3004928721.gif
204.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2945308595.gif
203.6 kB
Part 16-Module 01-Lesson 11_Text Learning/img/2992518635.gif
202.9 kB
Part 15-Module 02-Lesson 02_List-Based Collections/img/7890272657.gif
202.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/lines-with-color.png
201.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3028688725.gif
201.1 kB
Part 02-Module 01-Lesson 04_Files and Modules/img/ezgif-5-1b119f201c.gif
200.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/2946858588.gif
199.9 kB
Part 16-Module 01-Lesson 13_PCA/img/3083018581.gif
199.8 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict.png
198.4 kB
Part 16-Module 01-Lesson 03_SVM/img/2974078571.gif
198.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3006108749.gif
197.8 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-ignore-word-doc.png
197.4 kB
Part 16-Module 01-Lesson 09_Clustering/img/3050028596.gif
196.8 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-all-files.png
196.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.mp4
196.5 kB
Part 09-Module 01-Lesson 02_Design/img/pasted-image-0.png
196.4 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-gitignore.png
196.0 kB
Part 15-Module 02-Lesson 05_Trees/img/7900766165.gif
195.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/img/900908839.gif
194.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/union.png
194.4 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/img/5.dap-quiz-img6.png
194.1 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/img/7883232307.gif
194.0 kB
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.mp4
193.9 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a1.png
193.7 kB
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.mp4
193.4 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/media/unnamed-5101-0.gif
193.3 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/img/891530421.gif
192.8 kB
Part 16-Module 01-Lesson 13_PCA/img/2979238559.gif
191.5 kB
Part 16-Module 01-Lesson 13_PCA/img/3012228840.gif
191.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/758878614.gif
190.5 kB
Part 16-Module 01-Lesson 09_Clustering/img/3024388568.gif
189.4 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-finished.png
189.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-11-29-at-3.42.13-pm.png
188.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-17.23.26.png
188.5 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-checkout-b-footer-master.png
188.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/daily-sales.png
188.3 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/876128948.gif
188.2 kB
Part 16-Module 01-Lesson 09_Clustering/img/3056738546.gif
188.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3045948674.gif
187.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.mp4
187.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.mp4
186.3 kB
Part 16-Module 01-Lesson 08_Outliers/img/3187718577.gif
186.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/dual-axis-after.png
186.1 kB
Part 16-Module 01-Lesson 03_SVM/img/2983168537.gif
185.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/861279250.gif
185.1 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-tag-delete.png
184.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3046338540.gif
184.5 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/img/mat-headshot.png
184.3 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-diff.png
183.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3027018593.gif
183.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/883168607.gif
183.2 kB
Part 09-Module 02-Lesson 01_Create a Tableau Story/img/madewithudacity-facebook.png
182.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3043098587.gif
182.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/groups-create-menu.png
181.7 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-sidebar.png
181.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/805618659.gif
181.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/880998663.gif
180.9 kB
Part 16-Module 01-Lesson 08_Outliers/img/3004168584.gif
180.2 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-status-output.png
178.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3061308637.gif
178.0 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3002338759.gif
177.8 kB
Part 16-Module 01-Lesson 09_Clustering/img/3034378634.gif
177.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/hierarchy-categories-labeled.png
176.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3049908569.gif
175.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3028838708.gif
175.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-01-24-at-12.03.45-am.png
174.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/dual-axis-before.png
174.7 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/img/874499235.gif
174.6 kB
Part 16-Module 01-Lesson 14_Validation/img/3053458603.gif
174.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/834268560.gif
174.0 kB
Part 16-Module 01-Lesson 14_Validation/img/2980648814.gif
173.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3012238654.gif
173.3 kB
Part 02-Module 02-Lesson 01_Python Project/media/command+palette.mp4
173.2 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/media/command+palette.mp4
173.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/805459084.gif
173.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/capture1.png
172.6 kB
Part 16-Module 01-Lesson 03_SVM/img/3029308691.gif
172.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/880468669.gif
171.9 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status.png
171.6 kB
Part 16-Module 01-Lesson 07_Regressions/img/3020778551.gif
169.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3003368625.gif
169.2 kB
Part 16-Module 01-Lesson 09_Clustering/img/3004978616.gif
168.5 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-changes-add-color.png
168.1 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/screen-shot-2017-09-13-at-4.06.33-pm.png
167.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/811278704.gif
167.4 kB
Part 16-Module 01-Lesson 14_Validation/img/3043408576.gif
166.8 kB
Part 16-Module 01-Lesson 08_Outliers/img/2947738692.gif
165.9 kB
Part 16-Module 01-Lesson 03_SVM/img/3027138551.gif
165.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/new-sheets.png
165.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3002978730.gif
164.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-interactive-menu.png
163.8 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/img/867888969.gif
163.7 kB
Part 16-Module 01-Lesson 13_PCA/img/3059228570.gif
163.7 kB
Part 16-Module 01-Lesson 07_Regressions/img/3014338742.gif
163.2 kB
Part 16-Module 01-Lesson 08_Outliers/img/3036378560.gif
162.4 kB
Part 02-Module 02-Lesson 01_Python Project/img/magic-timeit.png
161.1 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/magic-timeit.png
161.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/3076888537.gif
160.3 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/server-shutdown.png
159.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-interactive-changed.png
159.1 kB
Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-prep.png
158.8 kB
Part 09-Module 01-Lesson 02_Design/img/challenger2.gif
158.3 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-checkout-sidebar.png
157.9 kB
Part 16-Module 01-Lesson 13_PCA/img/3062928590.gif
156.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/805609565.gif
156.5 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/new-dashboard-button.png
156.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/small-multiples-with-category.png
155.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-25-21.03.17.png
155.6 kB
Part 07-Module 01-Lesson 01_What is EDA/img/826879024.gif
155.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/809989248.gif
155.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-05-11-at-11.03.34-am.png
154.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-07-at-10.27.16-am.png
154.4 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/script-plot.png
153.1 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch-sidebar.png
153.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/hierarchy-continuous.png
152.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-07-at-10.27.02-am.png
152.6 kB
Part 16-Module 01-Lesson 09_Clustering/img/3019118758.gif
152.4 kB
Part 16-Module 01-Lesson 09_Clustering/img/3040398570.gif
152.3 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3004028719.gif
152.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3053448554.gif
152.1 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-clone.gif
150.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/dual-axis-dragged-cropped.png
150.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-from-view.png
149.5 kB
Part 16-Module 01-Lesson 03_SVM/img/2941178604.gif
149.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/828308621.gif
148.4 kB
Part 07-Module 01-Lesson 02_R Basics/img/811719066.gif
147.9 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch.png
147.6 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-branches.png
147.3 kB
Part 16-Module 01-Lesson 03_SVM/img/3039028733.gif
147.2 kB
Part 16-Module 01-Lesson 07_Regressions/img/3003308650.gif
146.8 kB
Part 16-Module 01-Lesson 07_Regressions/img/3052598541.gif
145.4 kB
Part 09-Module 02-Lesson 01_Create a Tableau Story/img/madewithudacity-twitter.png
144.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature.html
144.4 kB
Part 16-Module 01-Lesson 07_Regressions/img/2978908558.gif
143.7 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-body-good.png
143.4 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-tag.png
143.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/3026088745.gif
142.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/img/869958633.gif
141.7 kB
Part 16-Module 01-Lesson 03_SVM/img/2945548572.gif
141.3 kB
assets/css/bootstrap.min.css
140.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/show-me-selected.png
140.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/873369305.gif
140.4 kB
Part 16-Module 01-Lesson 03_SVM/img/2969508540.gif
139.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/hierarchy-month.png
139.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3010208669.gif
138.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3047738551.gif
138.2 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch-asterisk.png
138.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/show-me-bar-chart.png
137.2 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/img/l1-diagrams.002.jpeg
137.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/small-multiples-quarters.png
137.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-10-23.31.14.png
136.9 kB
Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-10-23.10.49.png
136.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.mp4
136.2 kB
Part 16-Module 01-Lesson 03_SVM/img/3010678612.gif
135.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-7.23.27-pm.png
135.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/863168719.gif
134.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/3019888682.gif
134.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/order-date-hierarchy.png
134.1 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a4.png
133.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3039308629.gif
133.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-24-13.44.50.png
133.7 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3014438788.gif
133.5 kB
Part 16-Module 01-Lesson 10_Feature Scaling/img/3007478963.gif
133.4 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/weekly-sales.png
132.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/colors-choose-palette.png
132.4 kB
Part 16-Module 01-Lesson 08_Outliers/img/2968538614.gif
132.3 kB
Part 16-Module 01-Lesson 08_Outliers/img/3038208564.gif
131.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3008128667.gif
131.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3010848726.gif
131.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3003988627.gif
129.8 kB
assets/js/plyr.polyfilled.min.js
129.2 kB
Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-mixed.png
128.9 kB
Part 16-Module 01-Lesson 03_SVM/img/2972018562.gif
128.7 kB
Part 16-Module 01-Lesson 08_Outliers/img/2949658626.gif
128.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3028928653.gif
128.0 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-pre-tag.png
127.7 kB
Part 16-Module 01-Lesson 09_Clustering/img/3058428551.gif
127.7 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/natgeo-scatter.jpg
126.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3023678711.gif
126.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/img/3005018665.gif
126.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/groups-create-hover.png
125.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3016218654.gif
125.4 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/script-columns-functions.png
125.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/img/3030708562.gif
124.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/sorted-markets-with-arrow.png
124.5 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/screenshot-2017-10-28-00.29.25.png
123.6 kB
Part 16-Module 01-Lesson 07_Regressions/img/2963708620.gif
123.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/view-data-with-arrow.png
123.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/img/3006318739.gif
123.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.49.10-am.png
123.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/814098604.gif
122.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/market-granularity.png
121.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/rename-columns.png
120.7 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/7day-moving-average.png
119.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/split-string-column.png
119.3 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-10-at-8.23.48-pm.png
117.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/market-number-of-records.png
117.5 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-base-directory-git-repo.png
116.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/screen-shot-2017-09-12-at-1.45.29-pm.png
114.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/market-to-columns-arrow.png
114.5 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-terminal-hangs.png
113.7 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-new-git-project.png
113.1 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-p.png
112.7 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/conda-tab.png
112.6 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/866638906.gif
112.3 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/script-columns-simple.png
111.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.40.37-am.png
110.8 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-new-git-project.png
109.1 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/763288677.gif
108.0 kB
Part 09-Module 01-Lesson 02_Design/img/apple.jpg
107.9 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-4.10.54-pm.png
107.8 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-4.04.44-pm.png
106.0 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-server.png
105.8 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/758558730.gif
105.4 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/761138624.gif
105.1 kB
Part 02-Module 02-Lesson 01_Python Project/img/new-notebook.png
104.2 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/new-notebook.png
104.2 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/story-interface.png
104.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-4.28.43-pm.png
104.0 kB
Part 07-Module 01-Lesson 01_What is EDA/img/862788887.gif
103.1 kB
Part 07-Module 01-Lesson 02_R Basics/img/830829287.gif
102.9 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/697369978.gif
102.3 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/762298675.gif
101.7 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3057419003.gif
100.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/screen-shot-2018-08-15-at-9.45.12-am.png
99.7 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-08-15-at-9.45.12-am.png
99.7 kB
Part 03-Module 01-Lesson 01_Anaconda/media/conda_enter.mp4
99.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48271967.gif
98.4 kB
Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-soft.png
98.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-10.24.41.png
98.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-4.39.42-pm.png
97.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-10.21.06.png
97.7 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-json.png
97.6 kB
Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-hard.png
97.4 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-10-03-at-2.27.15-pm.png
97.4 kB
Part 13-Module 01-Lesson 02_LinkedIn Review/media/unnamed-project-desc-0.gif
96.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/filter-show.png
96.4 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-23-at-3.39.03-pm.png
96.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/img/screenshot-2017-10-10-02.10.18.png
96.0 kB
Part 11-Module 01-Lesson 01_What is Version Control/img/ud123-l1-terminal-config-windows.png
95.5 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/img/48728202.gif
94.4 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48684686.gif
93.8 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/img/48698526.gif
93.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-10.23.17.png
93.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48734324.gif
93.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/screenshot-2017-09-26-10.20.14.png
93.0 kB
Part 02-Module 02-Lesson 01_Python Project/img/magic-matplotlib.png
92.9 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/magic-matplotlib.png
92.9 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/img/48721292.gif
92.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/img/screenshot-2017-10-10-12.19.20.png
92.2 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/img/48698525.gif
91.3 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-3.41.58-pm.png
90.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/month-pill-menu-labeled.png
90.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48240997.gif
90.7 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/img/dashboard-interface.png
90.1 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/162524.gif
90.1 kB
Part 07-Module 01-Lesson 02_R Basics/img/875339076.gif
90.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48310768.gif
89.8 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/resid2.jpg
89.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48743074.gif
89.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48271966.gif
88.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48480561.gif
88.0 kB
assets/js/jquery-3.3.1.min.js
86.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48716290.gif
86.8 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/inner-join.png
86.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48726280.gif
86.7 kB
Part 04-Module 01-Lesson 04_Probability/img/48667978.gif
86.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-4.57.01-pm.png
86.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48739228.gif
86.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48646780.gif
85.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48445276.gif
85.2 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/746818713.gif
85.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48641639.gif
85.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48311832.gif
84.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48198839.gif
84.8 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-base-directory.png
84.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/img/5.dap-quiz-img2.png
84.6 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/img/48688787.gif
84.4 kB
Part 04-Module 01-Lesson 04_Probability/img/48752009.gif
84.4 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48741083.gif
84.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48750011.gif
84.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48198838.gif
84.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48011955.gif
83.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/dual-axis-menu.png
83.8 kB
Part 03-Module 01-Lesson 01_Anaconda/img/conda-install.png
83.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-1.12.55-pm.png
83.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48704300.gif
82.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/screen-shot-2017-08-02-at-10.48.24-pm.png
82.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/img/screen-shot-2017-08-02-at-10.48.24-pm.png
82.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48240998.gif
82.5 kB
Part 16-Module 01-Lesson 07_Regressions/img/3072338540.gif
82.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/img/screen-shot-2017-10-19-at-5.33.45-pm.png
82.3 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/erd.png
82.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48311831.gif
82.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48658976.gif
82.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48632848.gif
81.7 kB
Part 02-Module 02-Lesson 01_Python Project/img/notebook-download.png
81.5 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-download.png
81.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/screen-shot-2017-08-02-at-11.14.25-am.png
81.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/img/screen-shot-2017-08-02-at-11.14.25-am.png
81.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/img/5.dap-quiz-img1.png
81.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48230510.gif
81.1 kB
Part 04-Module 01-Lesson 04_Probability/img/48750031.gif
80.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.16.14-pm.png
80.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/807038697.gif
80.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/img/861308906.gif
80.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/img/862108772.gif
80.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/img/48678737.gif
79.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/refresh-data-reset-workspace.png
79.6 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/img/l1-diagrams.001.jpeg
79.5 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-3.47.37-pm.png
79.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48737119.gif
79.0 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-10-03-at-2.28.24-pm.png
78.8 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/697369974.gif
78.1 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-init.gif
77.7 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48686674.gif
77.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/create-hierarchy.png
77.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/aggregation-menu.png
77.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/img/814098612.gif
76.7 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48241000.gif
76.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/post-splitting.png
76.3 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/img/48692636.gif
76.0 kB
Part 11-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-post.png
75.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48709280.gif
75.7 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48721315.gif
75.5 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48678758.gif
75.3 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/nbconvert-example.png
75.1 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/img/for-loop.png
74.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48652467.gif
74.5 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48746014.gif
74.4 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/697369980.gif
73.8 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48687733.gif
73.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48296523.gif
73.5 kB
Part 16-Module 01-Lesson 07_Regressions/img/3060998543.gif
73.4 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/763818667.gif
73.3 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48632799.gif
73.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48697566.gif
73.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/img/888998550.gif
72.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48629196.gif
72.6 kB
Part 03-Module 01-Lesson 01_Anaconda/img/conda-create-env.png
72.5 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-status-blog-project.gif
72.5 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/753408539.gif
72.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48609553.gif
72.4 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48683704.gif
72.4 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48692663.gif
72.3 kB
Part 04-Module 01-Lesson 04_Probability/img/48667979.gif
72.1 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-2.11.18-pm.png
71.9 kB
assets/css/fonts/KaTeX_AMS-Regular.ttf
71.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48480558.gif
71.0 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/img/trees.png
70.8 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48725208.gif
70.5 kB
Part 07-Module 01-Lesson 02_R Basics/img/870048987.gif
70.3 kB
Part 02-Module 02-Lesson 01_Python Project/img/magic-pdb.png
70.3 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/magic-pdb.png
70.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/show-me-panel-with-arrow.png
70.2 kB
assets/css/fonts/KaTeX_Main-Regular.ttf
70.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48734186.gif
70.0 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/img/48680638.gif
70.0 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-10-at-8.10.13-pm.png
69.8 kB
Part 16-Module 01-Lesson 07_Regressions/img/3063118541.gif
69.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/animals-clean.png
68.9 kB
Part 16-Module 01-Lesson 07_Regressions/img/3063168544.gif
68.8 kB
Part 16-Module 01-Lesson 07_Regressions/img/3068058539.gif
68.1 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/right-join.png
68.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/animals-clean-merge.png
68.0 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/left-join.png
67.9 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/img/758148685.gif
67.6 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-intro-good.png
67.5 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-status-new-project.gif
66.9 kB
Part 03-Module 01-Lesson 01_Anaconda/img/conda-env-export.png
65.6 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48739104.gif
65.4 kB
Part 07-Module 01-Lesson 02_R Basics/img/813929011.gif
65.0 kB
Part 04-Module 01-Lesson 04_Probability/img/48695597.gif
64.8 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/screenshot-2017-10-28-00.14.26.png
64.7 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48716247.gif
64.3 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a7.png
64.1 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a5.png
64.1 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-shutdown.png
63.8 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-good-conclusion.png
63.8 kB
Part 07-Module 01-Lesson 01_What is EDA/img/824578551.gif
63.6 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/full-outer-join-if-null.png
63.5 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/735769436.gif
62.8 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/slides-cell-toolbar-menu.png
62.8 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/img/746818715.gif
62.6 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/img/full-outer-join.png
62.6 kB
Part 04-Module 01-Lesson 04_Probability/img/48698583.gif
62.6 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48738100.gif
62.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48632846.gif
62.1 kB
Part 09-Module 01-Lesson 02_Design/img/screen-shot-2017-09-03-at-3.13.54-pm.png
61.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48230509.gif
61.8 kB
assets/css/fonts/KaTeX_Main-Bold.ttf
61.7 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48692666.gif
61.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48716288.gif
60.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/img/48292975.gif
60.2 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48750006.gif
60.0 kB
Part 04-Module 01-Lesson 04_Probability/img/48693692.gif
59.9 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-11-at-3.21.34-pm.png
59.9 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48204962.gif
59.7 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48635652.gif
59.5 kB
Part 04-Module 01-Lesson 04_Probability/img/48688828.gif
59.4 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48746015.gif
59.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/img/3056138568.gif
58.9 kB
Part 04-Module 01-Lesson 04_Probability/img/48687795.gif
58.7 kB
Part 04-Module 01-Lesson 04_Probability/img/48684742.gif
58.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/data-type-menu.png
58.1 kB
Part 04-Module 01-Lesson 04_Probability/img/48742066.gif
57.7 kB
Part 02-Module 02-Lesson 01_Python Project/img/magic-timeit2.png
57.5 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/magic-timeit2.png
57.5 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/img/ipython-a3.png
57.4 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/img/48741058.gif
57.4 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/python-in-terminal.png
57.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/ma-in-sheets2.png
57.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/field-menu.png
56.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/img/48720246.gif
56.6 kB
Part 04-Module 01-Lesson 04_Probability/img/48699581.gif
56.5 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-branch-current.png
55.8 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/img/48729170.gif
55.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-26-00.58.09.png
55.7 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/slides-choose-slide-type.png
54.6 kB
Part 04-Module 01-Lesson 04_Probability/img/48698595.gif
54.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/screen-shot-2017-08-04-at-6.41.07-pm.png
53.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/img/screen-shot-2017-08-04-at-6.41.07-pm.png
53.9 kB
Part 04-Module 01-Lesson 04_Probability/img/48667981.gif
53.8 kB
Part 04-Module 01-Lesson 04_Probability/img/48741099.gif
53.6 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/img/input-times-weights.png
53.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/img/ma-in-sheets.png
52.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/header-bar.png
51.8 kB
assets/js/bootstrap.min.js
51.0 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/screen-shot-2018-06-13-at-6.32.38-pm.png
49.7 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/screen-shot-2017-12-14-at-3.11.32-pm.png
49.1 kB
Part 09-Module 01-Lesson 02_Design/img/screen-shot-2017-09-03-at-2.28.22-pm.png
48.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/img/48632800.gif
48.8 kB
Part 04-Module 01-Lesson 04_Probability/img/48738115.gif
48.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-01-at-12.10.40-am.png
48.7 kB
assets/css/fonts/KaTeX_Main-Italic.ttf
48.0 kB
Part 03-Module 03-Lesson 02_SQL Joins/img/screen-shot-2017-08-11-at-11.54.30-am.png
47.8 kB
assets/js/jquery.mCustomScrollbar.concat.min.js
45.5 kB
assets/css/fonts/KaTeX_Main-BoldItalic.ttf
44.8 kB
Part 18-Module 01-Lesson 05_Scripting/img/step6-testrun.png
44.5 kB
Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/img/stroop-test-2.jpg
44.1 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-intro-bad.png
43.3 kB
assets/css/jquery.mCustomScrollbar.min.css
42.8 kB
Part 11-Module 01-Lesson 01_What is Version Control/img/ud123-l1-terminal-config-mac.png
42.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-24-12.53.56.png
42.1 kB
assets/css/fonts/KaTeX_Math-Italic.ttf
41.4 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/conda-environments.png
41.1 kB
assets/css/fonts/KaTeX_AMS-Regular.woff
40.2 kB
assets/css/fonts/KaTeX_Math-BoldItalic.ttf
39.7 kB
assets/css/fonts/KaTeX_Main-Regular.woff
39.4 kB
Part 04-Module 01-Lesson 14_Regression/img/1200px-linear-regression.svg.png
39.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/anaconda.png
38.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/udacitylogo-copy.png
38.6 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/udacitylogo-copy.png
38.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/market-and-colors.png
38.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/jupyter.png
37.7 kB
assets/css/fonts/KaTeX_Main-Bold.woff
36.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/google-sheets-logo.png
36.7 kB
assets/css/fonts/KaTeX_Typewriter-Regular.ttf
36.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/img/histogram-nonnormal.png
36.2 kB
assets/css/fonts/KaTeX_Fraktur-Bold.ttf
36.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-18-17.25.08.png
35.9 kB
Part 02-Module 01-Lesson 04_Files and Modules/img/intropy-l4-reading-from-a-file.png
35.8 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/screen-shot-2017-09-04-at-2.07.44-pm.png
34.9 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropy-looking-for-python3-big.png
34.7 kB
assets/css/fonts/KaTeX_Fraktur-Regular.ttf
34.7 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropt-l2-looking-for-python-big.png
34.4 kB
assets/css/fonts/KaTeX_SansSerif-Bold.ttf
34.0 kB
Part 16-Module 01-Lesson 13_PCA/media/unnamed-134180-instructor-note-0.gif
33.6 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/14. Dictionaries III.html
33.3 kB
assets/css/fonts/KaTeX_AMS-Regular.woff2
33.2 kB
Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-18-17.24.42.png
33.0 kB
assets/css/fonts/KaTeX_Main-Regular.woff2
32.9 kB
Part 09-Module 01-Lesson 02_Design/img/screen-shot-2017-09-03-at-6.34.02-pm.png
32.6 kB
Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-18-17.25.26.png
31.7 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/img/screen-shot-2017-01-09-at-1.08.23-pm.png
31.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/screen-shot-2018-07-27-at-1.24.38-pm.png
31.6 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-07-27-at-1.24.38-pm.png
31.6 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropy-l1-elements-of-function-definition2.png
31.5 kB
Part 09-Module 01-Lesson 02_Design/img/screen-shot-2017-09-03-at-6.12.14-pm.png
31.4 kB
assets/css/fonts/KaTeX_SansSerif-Italic.ttf
31.3 kB
Part 08-Module 04-Lesson 01_Cleaning Data/img/screenshot-2017-10-18-17.25.53.png
31.2 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3006298726.gif
31.0 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/img/notebook-components.png
31.0 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/02. Lists.html
30.6 kB
assets/css/fonts/KaTeX_Main-Bold.woff2
30.6 kB
assets/css/fonts/KaTeX_SansSerif-Regular.ttf
30.2 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/media/unnamed-135397-0.gif
29.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/img/capture6.png
29.3 kB
Part 02-Module 01-Lesson 04_Files and Modules/07. The Standard Library.html
29.1 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/img/join.png
28.8 kB
Part 04-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-2.22.27-pm.png
28.8 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-2.22.27-pm.png
28.8 kB
Part 15-Module 01-Lesson 05_Interview Practice/img/5237420495.gif
28.5 kB
Part 15-Module 01-Lesson 05_Interview Practice/img/5245820061.gif
28.5 kB
Part 15-Module 01-Lesson 05_Interview Practice/img/5246710001.gif
28.5 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Branching Effectively.html
28.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/cl.png
27.7 kB
assets/css/fonts/KaTeX_Main-Italic.woff
27.2 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/img/slicing.png
27.1 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/08. Quiz Building Dashboards Stories with Trina.html
26.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/file-logo.png
26.6 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff
26.2 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/05. Investigate A Dataset Project Walkthrough Final-OtDZCYxbHB4.en.vtt
25.7 kB
assets/css/fonts/KaTeX_Script-Regular.ttf
24.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/27. Quiz Marks Filters II.html
24.2 kB
assets/css/plyr.css
24.2 kB
Part 16-Module 01-Lesson 11_Text Learning/img/3028378607.gif
24.1 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/quadraticlinearregression.png
24.1 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/05. Investigate A Dataset Project Walkthrough Final-OtDZCYxbHB4.pt-BR.vtt
23.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/42. Quiz Calculated Fields.html
23.8 kB
assets/css/fonts/KaTeX_Math-Italic.woff
23.8 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/05. Assessing Data.html
23.5 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff
23.4 kB
Part 11-Module 01-Lesson 06_Undoing Changes/04. Resetting Commits.html
23.3 kB
Part 02-Module 01-Lesson 04_Files and Modules/05. Reading from a File.html
23.3 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff
23.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/img/screenshot-2017-09-25-21.03.34.png
23.1 kB
assets/css/fonts/KaTeX_Main-Italic.woff2
23.1 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff
22.8 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lead-diff.png
22.7 kB
Part 15-Module 01-Lesson 05_Interview Practice/img/5259239571.gif
22.3 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff2
22.2 kB
assets/css/katex.min.css
22.1 kB
Part 09-Module 01-Lesson 02_Design/img/challenger-good.png
21.8 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Video Comparing a Row to Previous Row.html
21.7 kB
Part 04-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-1.47.06-pm.png
21.7 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-1.47.06-pm.png
21.7 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/03. Git Commit.html
21.6 kB
Part 18-Module 01-Lesson 05_Scripting/img/step3-path.png
21.3 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Laying the Groundwork.html
21.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/15. Quiz Worksheets.html
21.0 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/04. Quiz Hierarchies with Trina.html
21.0 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff
20.9 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/02. Git Add.html
20.9 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.ar.vtt
20.7 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff2
20.5 kB
assets/css/fonts/KaTeX_Math-Italic.woff2
20.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/27. Notebook + Quiz Other Things to Consider.html
20.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/22. Quiz Hierarchies.html
20.2 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/06. Merge Conflicts.html
20.2 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropy-l2-if-example.png
20.1 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff2
20.0 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff2
19.9 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/15. Assessing and Building Intuition Quiz.html
19.7 kB
Part 13-Module 01-Lesson 02_LinkedIn Review/media/unnamed-project-desc-1.gif
19.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.ttf
19.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data.html
19.4 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Put a Python In Your Computer.html
19.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.ar.vtt
19.3 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Branching.html
19.3 kB
Part 15-Module 02-Lesson 06_Graphs/12. Graph Traversal Practice.html
19.2 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/04. For Loops.html
19.2 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff
19.2 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.ttf
19.0 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/10. Quiz Extra Practice with Dashboards.html
18.8 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/15. Notebook + Quiz Simulating from the Null.html
18.7 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/02. Displaying A Repository's Commits.html
18.7 kB
Part 04-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-1.04.03-pm.png
18.6 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/img/screen-shot-2017-08-28-at-1.04.03-pm.png
18.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/08. Quiz Connecting to Data.html
18.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/04. Notebook + Quiz Fitting A MLR Model.html
18.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/34. Quiz Small Multiples.html
18.4 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Tagging.html
18.3 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/12. Notebook + Quiz Dummy Variables.html
18.3 kB
Part 18-Module 01-Lesson 05_Scripting/img/step4-alias.png
18.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/06. Data Analysis Process Quiz.html
18.2 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff
18.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/09. Quiz Types of Errors - Part II.html
18.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/30. Quiz + Text Recap.html
17.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/31. Learning Objectives - Conditional Probability.html
17.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/41. Text Calculated Fields.html
17.7 kB
Part 03-Module 03-Lesson 02_SQL Joins/16. LEFT and RIGHT JOIN.html
17.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/25. Quiz Marks Filters I.html
17.6 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff2
17.5 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Solution Subquery Mania.html
17.5 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/05. Variables I.html
17.5 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/13. Case Study in Python.html
17.4 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/25. Notebook + Quiz Interpreting Model Coefficients.html
17.4 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lag-diff.png
17.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/28. Notebook + Quiz Other Things to Consider.html
17.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/07. Text Connecting to Data Recap.html
17.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.ar.vtt
17.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/29. Quiz Descriptive vs. Inferential (Bagels).html
17.2 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Merging.html
17.1 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/02. Arithmetic.html
17.1 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/07. Quiz Interpreting Coefficients in MLR.html
17.1 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/06. While Loops.html
16.9 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/04. Quiz Descriptive vs. Inferential (Bagels).html
16.9 kB
Part 18-Module 01-Lesson 05_Scripting/18. Quiz Reading and Writing Files.html
16.8 kB
Part 18-Module 01-Lesson 03_Control Flow/08. Quiz Boolean Expressions for Conditions.html
16.8 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff
16.8 kB
Part 18-Module 01-Lesson 05_Scripting/img/step2-pwd.png
16.8 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/05. Viewing File Changes.html
16.6 kB
Part 18-Module 01-Lesson 05_Scripting/22. Quiz The Standard Library.html
16.6 kB
Part 18-Module 01-Lesson 03_Control Flow/02. Conditional Statements.html
16.6 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/11. Quiz Aggregates in Window Functions.html
16.5 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Reorganizing Code.html
16.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/36. Learning Objectives - Bayes' Rule.html
16.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/30. Quiz Show Me.html
16.4 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/03. Clone An Existing Repo.html
16.4 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/09. Code with Branches III.html
16.3 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.ar.vtt
16.3 kB
Part 18-Module 01-Lesson 03_Control Flow/13. Quiz For Loops.html
16.3 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.ar.vtt
16.2 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/img/iris-box-plot.png
16.2 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/04. Notebook + Quiz Building Confidence Intervals.html
16.1 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/04. Determine A Repo's Status.html
16.1 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/img/screen-shot-2017-11-06-at-1.14.05-pm.png
16.0 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff2
16.0 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/06. Notebook + Quiz Difference in Means.html
16.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/32. Quiz Dictionaries and Identity Operators.html
16.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/37. Text Groups Sets.html
15.9 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/07. Code with Branches I.html
15.9 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/08. Code with Branches II.html
15.8 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/16. Compound Data Structures.html
15.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/17. Quiz Type and Type Conversion.html
15.7 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/05. Assessing Data.html
15.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lead-3.png
15.7 kB
Part 04-Module 01-Lesson 14_Regression/07. Quizzes On Scatter Plots.html
15.6 kB
Part 18-Module 01-Lesson 05_Scripting/img/step5-source.png
15.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/14. Quiz Strings.html
15.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/22. Lists and Membership Operators.html
15.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/23. Quiz Shape and Outliers (Comparing Distributions).html
15.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/18. Mashup APIs, Downloading Files Programmatically, JSON.html
15.5 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/06. Quiz Experiment I.html
15.5 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/10. Types and Type Conversion.html
15.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.ja.vtt
15.4 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/25. Quiz Shape and Outliers (Final Quiz).html
15.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/06. Quiz Data Types (Quantitative vs. Categorical).html
15.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/11. Quiz Combining Data.html
15.3 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Boolean Expressions for Conditions.html
15.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/08. Notebook + Quiz Interpret Results.html
15.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.en.vtt
15.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/26. Text Marks Filters II.html
15.2 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff2
15.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/19. Quiz Aggregations.html
15.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.pt-BR.vtt
15.2 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lag.png
15.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Relational Database Structure.html
15.1 kB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/Project Rubric - Explore and Summarize Data.html
15.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure.html
15.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/36. Quiz Compound Data Structures.html
15.1 kB
Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-qRv1wrtgsmM.en.vtt
15.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/10. Quizzes On Scatter Plots.html
15.1 kB
Part 02-Module 01-Lesson 04_Files and Modules/10. Using Online Resources.html
15.0 kB
Part 18-Module 01-Lesson 05_Scripting/img/step1-cd.png
15.0 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/18. Measures of Center (Mode).html
15.0 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/27. Quiz + Text Recap Next Steps.html
15.0 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/09. Notebook + Quiz Sampling Distributions Python.html
15.0 kB
Part 09-Module 01-Lesson 02_Design/20. Quizzes on Data Story Telling.html
14.9 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/02. Create A Repo From Scratch.html
14.9 kB
Part 18-Module 01-Lesson 04_Functions/02. Defining Functions.html
14.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/screen-shot-2018-08-15-at-9.46.40-am.png
14.8 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/img/screen-shot-2018-08-15-at-9.46.40-am.png
14.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/45. Quiz Table Calculations.html
14.8 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/10. Text + Quiz Data Types (Ordinal vs. Nominal).html
14.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Quiz Clean (Test).html
14.8 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/17. Quiz Difficulties in AB Testing.html
14.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/39. Summary.html
14.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/22. Quiz Connecting Errors and P-Values.html
14.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/24. Drawing Conclusions Quiz.html
14.7 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Video + Quiz Write Your First Subquery.html
14.6 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/11. String Methods I.html
14.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables and Assignment Operators.html
14.6 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/11. Quiz Types of Errors - Part III.html
14.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces).html
14.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/24. Quiz Shape and Outliers (Visuals).html
14.5 kB
Part 18-Module 01-Lesson 05_Scripting/04. [For Windows] Configuring Git Bash to Run Python.html
14.5 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/08. Strings I.html
14.5 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/14. Quiz Applied Standard Deviation and Variance.html
14.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/05. Notebook + Quiz Fitting Logistic Regression in Python.html
14.5 kB
Part 04-Module 01-Lesson 14_Regression/11. Quiz What Defines A Line - Notation Quiz.html
14.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/46. Text Recap.html
14.4 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/16. [Optional] Text Linear Model Assumptions.html
14.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/24. Text Marks Filters I.html
14.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/21. Text Hierarchies.html
14.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/23. Quiz Lists and Membership Operators.html
14.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1.html
14.3 kB
Part 18-Module 01-Lesson 03_Control Flow/10. For Loops.html
14.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/06. Video Why SQL.html
14.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess (Intro).html
14.3 kB
Part 18-Module 01-Lesson 03_Control Flow/29. Quiz Zip and Enumerate.html
14.2 kB
Part 08-Module 03-Lesson 01_Assessing Data/05. Unclean Data Dirty vs. Messy 2.html
14.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Quiz Gather (Unzip File).html
14.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Video Why SQL.html
14.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/26. Quiz List Methods.html
14.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/23. Notebook + Quiz Drawing Conclusions.html
14.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/48. Moving Averages.html
14.1 kB
Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.en.vtt
14.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/14. Text Worksheets.html
14.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/06. Quiz Variables and Assignment Operators.html
14.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet.html
14.0 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff2
14.0 kB
Part 18-Module 01-Lesson 05_Scripting/28. Online Resources.html
14.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz.html
14.0 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Git and Version Control Terminology.html
14.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/30. Notebook + Quiz Model Diagnostics.html
14.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Quiz Assess (Programmatic).html
14.0 kB
Part 18-Module 01-Lesson 03_Control Flow/18. Quiz Iterating Through Dictionaries.html
13.9 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/28. Quiz Notation for the Mean.html
13.9 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/03. Motivation for Data Visualization.html
13.9 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.en-US.vtt
13.9 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.en.vtt
13.9 kB
assets/css/fonts/KaTeX_Script-Regular.woff
13.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/04. Text Outline of Topics Covered.html
13.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/12. Text + Quiz Your First Query.html
13.8 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/03. Defining Functions II.html
13.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/08. Packages Overview Quiz.html
13.7 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.pt-BR.vtt
13.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure.html
13.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/18. Quiz What is a p-value Anyway.html
13.7 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/19. Notebook + Quiz Multicollinearity VIFs.html
13.7 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/10. Text + Quiz Your First Query.html
13.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/15. Homework 1 Final Quiz on Measures Spread.html
13.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/39. Quiz Sets.html
13.6 kB
Part 18-Module 01-Lesson 03_Control Flow/16. Building Dictionaries.html
13.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/34. Quiz More With Dictionaries.html
13.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/28. Quiz Tuples.html
13.6 kB
Part 03-Module 03-Lesson 02_SQL Joins/17. Solutions LEFT and RIGHT JOIN .html
13.5 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/03. Designing the Program.html
13.5 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/03. Data in NumPy.html
13.5 kB
Part 03-Module 03-Lesson 02_SQL Joins/08. Quiz Primary - Foreign Key Relationship.html
13.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/14. Text Formatting Best Practices.html
13.4 kB
Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.ar.vtt
13.4 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/Project Rubric - Resume Review Project (Career Change).html
13.4 kB
Part 15-Module 02-Lesson 06_Graphs/08. Graph Representation Practice.html
13.3 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/Project Rubric - Resume Review Project (Entry-level).html
13.3 kB
Part 03-Module 03-Lesson 02_SQL Joins/20. Solutions Last Check.html
13.3 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/Project Rubric - Wrangle and Analyze Data.html
13.3 kB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn.html
13.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/12. Text Formatting Best Practices.html
13.3 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/04. Viewing Modified Files.html
13.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy.html
13.3 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/media/unnamed-59153-0.gif
13.3 kB
Part 15-Module 01-Lesson 05_Interview Practice/img/quizimage.png
13.3 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Changing How Git Log Displays Information.html
13.2 kB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression.html
13.2 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/06. Having Git Ignore Files.html
13.2 kB
assets/css/fonts/KaTeX_Size1-Regular.ttf
13.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods.html
13.1 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/Project Rubric - Resume Review Project (Prior Industry Experience).html
13.1 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction-TdopVWltgqM.zh-CN.vtt
13.1 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/02. Defining Functions I.html
13.1 kB
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output.html
13.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/14. [Optional] Notebook + Quiz Other Encodings.html
13.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.en.vtt
13.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/25. List Methods.html
13.0 kB
Part 18-Module 01-Lesson 05_Scripting/26. Third-Party Libraries.html
13.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set.html
13.0 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.en.vtt
12.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness.html
12.9 kB
Part 18-Module 01-Lesson 03_Control Flow/23. Quiz While Loops.html
12.9 kB
Part 18-Module 01-Lesson 03_Control Flow/15. Quiz Match Inputs To Outputs.html
12.9 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading and Writing Files.html
12.9 kB
Part 09-Module 02-Lesson 01_Create a Tableau Story/02. Project Details.html
12.9 kB
Part 03-Module 03-Lesson 02_SQL Joins/11. Quiz JOIN Questions Part I.html
12.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.pt-BR.vtt
12.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable.html
12.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Quiz Clean (Code 2).html
12.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/18. Text Aggregations.html
12.8 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.pt-BR.vtt
12.8 kB
Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-qRv1wrtgsmM.zh-CN.vtt
12.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/07. Template and Software.html
12.7 kB
Part 09-Module 01-Lesson 02_Design/11. Bad Visual Quizzes (Part II).html
12.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programmatic Assessment 2.html
12.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files in Python.html
12.7 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.en.vtt
12.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Quiz Gather (Download).html
12.7 kB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality.html
12.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means.html
12.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/32. Text Small Multiples Dual Axis.html
12.7 kB
Part 13-Module 01-Lesson 02_LinkedIn Review/Project Rubric - LinkedIn Profile Review Project.html
12.7 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/10. Dummy Variables.html
12.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Integers and Floats.html
12.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/20. String Methods.html
12.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/26. Text Descriptive Statistics Summary .html
12.6 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/21. Notebook + Quiz Central Limit Theorem - Part III.html
12.6 kB
Part 02-Module 01-Lesson 04_Files and Modules/09. Third-Party Libraries.html
12.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/44. Text Table Calculations.html
12.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/08. Text + Quiz Types of Databases.html
12.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree.html
12.6 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/05. Quiz Setting Up Hypothesis Tests.html
12.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2.html
12.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2.html
12.6 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/07. Quiz More On Subqueries.html
12.5 kB
Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programatic Assessment 1-l-FhDkQRclA.zh-CN.vtt
12.5 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/12. Quizzes UNION.html
12.5 kB
Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-qRv1wrtgsmM.pt-BR.vtt
12.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/49. Text Recap Looking Ahead.html
12.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.ar.vtt
12.5 kB
Part 16-Module 01-Lesson 07_Regressions/39. Bonus Target and Features.html
12.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/03. Quiz Arithmetic Operators.html
12.5 kB
Part 03-Module 03-Lesson 02_SQL Joins/19. Quiz Last Check.html
12.4 kB
assets/css/fonts/KaTeX_Size2-Regular.ttf
12.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces.html
12.4 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/13. Advanced Standard Deviation and Variance.html
12.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Quiz Assess (Visual).html
12.4 kB
Part 02-Module 02-Lesson 01_Python Project/08. Classroom DAND-Explore US Bikeshare Data Walkthrough-0yuglNRWyKs.pt-BR.vtt
12.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/16. Quiz LIMIT.html
12.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Text Installing Tableau.html
12.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3.html
12.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/10. Text Combining Data Recap.html
12.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.pt-BR.vtt
12.3 kB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process.html
12.3 kB
Part 04-Module 01-Lesson 14_Regression/09. Correlation Coefficient Quizzes.html
12.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means.html
12.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/13. Data Quality Dimensions 2.html
12.3 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. What are Jupyter notebooks.html
12.3 kB
assets/css/fonts/KaTeX_Script-Regular.woff2
12.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/32. Solutions CASE.html
12.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split.html
12.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/10. Text Introduction to the Standard Deviation and Variance.html
12.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/04. Quiz ERD Fundamentals.html
12.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split.html
12.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/38. Quiz Groups.html
12.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split.html
12.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/14. Quiz LIMIT.html
12.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/03. Video + Text The Parch Posey Database.html
12.2 kB
Part 09-Module 01-Lesson 02_Design/10. Bad Visual Quizzes (Part I).html
12.2 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2.html
12.2 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/18. Notebook + Quiz Central Limit Theorem.html
12.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example.html
12.2 kB
Part 04-Module 01-Lesson 14_Regression/img/screen-shot-2017-11-10-at-2.43.00-pm.png
12.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files in Python.html
12.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy.html
12.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python.html
12.2 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/19. Quiz Shape and Outliers (What's the Impact).html
12.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/05. Text Map of SQL Content.html
12.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/35. Quiz Dual Axis.html
12.2 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/19. Notebook + Quiz Central Limit Theorem - Part II.html
12.2 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/02. Project Motivation.html
12.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings.html
12.2 kB
Part 15-Module 02-Lesson 02_List-Based Collections/07. Linked List Practice.html
12.1 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff
12.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/04. Text + Quiz Your First JOIN.html
12.1 kB
Part 04-Module 01-Lesson 14_Regression/20. Notebook + Quiz Your Turn - Part II.html
12.1 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/13. Outlining and Building a Program.html
12.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure.html
12.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/09. Quiz Integers and Floats.html
12.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/24. Notebook + Quiz Bootstrapping.html
12.1 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt
12.1 kB
Part 18-Module 01-Lesson 03_Control Flow/05. Quiz Conditional Statements.html
12.1 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/08. Inspecting Data Types.html
12.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Video + Text The Parch Posey Database.html
12.1 kB
Part 02-Module 02-Lesson 01_Python Project/08. Classroom DAND-Explore US Bikeshare Data Walkthrough-0yuglNRWyKs.en.vtt
12.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months.html
12.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy.html
12.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters.html
12.0 kB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz.html
12.0 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.pt-BR.vtt
12.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix.html
12.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix.html
12.0 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/13. Quiz Notation.html
12.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall.html
11.9 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/15. Solutions WITH.html
11.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/24. Solutions HAVING.html
11.9 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.zh-CN.vtt
11.9 kB
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line.html
11.9 kB
Part 18-Module 01-Lesson 05_Scripting/12. Errors and Exceptions.html
11.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.ar.vtt
11.9 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/30. Quiz Sets.html
11.9 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/06. Cancer Test Results.html
11.9 kB
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz.html
11.9 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff
11.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable.html
11.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/09. Decision Tree Accuracy.html
11.8 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Video Notation for Parameters vs. Statistics.html
11.8 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/16. Text Measures of Center and Spread Summary.html
11.8 kB
Part 18-Module 01-Lesson 03_Control Flow/25. Break, Continue.html
11.8 kB
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete.html
11.8 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/04. Twitter API.html
11.8 kB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye.html
11.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld.html
11.8 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/img/matplotlib-preview-plot.png
11.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision.html
11.8 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents.html
11.8 kB
Part 16-Module 01-Lesson 07_Regressions/46. Sneak Peek Outliers Break Regressions.html
11.8 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/12. Correlation Coefficient Quizzes.html
11.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms.html
11.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own.html
11.7 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/47. SQL Basics Recap.html
11.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/31. Dictionaries and Identity Operators.html
11.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1.html
11.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2.html
11.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2.html
11.7 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/06. Identifying Data Types.html
11.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/16. Text Saving to Tableau Public.html
11.7 kB
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete.html
11.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 Solution-CWJZoi_Es84.zh-CN.vtt
11.7 kB
Part 02-Module 01-Lesson 04_Files and Modules/03. Default Arguments.html
11.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test.html
11.7 kB
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE.html
11.7 kB
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE.html
11.7 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices.html
11.7 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Iterative Programming I.html
11.6 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall.html
11.6 kB
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz.html
11.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/img/screen-shot-2017-10-27-at-1.49.58-pm.png
11.6 kB
Part 12-Module 01-Lesson 01_GitHub Review/img/career-portal-sidebar.png
11.6 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/img/career-portal-sidebar.png
11.6 kB
Part 13-Module 01-Lesson 02_LinkedIn Review/img/career-portal-sidebar.png
11.6 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/img/career-portal-sidebar.png
11.6 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/img/career-portal-sidebar.png
11.6 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/img/career-portal-sidebar.png
11.6 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/img/career-portal-sidebar.png
11.6 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/img/career-portal-sidebar.png
11.6 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/img/career-portal-sidebar.png
11.6 kB
Part 15-Module 01-Lesson 05_Interview Practice/img/career-portal-sidebar.png
11.6 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/img/career-portal-sidebar.png
11.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface.html
11.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/23. Quiz Introduction to Notation.html
11.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities.html
11.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye.html
11.6 kB
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz.html
11.6 kB
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete.html
11.6 kB
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete.html
11.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split.html
11.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/34. Learning from Sensor Data.html
11.6 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall.html
11.6 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices.html
11.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5.html
11.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification.html
11.6 kB
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete.html
11.6 kB
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz.html
11.6 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/24. Text Interpreting Interactions.html
11.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3.html
11.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Video Summation.html
11.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1.html
11.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive.html
11.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5.html
11.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4.html
11.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces.html
11.5 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/29. Video CASE Statements.html
11.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays.html
11.5 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/23. HAVING.html
11.5 kB
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA.html
11.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting.html
11.5 kB
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate.html
11.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/31. Quiz Arithmetic Operators.html
11.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces.html
11.5 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/28. Solutions DATE Functions.html
11.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean (Intro).html
11.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions.html
11.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3.html
11.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2.html
11.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/22. Quiz ORDER BY Part II.html
11.4 kB
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression.html
11.4 kB
Part 18-Module 01-Lesson 05_Scripting/20. Importing Local Scripts.html
11.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8.html
11.4 kB
Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.pt-BR.vtt
11.4 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Implementing the Program II.html
11.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/10. Booleans, Comparison Operators, and Logical Operators.html
11.4 kB
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz.html
11.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Video Capital vs. Lower.html
11.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation.html
11.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/27. Quiz Summation.html
11.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior.html
11.4 kB
Part 18-Module 01-Lesson 03_Control Flow/32. Quiz List Comprehensions.html
11.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions.html
11.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz.html
11.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10.html
11.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Quiz Gather (Import).html
11.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6.html
11.4 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt
11.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1.html
11.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data.html
11.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2.html
11.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4.html
11.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9.html
11.3 kB
Part 16-Module 01-Lesson 07_Regressions/41. Extracting Slope and Intercept.html
11.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara.html
11.3 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/03. Data Attributes.html
11.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split.html
11.3 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/19. Quiz Calculating a p-value.html
11.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/11. Quiz Booleans, Comparison Operators, and Logical Operators.html
11.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/08. Source Web Scraping.html
11.3 kB
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept.html
11.3 kB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two.html
11.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/29. Quiz Arithmetic Operators.html
11.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/10. Statements.html
11.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous.html
11.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1.html
11.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/46. Video OR.html
11.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/20. Quiz ORDER BY Part II.html
11.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2.html
11.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/19. Quiz ORDER BY.html
11.3 kB
Part 18-Module 01-Lesson 03_Control Flow/17. Iterating Through Dictionaries with For Loops.html
11.3 kB
assets/css/fonts/KaTeX_Size4-Regular.ttf
11.3 kB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors.html
11.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable.html
11.3 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/04. Commit Messages.html
11.2 kB
Part 08-Module 03-Lesson 01_Assessing Data/15. Quality Programmatic Assessment 1.html
11.2 kB
Part 18-Module 01-Lesson 03_Control Flow/09. Solution Boolean Expressions for Conditions.html
11.2 kB
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line.html
11.2 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/28. Quiz Descriptive vs. Inferential (Udacity Students).html
11.2 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors.html
11.2 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/21. Exploring Data with Visuals Quiz.html
11.2 kB
Part 04-Module 01-Lesson 14_Regression/18. Notebook + Quiz How to Interpret the Results.html
11.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test.html
11.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7.html
11.2 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. Finishing Touches.html
11.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/40. Machine Learning for Author ID.html
11.2 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/15. Solutions GROUP BY.html
11.2 kB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/02. Project Details.html
11.2 kB
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz.html
11.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/08. Statements.html
11.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. Video OR.html
11.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1.html
11.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions.html
11.2 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/14. Quiz Aliases for Multiple Window Functions.html
11.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/17. Quiz ORDER BY.html
11.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces.html
11.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Video Random Variables.html
11.1 kB
Part 18-Module 01-Lesson 03_Control Flow/21. Practice While Loops.html
11.1 kB
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component of New System.html
11.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces.html
11.1 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM.html
11.1 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/10. Sets.html
11.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/07. Video How Databases Store Data.html
11.1 kB
Part 11-Module 01-Lesson 01_What is Version Control/04. MacLinux Setup.html
11.1 kB
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature.html
11.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices.html
11.1 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/06. Viewing A Specific Commit.html
11.1 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/12. Exploring with Visuals.html
11.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/42. Making Sense of Metrics 3.html
11.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/43. Making Sense of Metrics 4.html
11.1 kB
Part 02-Module 01-Lesson 04_Files and Modules/01. Tuples.html
11.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/43. Video AND and BETWEEN.html
11.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/23. Relational Databases in Python.html
11.1 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Python Programming Setup.html
11.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability.html
11.1 kB
Part 04-Module 01-Lesson 14_Regression/19. Notebook + Quiz Regression - Your Turn - Part I.html
11.1 kB
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix.html
11.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities.html
11.1 kB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition.html
11.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity.html
11.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/07. Solution Variables and Assignment Operators.html
11.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces.html
11.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1.html
11.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3.html
11.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2.html
11.0 kB
Part 09-Module 01-Lesson 02_Design/04. Quiz Exploratory vs. Explanatory.html
11.0 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/02. Text + Images FULL OUTER JOIN.html
11.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited.html
11.0 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/13. Conclusions Using Groupby.html
11.0 kB
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data.html
11.0 kB
Part 18-Module 01-Lesson 05_Scripting/02. Python Installation.html
11.0 kB
Part 03-Module 03-Lesson 01_Basic SQL/34. Video LIKE.html
11.0 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.zh-CN.vtt
11.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall.html
11.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.ar.vtt
11.0 kB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques for Importing Modules.html
11.0 kB
Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-i3RTW83wI1Q.en.vtt
11.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/41. Making Sense of Metrics 2.html
11.0 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting.html
11.0 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. Video How Databases Store Data.html
11.0 kB
Part 03-Module 03-Lesson 02_SQL Joins/09. Text + Quiz JOIN Revisited.html
11.0 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Video + Quiz Introduction to Sampling Distributions Part I.html
11.0 kB
Part 03-Module 03-Lesson 01_Basic SQL/41. Quiz NOT.html
11.0 kB
Part 18-Module 01-Lesson 03_Control Flow/30. Solution Zip and Enumerate.html
11.0 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/17. Text Recap + Next Steps.html
11.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/29. Text Show Me.html
10.9 kB
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz.html
10.9 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/07. Conditional Probability Bayes Rule Quiz.html
10.9 kB
Part 16-Module 01-Lesson 13_PCA/17. Composite Features.html
10.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. Video AND and BETWEEN.html
10.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Quiz Assess (Tidiness).html
10.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/45. Solutions AND and BETWEEN.html
10.9 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.ar.vtt
10.9 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/03. Project Details.html
10.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited.html
10.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/42. Author ID Accuracy.html
10.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/31. Quiz CASE.html
10.9 kB
Part 04-Module 01-Lesson 16_Logistic Regression/29. Screencast Model Diagnostics in Python - Part I.html
10.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders.html
10.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean (Define).html
10.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability.html
10.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/30. Video Arithmetic Operators.html
10.9 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/16. Multiple Variables Quiz.html
10.9 kB
Part 16-Module 01-Lesson 07_Regressions/40. Visualizing Regression Data.html
10.9 kB
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma.html
10.9 kB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components.html
10.9 kB
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance.html
10.9 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/03. Quiz Descriptive vs. Inferential (Udacity Students).html
10.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries.html
10.9 kB
Part 16-Module 01-Lesson 03_SVM/15. A New Feature.html
10.9 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/13. Text + Quiz WITH vs. Subquery.html
10.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/32. Solutions Arithmetic Operators.html
10.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python.html
10.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. Video LIKE.html
10.9 kB
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines.html
10.8 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/21. Text Higher Order Terms.html
10.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld.html
10.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data.html
10.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior.html
10.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/12. Solutions MIN, MAX, AVG.html
10.8 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Video + Quiz Introduction to Sampling Distributions Part II.html
10.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1.html
10.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8.html
10.8 kB
Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.ar.vtt
10.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.ar.vtt
10.8 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Iterative Programming II.html
10.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems.html
10.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Quiz Clean (Code 1).html
10.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/39. Quiz NOT.html
10.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision.html
10.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/44. Quiz AND and BETWEEN.html
10.8 kB
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information.html
10.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms.html
10.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/43. Solutions AND and BETWEEN.html
10.8 kB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature.html
10.8 kB
Part 16-Module 01-Lesson 07_Regressions/44. Regressing Bonus Against LTI.html
10.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/42. Solutions NOT.html
10.8 kB
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System.html
10.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/47. Quiz OR.html
10.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/14. Quiz GROUP BY.html
10.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/11. Video SELECT FROM.html
10.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1.html
10.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2.html
10.8 kB
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss.html
10.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Video Arithmetic Operators.html
10.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/03. Quiz Logistic Regression Quick Check.html
10.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What is a p-value Anyway.html
10.7 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/12. String Methods II.html
10.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/41. Getting Your Code Set Up.html
10.7 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/30. Solutions Arithmetic Operators.html
10.7 kB
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers.html
10.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/43. Timing Your NB Classifier.html
10.7 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/30. Text Descriptive vs. Inferential Summary.html
10.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Video Connecting to Data.html
10.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall.html
10.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment.html
10.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/35. Compound Data Structures.html
10.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/21. Another String Method - Split.html
10.7 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter.html
10.7 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/29. Text Summary on Notation.html
10.7 kB
Part 03-Module 03-Lesson 01_Basic SQL/37. Video IN.html
10.7 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/Project Rubric - Investigate a Dataset.html
10.7 kB
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins.html
10.7 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/03. Asking Questions.html
10.7 kB
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers.html
10.7 kB
Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate.html
10.7 kB
Part 03-Module 03-Lesson 01_Basic SQL/23. Solutions ORDER BY Part II.html
10.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships.html
10.7 kB
Part 15-Module 02-Lesson 02_List-Based Collections/10. Stack Practice.html
10.7 kB
Part 18-Module 01-Lesson 05_Scripting/27. Experimenting with an Interpreter.html
10.7 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/42. Quiz AND and BETWEEN.html
10.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/27. Tuples.html
10.7 kB
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice.html
10.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/21. Research the Enron Fraud.html
10.7 kB
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality.html
10.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall.html
10.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/48. Solutions OR.html
10.6 kB
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions.html
10.6 kB
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices.html
10.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/40. Solutions NOT.html
10.6 kB
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality.html
10.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/18. Solutions GROUP BY Part II.html
10.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Video Important Final Points.html
10.6 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/10. Getting Help.html
10.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/14. Measures of Center (Mean).html
10.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/45. Quiz OR.html
10.6 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/03. Launching the notebook server.html
10.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. Video SELECT FROM.html
10.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/26. Solutions WHERE.html
10.6 kB
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz.html
10.6 kB
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data.html
10.6 kB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words.html
10.6 kB
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System.html
10.6 kB
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature.html
10.6 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt
10.6 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/24. Other Things to Consider - What if Our Sample is Large.html
10.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff2
10.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width.html
10.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features.html
10.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Your first project.html
10.6 kB
Part 16-Module 01-Lesson 03_SVM/02. Separating Line.html
10.6 kB
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two.html
10.6 kB
Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression.html
10.6 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/07. Quiz Types of Errors - Part I.html
10.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases.html
10.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/05. Commas vs Periods.html
10.6 kB
Part 16-Module 01-Lesson 13_PCA/34. Explained Variance of Each PC.html
10.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/38. Quiz IN.html
10.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/20. Solutions ORDER BY.html
10.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/18. Video ORDER BY.html
10.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data.html
10.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/09. Getting Help.html
10.5 kB
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes.html
10.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/29. Sets.html
10.5 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/12. Metric - Average Classroom Time.html
10.5 kB
Part 18-Module 01-Lesson 03_Control Flow/11. Practice For Loops.html
10.5 kB
Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions.html
10.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/38. Speeding Up Via Feature Selection 1.html
10.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6.html
10.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4.html
10.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2.html
10.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3.html
10.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. Video IN.html
10.5 kB
Part 18-Module 01-Lesson 05_Scripting/25. Quiz Techniques for Importing Modules.html
10.5 kB
Part 02-Module 02-Lesson 01_Python Project/08. Classroom DAND-Explore US Bikeshare Data Walkthrough-0yuglNRWyKs.zh-CN.vtt
10.5 kB
Part 03-Module 01-Lesson 01_Anaconda/02. What is Anaconda.html
10.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective.html
10.5 kB
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality.html
10.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/21. Solutions ORDER BY Part II.html
10.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6.html
10.5 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/13. Other Language Associated with Confidence Intervals.html
10.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses.html
10.5 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/11. NumPy Quiz.html
10.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/34. How Many True Positives.html
10.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color.html
10.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5.html
10.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/46. Solutions OR.html
10.5 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/05. Data Analysis Process Overview.html
10.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability.html
10.5 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview.html
10.5 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Video + Quiz Performance Tuning 1.html
10.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together.html
10.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests.html
10.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/28. Quiz WHERE with Non-Numeric.html
10.5 kB
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance.html
10.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/25. Quiz WHERE.html
10.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review.html
10.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut.html
10.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/24. Video WHERE.html
10.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/24. Solutions WHERE.html
10.5 kB
Part 18-Module 01-Lesson 03_Control Flow/20. While Loops.html
10.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.pt-BR.vtt
10.5 kB
Part 16-Module 01-Lesson 07_Regressions/42. Regression Score Training Data.html
10.5 kB
Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.ar.vtt
10.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/15. Video LIMIT.html
10.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons.html
10.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function.html
10.5 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. Video Introduction to Five Number Summary.html
10.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy.html
10.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/36. Solutions LIKE.html
10.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/35. Quiz LIKE.html
10.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/33. Text Introduction to Logical Operators.html
10.4 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/05. Quiz 5 Number Summary Practice.html
10.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test.html
10.4 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/11. Exploring with Visuals.html
10.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. Video What is Notation.html
10.4 kB
Part 16-Module 01-Lesson 07_Regressions/45. Salary vs. LTI for Predicting Bonus.html
10.4 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/04. Program Structure and Schedule.html
10.4 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/36. Quiz IN.html
10.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3.html
10.4 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/18. Solutions ORDER BY.html
10.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2.html
10.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/27. Video WHERE with Non-Numeric Data.html
10.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1.html
10.4 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff2
10.4 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. Video ORDER BY.html
10.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3.html
10.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data.html
10.4 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/05. Python Practice.html
10.4 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5.html
10.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/39. Solutions IN.html
10.4 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/03. Integers and Floats.html
10.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/24. Solution List and Membership Operators.html
10.4 kB
Part 16-Module 01-Lesson 13_PCA/35. How Many PCs to Use.html
10.4 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout.html
10.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/09. Video Types of Statements.html
10.4 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Video Shape.html
10.4 kB
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters.html
10.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/33. Recall of Your POI Identifier.html
10.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/27. Applying Metrics to Your POI Identifier.html
10.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypothesis Tests - Part II.html
10.4 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/03. Probability Quiz.html
10.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/29. Solutions WHERE with Non-Numeric.html
10.4 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Tableau Dashboards Stories with Trina-i9xslfFp80g.zh-CN.vtt
10.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2.html
10.3 kB
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data.html
10.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/31. Number of True Positives.html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/26. Quiz WHERE with Non-Numeric.html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/23. Quiz WHERE.html
10.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer.html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. Video WHERE.html
10.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots.html
10.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots.html
10.3 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/07. Price by Cut.html
10.3 kB
Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn.html
10.3 kB
Part 16-Module 01-Lesson 07_Regressions/43. Regression Score Test Data.html
10.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2.html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. Video LIMIT.html
10.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/21. Quiz Variable Types.html
10.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type and Type Conversion.html
10.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means.html
10.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean.html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/34. Solutions LIKE.html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/33. Quiz LIKE.html
10.3 kB
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again).html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/31. Text Introduction to Logical Operators.html
10.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.ar.vtt
10.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/13. Solutions Your First Query Solution.html
10.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Video Working With Outliers My Advice.html
10.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/40. SelectPercentile and Complexity.html
10.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall.html
10.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/17. Solutions LIMIT.html
10.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/32. Unpacking Into Precision and Recall.html
10.3 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Video Multicollinearity VIFs.html
10.3 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/16. Exploring Your Friends' Birthdays.html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. Video WHERE with Non-Numeric Data.html
10.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/10. Questions for a Dataset.html
10.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. Video What Can You Create In Tableau.html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/37. Solutions IN.html
10.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.en-US.vtt
10.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure.html
10.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.ar.vtt
10.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.en.vtt
10.3 kB
Part 18-Module 01-Lesson 03_Control Flow/14. Solution For Loops Quiz.html
10.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Video Types of Statements.html
10.2 kB
Part 11-Module 01-Lesson 01_What is Version Control/02. Version Control In Daily Use.html
10.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6.html
10.2 kB
Part 16-Module 01-Lesson 03_SVM/36. Extracting Predictions from an SVM.html
10.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5.html
10.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7.html
10.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter.html
10.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem.html
10.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated.html
10.2 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Putting together the Pieces.html
10.2 kB
Part 15-Module 01-Lesson 05_Interview Practice/Project Description - Interview Practice (Data Analyst).html
10.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2.html
10.2 kB
Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors.html
10.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1.html
10.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3.html
10.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4.html
10.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions.html
10.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/27. Solutions WHERE with Non-Numeric.html
10.2 kB
Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors.html
10.2 kB
Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression.html
10.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces.html
10.2 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/08. Univariate Plots.html
10.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds.html
10.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces.html
10.2 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/05. Binomial Distributions Quiz.html
10.2 kB
Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn.html
10.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators.html
10.2 kB
Part 11-Module 01-Lesson 01_What is Version Control/05. Windows Setup.html
10.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count.html
10.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/39. Getting Started with Mini-Projects.html
10.2 kB
Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors.html
10.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/11. Solutions Your First Query Solution.html
10.1 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/03. AB Testing.html
10.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Video Two Useful Theorems - Law of Large Numbers.html
10.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz.html
10.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/15. Solutions LIMIT.html
10.1 kB
Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.en.vtt
10.1 kB
Part 18-Module 01-Lesson 03_Control Flow/03. Practice Conditional Statements.html
10.1 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/12. Quiz CAST.html
10.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier.html
10.1 kB
Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video.html
10.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.ar.vtt
10.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Video Bootstrapping The Central Limit Theorem.html
10.1 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt
10.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4.html
10.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/40. Making Sense of Metrics 1.html
10.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot.html
10.1 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/Project Rubric - Udacity Professional Profile Review.html
10.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/21. Video ORDER BY Part II.html
10.1 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Video Descriptive vs. Inferential Statistics.html
10.1 kB
Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors.html
10.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2.html
10.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/40. Video NOT.html
10.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender.html
10.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review.html
10.1 kB
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces.html
10.1 kB
Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression.html
10.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypothesis Tests - Part I.html
10.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features.html
10.1 kB
Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn.html
10.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/35. How Many True Negatives.html
10.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types of Errors - Part III.html
10.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car.html
10.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/16. Notebook + Quiz Law of Large Numbers.html
10.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home.html
10.0 kB
Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept.html
10.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/09. Measures of Spread (Calculation and Units).html
10.0 kB
Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn.html
10.0 kB
Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie.html
10.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Quiz Gather (Open Jupyter Notebook).html
10.0 kB
Part 18-Module 01-Lesson 05_Scripting/09. Quiz Scripting with Raw Input.html
10.0 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/17. Quiz GROUP BY Part II.html
10.0 kB
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK.html
10.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video.html
10.0 kB
Part 18-Module 01-Lesson 05_Scripting/14. Practice Handling Input Errors.html
10.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Video Combining Data.html
10.0 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/10. Code with Branches IV.html
10.0 kB
Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up.html
10.0 kB
Part 18-Module 01-Lesson 03_Control Flow/04. Solution Conditional Statements.html
10.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households.html
10.0 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/Project Rubric - Craft Your Cover Letter.html
10.0 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Breaking Programs Into Smaller Pieces.html
10.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/32. Text Recap.html
10.0 kB
Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.ar.vtt
10.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders.html
10.0 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Video ORDER BY Part II.html
10.0 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types of Errors - Part II.html
9.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. Video NOT.html
9.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter.html
9.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer.html
9.9 kB
Part 18-Module 01-Lesson 03_Control Flow/24. Solution While Loops Quiz.html
9.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/39. Changing the Number of Features.html
9.9 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. Video Introduction to Standard Deviation and Variance.html
9.9 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/10. Text Sampling Distribution Notes.html
9.9 kB
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile.html
9.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation.html
9.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time.html
9.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/37. False Negatives.html
9.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/28. Number of POIs in Test Set.html
9.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/36. False Positives.html
9.9 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction.html
9.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. Video UNION.html
9.9 kB
Part 16-Module 01-Lesson 13_PCA/37. Dimensionality Reduction and Overfitting.html
9.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson.html
9.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/08. Solution SUM.html
9.9 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/16. Measures of Center (Median).html
9.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification.html
9.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/38. Precision.html
9.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma.html
9.9 kB
Part 16-Module 01-Lesson 13_PCA/33. PCA Mini-Project.html
9.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz.html
9.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/39. Recall.html
9.9 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/06. Variables II.html
9.9 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/21. Quiz Percentiles.html
9.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web.html
9.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited.html
9.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson.html
9.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses.html
9.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example.html
9.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/30. Accuracy of a Biased Identifier.html
9.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz.html
9.9 kB
Part 18-Module 01-Lesson 05_Scripting/03. Install Python Using Anaconda.html
9.9 kB
Part 16-Module 01-Lesson 07_Regressions/38. Regression Mini-Project.html
9.9 kB
Part 16-Module 01-Lesson 03_SVM/31. Speed-Accuracy Tradeoff.html
9.8 kB
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing.html
9.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/37. Your First Email DT Accuracy.html
9.8 kB
Part 16-Module 01-Lesson 13_PCA/36. F1 Score vs. No. of PCs Used.html
9.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots.html
9.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric.html
9.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/36. Decision Tree Mini-Project.html
9.8 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/08. Magic keywords.html
9.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example.html
9.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes.html
9.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/02. Course Outline.html
9.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical.html
9.8 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors.html
9.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes.html
9.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video.html
9.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses.html
9.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz.html
9.8 kB
Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup.html
9.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python.html
9.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video.html
9.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/33. Text Map Configuration.html
9.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule.html
9.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/21. Solutions DISTINCT.html
9.8 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Video Measures of Center (Mean).html
9.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees.html
9.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy.html
9.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting.html
9.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn.html
9.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/02. Video The Parch Posey Database.html
9.8 kB
Part 09-Module 01-Lesson 02_Design/17. Good Visual.html
9.8 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Video Introduction.html
9.8 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/04. Asking Questions.html
9.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/29. Number of People in Test Set.html
9.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages.html
9.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans().html
9.8 kB
Part 18-Module 01-Lesson 03_Control Flow/26. Quiz Break, Continue.html
9.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. Video How This Lesson Is Structured.html
9.8 kB
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day.html
9.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Video Small Multiples Dual Axis.html
9.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data.html
9.8 kB
Part 02-Module 02-Lesson 01_Python Project/06. Magic keywords.html
9.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/26. Video DATE Functions II.html
9.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/41. Accuracy Using 1 of Features.html
9.7 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.en-US.vtt
9.7 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.en.vtt
9.7 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Video Descriptive vs. Inferential Statistics.html
9.7 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Video Working With Outliers.html
9.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure.html
9.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain.html
9.7 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Video The Shape For Data In The World.html
9.7 kB
Part 03-Module 03-Lesson 01_Basic SQL/01. Video SQL Introduction.html
9.7 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.en-US.vtt
9.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram.html
9.7 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Video Two Useful Theorems - Central Limit Theorem.html
9.7 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.en.vtt
9.7 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/06. Quiz JOINs with Comparison Operators.html
9.7 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/07. Comparison Operators.html
9.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/27. Identify the Most Powerful Features.html
9.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/04. Setting Up Your Programming Environment.html
9.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions.html
9.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Other Things to Consider - What if Test More Than Once.html
9.7 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Video Notation for the Mean.html
9.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Video Table Calculations.html
9.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/35. Mixing Data Sources (optional).html
9.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Video Marks Filters.html
9.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Video Calculated Fields.html
9.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. Video What is Tableau.html
9.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.ja.vtt
9.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. Video What's Next.html
9.7 kB
Part 03-Module 03-Lesson 02_SQL Joins/06. Text ERD Reminder.html
9.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Video Groups Sets.html
9.7 kB
Part 15-Module 02-Lesson 05_Trees/11. Binary Tree Practice.html
9.7 kB
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day.html
9.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/25. Number of Features and Overfitting.html
9.7 kB
Part 04-Module 01-Lesson 04_Probability/14. One Head 2.html
9.6 kB
Part 16-Module 01-Lesson 09_Clustering/24. Clustering Changes.html
9.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Video The Parch Posey Database.html
9.6 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/10. Fixing Data Types Pt 2.html
9.6 kB
Part 04-Module 01-Lesson 14_Regression/12. Quiz What Defines A Line - Line Basics Quiz.html
9.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots.html
9.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations.html
9.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1.html
9.6 kB
Part 16-Module 01-Lesson 03_SVM/34. Accuracy after Optimizing C.html
9.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Video Aggregations.html
9.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule.html
9.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction.html
9.6 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/05. Text Descriptive vs. Inferential Statistics.html
9.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Video Hierarchies.html
9.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/11. Data Types (Continuous vs. Discrete).html
9.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/11. Quiz MIN, MAX, AVG.html
9.6 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/13. Metric - Completion Rate.html
9.6 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/10. Metric - Enrollment Rate.html
9.6 kB
Part 18-Module 01-Lesson 04_Functions/05. Variable Scope.html
9.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Video Shape and Outliers.html
9.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.ar.vtt
9.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Video Worksheets.html
9.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/13. Video GROUP BY.html
9.6 kB
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words.html
9.6 kB
Part 03-Module 03-Lesson 02_SQL Joins/21. Text Recap Looking Ahead.html
9.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. Video Measures of Center (Median).html
9.6 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/15. Conclusions Using Query.html
9.6 kB
Part 03-Module 03-Lesson 02_SQL Joins/02. Video Why Would We Want to Split Data Into Separate Tables.html
9.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. Video What are Measures of Spread.html
9.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Video Show Me.html
9.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/27. Quiz DATE Functions.html
9.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets.html
9.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/06. Example Buggy Feature.html
9.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/04. Video + Text First Aggregation - COUNT.html
9.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Video SQL Introduction.html
9.6 kB
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection.html
9.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/15. Solution Strings.html
9.6 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/06. Quiz 5 Hypothesis Testing.html
9.5 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt
9.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Video Simulating from the Null.html
9.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R.html
9.5 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. Video When Does the Central Limit Theorem Not Work.html
9.5 kB
Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn.html
9.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/44. Metrics for Your POI Identifier.html
9.5 kB
Part 16-Module 01-Lesson 03_SVM/33. Optimize C Parameter.html
9.5 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/07. Text General Notes for Building Stories.html
9.5 kB
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R.html
9.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data.html
9.5 kB
Part 18-Module 01-Lesson 03_Control Flow/33. Solution List Comprehensions.html
9.5 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/15. Quiz COALESCE.html
9.5 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/08. Scales and Multiple Histograms.html
9.5 kB
Part 18-Module 01-Lesson 03_Control Flow/06. Solution Conditional Statements.html
9.5 kB
Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-i3RTW83wI1Q.zh-CN.vtt
9.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/28. Data Wrangling Summary.html
9.5 kB
Part 18-Module 01-Lesson 04_Functions/15. [Optional] Quiz Iterators and Generators.html
9.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.ar.vtt
9.5 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/07. Filter, Drop Nulls, Dedupe.html
9.5 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/06. Markdown cells.html
9.5 kB
Part 18-Module 01-Lesson 05_Scripting/05. Running a Python Script.html
9.4 kB
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3.html
9.4 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/14. Project Description.html
9.4 kB
Part 03-Module 03-Lesson 02_SQL Joins/12. Solutions JOIN Questions Part I.html
9.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values.html
9.4 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/06. Effect of Management Style on Worker Speed.html
9.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1.html
9.4 kB
Part 18-Module 01-Lesson 04_Functions/03. Quiz Defining Functions.html
9.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/26. Wrangling vs. EDA vs. ETL.html
9.4 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/19. Quiz On Visual Encodings.html
9.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/26. Other Things to Consider - How Do CIs and HTs Compare.html
9.4 kB
Part 18-Module 01-Lesson 04_Functions/12. Quiz Lambda Expressions.html
9.4 kB
Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.ar.vtt
9.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/07. Quiz SUM.html
9.4 kB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/Project Description - Explore and Summarize Data.html
9.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate.html
9.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables.html
9.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables.html
9.4 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/10. Appending Data (cont.).html
9.4 kB
Part 09-Module 01-Lesson 02_Design/15. Shape, Size, Other Tools.html
9.4 kB
Part 16-Module 01-Lesson 03_SVM/30. A Smaller Training Set.html
9.4 kB
Part 02-Module 02-Lesson 01_Python Project/05. Markdown cells.html
9.4 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Video Histograms.html
9.4 kB
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz.html
9.4 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/03. Quiz FULL OUTER JOIN.html
9.4 kB
Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward-rfMu3f9O9hQ.zh-CN.vtt
9.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment.html
9.4 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/11. Efficiency Practice.html
9.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/29. Remove, Repeat.html
9.4 kB
Part 18-Module 01-Lesson 05_Scripting/08. Scripting with Raw Input.html
9.4 kB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words.html
9.4 kB
Part 13-Module 01-Lesson 02_LinkedIn Review/01. Using LinkedIn.html
9.4 kB
Part 12-Module 01-Lesson 01_GitHub Review/10. Commit messages best practices.html
9.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/30. Checking Important Features Again.html
9.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/16. Video GROUP BY Part II.html
9.3 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/04. Notebook interface.html
9.3 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/02. Project Details.html
9.3 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/17. Building Program Pieces IV.html
9.3 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Video Window Functions 1.html
9.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall.html
9.3 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/14. Building Program Pieces I.html
9.3 kB
Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients.html
9.3 kB
Part 02-Module 02-Lesson 01_Python Project/Project Rubric - Explore US Bikeshare Data.html
9.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Phase II Clinical Trial Data.html
9.3 kB
Part 16-Module 01-Lesson 03_SVM/29. SVM Author ID Timing.html
9.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Video Standard Deviation Calculation.html
9.3 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions in Hypothesis Testing.html
9.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/33. Solution Dictionaries and Identity Operators.html
9.3 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. Screencast + Text How Does MLR Work.html
9.3 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R.html
9.3 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/17. Quiz Comparing a Row to Previous Row.html
9.3 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/15. Correct Interpretations of Confidence Intervals.html
9.3 kB
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text.html
9.3 kB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation.html
9.3 kB
Part 02-Module 02-Lesson 01_Python Project/03. Notebook interface.html
9.3 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/09. Text Dummy Variables.html
9.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/04. Solution Arithmetic Operators.html
9.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/09. Video Model Diagnostics + Performance Metrics.html
9.3 kB
Part 18-Module 01-Lesson 03_Control Flow/19. Solution Iterating Through Dictionaries.html
9.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/04. Navigating Your Working Directory and File IO.html
9.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/12. Solution Booleans, Comparison and Logical Operators.html
9.3 kB
Part 04-Module 01-Lesson 14_Regression/05. Quiz Linear Regression Language.html
9.3 kB
Part 15-Module 01-Lesson 05_Interview Practice/Project Rubric - Interview Practice (Data Analyst).html
9.3 kB
Part 09-Module 02-Lesson 01_Create a Tableau Story/Project Rubric - Create a Tableau Story.html
9.3 kB
Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses.html
9.3 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/15. Quiz Analyzing Multiple Metrics.html
9.2 kB
Part 08-Module 04-Lesson 01_Cleaning Data/07. Quiz and Solution Notebooks.html
9.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/29. Missing POIs 1 (optional).html
9.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. Examples.html
9.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/25. Follow the Money.html
9.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable.html
9.2 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/10. Transposes in NumPy.html
9.2 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/04. Quiz 3 Updated DataFrame.html
9.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format.html
9.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/37. Solution Compound Data Structions.html
9.2 kB
Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components.html
9.2 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/05. Element-wise Operations in NumPy.html
9.2 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Video The Background of Bootstrapping.html
9.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.ar.vtt
9.2 kB
Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation.html
9.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Video Measures of Center (Mode).html
9.2 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/02. Quiz 1 Understanding the Dataset.html
9.2 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Video Dummy Variables.html
9.2 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/14. Quiz WITH.html
9.2 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Introduction.html
9.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety.html
9.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.ar.vtt
9.2 kB
Part 16-Module 01-Lesson 12_Feature Selection/28. Use TfIdf to Get the Most Important Word.html
9.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study-ahaxt6UKxQw.zh-CN.vtt
9.2 kB
Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation.html
9.2 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Video Multiple Linear Regression.html
9.2 kB
Part 16-Module 01-Lesson 03_SVM/38. Final Thoughts on Deploying SVMs.html
9.2 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Video Introduction to Sampling Distributions Part III.html
9.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling.html
9.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution.html
9.1 kB
Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-i3RTW83wI1Q.pt-BR.vtt
9.1 kB
Part 04-Module 01-Lesson 14_Regression/03. Quiz Machine Learning Big Picture.html
9.1 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/11. Fixing Data Types Pt 3.html
9.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.pt-BR.vtt
9.1 kB
Part 18-Module 01-Lesson 04_Functions/14. [Optional] Iterators and Generators.html
9.1 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. Video Better Way.html
9.1 kB
Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA.html
9.1 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins.html
9.1 kB
Part 15-Module 02-Lesson 05_Trees/14. BST Practice.html
9.1 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts.html
9.1 kB
Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro.html
9.1 kB
Part 16-Module 01-Lesson 13_PCA/26. Applying PCA to Real Data.html
9.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price.html
9.1 kB
Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.ar.vtt
9.1 kB
Part 04-Module 01-Lesson 14_Regression/14. Text The Regression Closed Form Solution.html
9.1 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/img/intropy-l2-circular-cylinder-rh.svg
9.1 kB
Part 16-Module 01-Lesson 03_SVM/28. SVM Author ID Accuracy.html
9.1 kB
Part 16-Module 01-Lesson 03_SVM/35. Optimized RBF vs. Linear SVM Accuracy.html
9.1 kB
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands).html
9.1 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/03. Video NULLs and Aggregation.html
9.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/14. Video LEFT and RIGHT JOINs.html
9.1 kB
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2.html
9.1 kB
Part 18-Module 01-Lesson 03_Control Flow/22. Solution While Loops Practice.html
9.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Video Bootstrapping.html
9.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/05. Recursion Practice.html
9.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion.html
9.1 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Video Multiple Linear Regression Model Results.html
9.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting.html
9.1 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/06. Python The Basics.html
9.1 kB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing.html
9.1 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. Video What if We Only Want One Number.html
9.1 kB
Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA.html
9.1 kB
Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code.html
9.1 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. Video Weekdays vs. Weekends What is the Difference.html
9.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram.html
9.1 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/15. Merging Datasets.html
9.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Video Why the Standard Deviation.html
9.0 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Write the Body.html
9.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Video Summary.html
9.0 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/02. Analyzing with IPython.html
9.0 kB
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1.html
9.0 kB
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers.html
9.0 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/25. Video DATE Functions.html
9.0 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/05. Text Subquery Formatting.html
9.0 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Video Data Types (Continuous vs. Discrete).html
9.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/04. Program Structure and Schedule.html
9.0 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Video Percentiles.html
9.0 kB
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization.html
9.0 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt
9.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size.html
9.0 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/15. Gapminder Data.html
9.0 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/32. Missing POIs 4 (optional).html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization.html
9.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/18. Solution Type and Type Conversion.html
9.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/14. Programmatic Assessment.html
9.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/23. Overfitting a Decision Tree 1.html
9.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Phase II Clinical Trial Data.html
9.0 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/13. Mean Price by Clarity.html
9.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/Project Rubric - Optimize Your GitHub Profile.html
9.0 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Video Calculating the p-value.html
9.0 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/03. Python Dictionaries.html
9.0 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.en.vtt
9.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price.html
9.0 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/16. Solutions COALESCE.html
9.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship.html
9.0 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/09. Video MIN MAX.html
9.0 kB
Part 16-Module 01-Lesson 03_SVM/32. Deploy an RBF Kernel.html
9.0 kB
Part 18-Module 01-Lesson 03_Control Flow/01. Introduction.html
9.0 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/19. Video DISTINCT.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/18. Assess (Summary).html
9.0 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/05. Quiz 4 Probability.html
8.9 kB
Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature.html
8.9 kB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/01. Project Overview.html
8.9 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Video Data Types (Ordinal vs. Nominal).html
8.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate.html
8.9 kB
Part 16-Module 01-Lesson 03_SVM/37. How Many Chris Emails Predicted.html
8.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing vs. Exploring.html
8.9 kB
Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.ar.vtt
8.9 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/13. Size of the Enron Dataset.html
8.9 kB
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression.html
8.9 kB
Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video.html
8.9 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/15. Building Program Pieces II.html
8.9 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/10. Video Traditional Confidence Intervals.html
8.9 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/18. Query the Dataset 1.html
8.9 kB
Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary.html
8.9 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Screencast Multicollinearity VIFs.html
8.9 kB
Part 04-Module 01-Lesson 16_Logistic Regression/31. Video Final Thoughts On Shifting to Machine Learning.html
8.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/20. Quiz DISTINCT.html
8.9 kB
Part 15-Module 01-Lesson 05_Interview Practice/02. Quiz Analyzing an Interview.html
8.9 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.en.vtt
8.9 kB
Part 02-Module 02-Lesson 01_Python Project/Project Description - Explore US Bikeshare Data.html
8.9 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/12. Next Steps.html
8.9 kB
Part 18-Module 01-Lesson 03_Control Flow/12. Solution For Loops Practice.html
8.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/10. Video AVG.html
8.8 kB
Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie.html
8.8 kB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1.html
8.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/05. Walkthrough and Dataset.html
8.8 kB
Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM.html
8.8 kB
Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn.html
8.8 kB
Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs.html
8.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/15. Finding POIs in the Enron Data.html
8.8 kB
Part 18-Module 01-Lesson 05_Scripting/19. Solution Reading and Writing Files.html
8.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset.html
8.8 kB
Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array.html
8.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/30. Video CASE Aggregations.html
8.8 kB
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3.html
8.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/04. Video Fitting Logistic Regression in Python.html
8.8 kB
Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick.html
8.8 kB
Part 16-Module 01-Lesson 14_Validation/12. GridSearchCV in sklearn.html
8.8 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt
8.8 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/09. Built-in Functions.html
8.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/03. A Definition and An Analogy.html
8.8 kB
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2.html
8.8 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1.html
8.8 kB
Part 01-Module 02-Lesson 02_Explore Weather Trends/Project Description - Explore Weather Trends.html
8.8 kB
Part 08-Module 03-Lesson 01_Assessing Data/06. Assessment Types vs. Steps.html
8.8 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Video Why are Sampling Distributions Important.html
8.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price.html
8.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/33. Missing POIs 5 (optional).html
8.8 kB
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2.html
8.8 kB
Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.ar.vtt
8.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/02. Lesson Outline.html
8.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/27. Dealing with Unfilled Features.html
8.8 kB
Part 18-Module 01-Lesson 03_Control Flow/27. Solution Break, Continue.html
8.8 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.pt-BR.vtt
8.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/07. Video (ScreenCast) Interpret Results - Part II.html
8.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/12. Datasets and Questions Mini-Project.html
8.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/16. How Many POIs Exist.html
8.8 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/03. Customizing Your Profile.html
8.8 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome!.html
8.8 kB
Part 04-Module 01-Lesson 04_Probability/17. Even Roll.html
8.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/34. Missing POIs 6 (optional).html
8.8 kB
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters.html
8.8 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients.html
8.8 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1.html
8.8 kB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability.html
8.8 kB
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5.html
8.8 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/10. String Keys Practice.html
8.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram.html
8.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data.html
8.8 kB
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors.html
8.8 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. Video CAST.html
8.8 kB
Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter.html
8.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/31. Missing POIs 3 (optional).html
8.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/06. Video SUM.html
8.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/01. Video Introduction.html
8.8 kB
Part 18-Module 01-Lesson 04_Functions/08. Documentation.html
8.8 kB
Part 04-Module 01-Lesson 04_Probability/13. One Head 1.html
8.7 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/10. Quiz Subquery Mania.html
8.7 kB
Part 03-Module 03-Lesson 02_SQL Joins/10. Video Alias.html
8.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/02. Video Fitting Logistic Regression.html
8.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/17. Problems with Incomplete Data.html
8.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age.html
8.7 kB
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means.html
8.7 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Implementing the Program.html
8.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/09. Univariate Feature Selection.html
8.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/15. Solutions Aliases for Multiple Window Functions.html
8.7 kB
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2.html
8.7 kB
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin.html
8.7 kB
Part 03-Module 01-Lesson 01_Anaconda/05. Managing environments.html
8.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/20. Query the Dataset 3.html
8.7 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data.html
8.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/06. Video Interpreting Results - Part I.html
8.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/31. Accuracy of the Overfit Tree.html
8.7 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/Project Rubric - Technical Interview Practice.html
8.7 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Video Data Types (Quantitative vs. Categorical).html
8.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/22. Solutions Percentiles.html
8.7 kB
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2.html
8.7 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Video Other Sampling Distributions.html
8.7 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/08. NumPy Matrix Multiplication.html
8.7 kB
Part 11-Module 01-Lesson 01_What is Version Control/01. What is Version Control.html
8.7 kB
Part 18-Module 01-Lesson 05_Scripting/11. Errors and Exceptions.html
8.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps.html
8.7 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Video JOINing Subqueries.html
8.7 kB
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rule.html
8.7 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles.html
8.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size.html
8.7 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Video Introduction to Notation.html
8.7 kB
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression.html
8.7 kB
Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier.html
8.7 kB
Part 16-Module 01-Lesson 03_SVM/27. SVM Mini-Project.html
8.7 kB
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4.html
8.7 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/13. Carat Frequency Polygon.html
8.7 kB
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2.html
8.7 kB
Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary.html
8.7 kB
Part 09-Module 01-Lesson 02_Design/09. Design Integrity.html
8.7 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/16. Building Program Pieces III.html
8.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/24. Overfitting a Decision Tree 2.html
8.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/19. Query the Dataset 2.html
8.6 kB
Part 16-Module 01-Lesson 14_Validation/17. Your First (Overfit) POI Identifier.html
8.6 kB
Part 04-Module 01-Lesson 16_Logistic Regression/33. Video Congratulations.html
8.6 kB
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1.html
8.6 kB
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3.html
8.6 kB
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4.html
8.6 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/14. Bar Charts of Mean Price.html
8.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.pt-BR.vtt
8.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/16. Sean's NFL Fan Sentiment Study.html
8.6 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/09. Quiz Self JOINs.html
8.6 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/12. Dictionaries.html
8.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8.html
8.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7.html
8.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview.html
8.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/26. Accuracy of Your Overfit Decision Tree.html
8.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/27. Communicating Results Practice.html
8.6 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/05. Quiz Window Functions 2.html
8.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/28. Dict-to-array conversion.html
8.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1.html
8.6 kB
Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots.html
8.6 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/06. Text General Notes for Building Data Dashboards with Trina.html
8.6 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/06. Solutions Window Functions 2.html
8.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/30. Missing POIs 2 (optional).html
8.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4.html
8.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/26. Unfilled Features.html
8.5 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/01. Project Overview.html
8.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features.html
8.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video.html
8.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Video Dummy Variables Recap.html
8.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/img/client-server.png
8.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/27. Text Recap.html
8.5 kB
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency.html
8.5 kB
Part 03-Module 03-Lesson 02_SQL Joins/07. Text Primary and Foreign Keys.html
8.5 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. Video JOINs with Comparison Operators.html
8.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size.html
8.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3.html
8.5 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/02. Self-Practice Behavioral Questions.html
8.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video.html
8.5 kB
Part 18-Module 01-Lesson 05_Scripting/07. Editing a Python Script.html
8.5 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Write the Introduction.html
8.5 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/02. Text Optional Lessons Note.html
8.5 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.zh-CN.vtt
8.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations.html
8.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/13. Gather (Summary).html
8.5 kB
Part 16-Module 01-Lesson 09_Clustering/21. Clustering with 3 Features.html
8.5 kB
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters.html
8.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/14. Features in the Enron Dataset.html
8.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/01. Introduction.html
8.5 kB
Part 18-Module 01-Lesson 05_Scripting/16. Accessing Error Messages.html
8.5 kB
Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analyses.html
8.5 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/01. Diamonds.html
8.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing.html
8.5 kB
Part 04-Module 01-Lesson 14_Regression/10. Video What Defines A Line.html
8.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2.html
8.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/24. Enron CFO.html
8.5 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2.html
8.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion.html
8.5 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum.html
8.5 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/22. Enron CEO.html
8.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/24. Clean (Summary).html
8.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information.html
8.4 kB
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions.html
8.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files on Hand.html
8.4 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/23. Enron Chairman.html
8.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types of Errors - Part I.html
8.4 kB
Part 04-Module 01-Lesson 14_Regression/02. Video Introduction to Machine Learning.html
8.4 kB
Part 16-Module 01-Lesson 08_Outliers/12. Slope After Cleaning.html
8.4 kB
Part 18-Module 01-Lesson 03_Control Flow/34. Conclusion.html
8.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!.html
8.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!.html
8.4 kB
Part 18-Module 01-Lesson 05_Scripting/01. Introduction.html
8.4 kB
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3.html
8.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size.html
8.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots.html
8.4 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About with More Than Two Variables.html
8.4 kB
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition).html
8.4 kB
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric.html
8.4 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula.html
8.4 kB
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories.html
8.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection.html
8.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4.html
8.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5.html
8.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6.html
8.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2.html
8.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing.html
8.4 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/03. Quiz Window Functions 1.html
8.4 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI.html
8.4 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/04. Solutions LEFT RIGHT.html
8.4 kB
Part 03-Module 01-Lesson 01_Anaconda/04. Managing packages.html
8.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/01. Video Introduction to Aggregation.html
8.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature.html
8.4 kB
Part 04-Module 01-Lesson 14_Regression/16. Video How to Interpret the Results.html
8.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/05. Video COUNT NULLs.html
8.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data.html
8.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics.html
8.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye.html
8.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1.html
8.4 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/18. Solutions Comparing a Row to Previous Row.html
8.4 kB
Part 11-Module 01-Lesson 06_Undoing Changes/03. Reverting A Commit.html
8.4 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/08. Quiz ROW_NUMBER RANK.html
8.4 kB
assets/css/fonts/KaTeX_Size3-Regular.ttf
8.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/22. Video HAVING.html
8.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression.html
8.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. Video Welcome!.html
8.4 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3.html
8.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/24. Other File Formats.html
8.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization.html
8.3 kB
Part 15-Module 02-Lesson 02_List-Based Collections/04. Python Lists.html
8.3 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/05. ScreenCast Difference In Means.html
8.3 kB
Part 04-Module 01-Lesson 14_Regression/17. Video Does the Line Fit the Data Well.html
8.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Video Introduction to Summary Statistics.html
8.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical of Outliers and Anomalies.html
8.3 kB
Part 16-Module 01-Lesson 09_Clustering/22. Stock Option Range.html
8.3 kB
Part 15-Module 02-Lesson 06_Graphs/05. Graph Practice.html
8.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion.html
8.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/22. Feature Selection Mini-Project.html
8.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty.html
8.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes.html
8.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation.html
8.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3.html
8.3 kB
Part 18-Module 01-Lesson 04_Functions/11. Lambda Expressions.html
8.3 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/03. Quiz LEFT RIGHT.html
8.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width.html
8.3 kB
Part 16-Module 01-Lesson 11_Text Learning/19. Clean Away Signature Words.html
8.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data.html
8.3 kB
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3.html
8.3 kB
Part 09-Module 01-Lesson 02_Design/02. Lesson Overview.html
8.3 kB
Part 03-Module 03-Lesson 02_SQL Joins/15. Text Other JOIN Notes.html
8.3 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/07. Load Factor.html
8.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/19. How Data Gets Dirty and Messy.html
8.3 kB
Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library.html
8.3 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/12. Solutions Aggregates in Window Functions.html
8.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate!.html
8.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics.html
8.3 kB
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords.html
8.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.en.vtt
8.3 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/12. Video Other Language Associated with Confidence Intervals.html
8.3 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/20. Recap.html
8.2 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/09. Quiz CONCAT.html
8.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge.html
8.2 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/02. Video Introduction to NULLs.html
8.2 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing.html
8.2 kB
Part 16-Module 01-Lesson 09_Clustering/19. Clustering Features.html
8.2 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/11. Interquartile Range - IQR.html
8.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Introduce Instructors.html
8.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2.html
8.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/03. Dataset Finding the Best Movies.html
8.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.pt-BR.vtt
8.2 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/16. Gapminder Revisited.html
8.2 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/05. For Loops II.html
8.2 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited.html
8.2 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/03. Meet the Team.html
8.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum.html
8.2 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/33. Text Recap.html
8.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means.html
8.2 kB
Part 03-Module 03-Lesson 02_SQL Joins/05. Solution Your First JOIN.html
8.2 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/05. Paired T-test Quiz.html
8.2 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/14. Assessing and Building Intuition.html
8.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Video Data Types Summary.html
8.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.en.vtt
8.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. Video What is Data Why is it important.html
8.2 kB
Part 18-Module 01-Lesson 05_Scripting/10. Solution Scripting with Raw Input.html
8.2 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/09. Solutions ROW_NUMBER RANK.html
8.2 kB
Part 08-Module 03-Lesson 01_Assessing Data/02. Lesson Outline.html
8.2 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/04. Solutions Window Functions 1.html
8.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape.html
8.2 kB
Part 12-Module 01-Lesson 01_GitHub Review/Project Description - Optimize Your GitHub Profile.html
8.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1.html
8.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2.html
8.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax.html
8.2 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/02. Video From Sampling Distributions to Confidence Intervals.html
8.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots.html
8.2 kB
Part 16-Module 01-Lesson 09_Clustering/20. Deploying Clustering.html
8.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.ar.vtt
8.2 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/13. Reading CSV Files.html
8.1 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/18. Cleaning Practice.html
8.1 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt
8.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/03. Meet the Team.html
8.1 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Screencast Fitting A Multiple Linear Regression Model.html
8.1 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/11. Gapminder Multivariate Analysis.html
8.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations.html
8.1 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/14. Video Correct Interpretations of Confidence Intervals.html
8.1 kB
Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn.html
8.1 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/09. Statistical vs. Practical Significance.html
8.1 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/04. Solutions Write Your First Subquery.html
8.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4.html
8.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight.html
8.1 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/08. Video Statistical vs. Practical Significance.html
8.1 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/13. Conclusions Visuals.html
8.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data.html
8.1 kB
Part 08-Module 04-Lesson 01_Cleaning Data/02. Lesson Outline.html
8.1 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt
8.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question.html
8.1 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/Project Description - Investigate a Dataset.html
8.1 kB
Part 01-Module 02-Lesson 02_Explore Weather Trends/01. Project Instructions.html
8.1 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/14. Your Udacity Professional Profile.html
8.1 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/10. Solutions CONCAT.html
8.1 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/05. Proportion of Friendships Initiated.html
8.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme.html
8.1 kB
Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/04. Final Check of Instructions.html
8.1 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Video WITH.html
8.1 kB
Part 09-Module 01-Lesson 02_Design/19. Same Data, Different Stories.html
8.1 kB
Part 16-Module 01-Lesson 14_Validation/13. GridSearchCV in sklearn.html
8.1 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Screencast How to Add Higher Order Terms.html
8.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps.html
8.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors.html
8.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/13. Video Motivation for Other JOINs.html
8.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/Project Description - Technical Interview Practice.html
8.1 kB
Part 15-Module 01-Lesson 05_Interview Practice/08. Keep Practicing!.html
8.1 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/04. Solutions FULL OUTER JOIN.html
8.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer.html
8.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables.html
8.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Video Higher Order Terms.html
8.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2.html
8.0 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/07. Projects.html
8.0 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I.html
8.0 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots.html
8.0 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/03. Binary Search Practice.html
8.0 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias.html
8.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.ar.vtt
8.0 kB
Part 18-Module 01-Lesson 05_Scripting/23. Solution The Standard Library.html
8.0 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/18. Matplotlib Example.html
8.0 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Video Aliases for Multiple Window Functions.html
8.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Screencast Dummy Variables.html
8.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model.html
8.0 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions.html
8.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/14. Your Udacity Professional Profile.html
8.0 kB
Part 16-Module 01-Lesson 09_Clustering/23. Salary Range.html
8.0 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/03. ScreenCast Sampling Distributions and Confidence Intervals.html
8.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Video Interpreting Interactions.html
8.0 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/06. Cleaning Column Labels.html
8.0 kB
Part 04-Module 01-Lesson 14_Regression/04. Video Introduction to Linear Regression.html
8.0 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data.html
8.0 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/11. ScreenCast Traditional Confidence Interval Methods.html
8.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds.html
8.0 kB
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron.html
8.0 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2.html
8.0 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1.html
8.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/17. Resources in Your Career Portal.html
8.0 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/16. Results with Merged Dataset.html
8.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods.html
8.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Video Potential Problems.html
8.0 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/05. Git Diff.html
8.0 kB
Part 18-Module 01-Lesson 05_Scripting/15. Solution Handling Input Errors.html
8.0 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting with Appending.html
8.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1.html
8.0 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.pt-BR.vtt
7.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.pt-BR.vtt
7.9 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous.html
7.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/07. Solutions JOINs with Comparison Operators.html
7.9 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/03. Quiz 2 Messy Data.html
7.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data.html
7.9 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/Project Description - Craft Your Cover Letter.html
7.9 kB
Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.ar.vtt
7.9 kB
Part 04-Module 01-Lesson 14_Regression/15. Screencast Fitting A Regression Line in Python.html
7.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation.html
7.9 kB
Part 18-Module 01-Lesson 05_Scripting/29. Conclusion.html
7.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.en.vtt
7.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts.html
7.9 kB
Part 04-Module 01-Lesson 04_Probability/20. Text Recap + Next Steps.html
7.9 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt
7.9 kB
Part 02-Module 01-Lesson 04_Files and Modules/04. Variable Scope.html
7.9 kB
Part 04-Module 01-Lesson 14_Regression/22. Text Recap + Next Steps.html
7.9 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads.html
7.9 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Video POSITION, STRPOS, SUBSTR.html
7.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!.html
7.9 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2.html
7.9 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3.html
7.9 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads.html
7.9 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads.html
7.9 kB
Part 16-Module 01-Lesson 11_Text Learning/17. Warming Up with parseOutText().html
7.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/19. Mashup Solution.html
7.9 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. Video + Text What's Ahead.html
7.9 kB
Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings.html
7.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris.html
7.9 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head.html
7.9 kB
Part 04-Module 01-Lesson 14_Regression/13. Video Fitting A Regression Line.html
7.9 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Video Recap.html
7.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/10. Solutions Self JOINs.html
7.9 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/10. Price Box Plots.html
7.9 kB
Part 18-Module 01-Lesson 04_Functions/04. Solution Defining Functions.html
7.9 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/12. Price per Carat Box Plots by Color.html
7.9 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/04. Errors.html
7.9 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula.html
7.9 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2.html
7.9 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation.html
7.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.ar.vtt
7.9 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Video More On Subqueries.html
7.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements.html
7.8 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/04. Top Section.html
7.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate.html
7.8 kB
Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2.html
7.8 kB
Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2.html
7.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example.html
7.8 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/20. Type Quality Plot with Matplotlib.html
7.8 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4.html
7.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails.html
7.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Handoff to Juno Lee.html
7.8 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/13. Solutions UNION.html
7.8 kB
Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.ar.vtt
7.8 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/Project Rubric - Analyze AB Test Results.html
7.8 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/03. Lists II.html
7.8 kB
Part 16-Module 01-Lesson 08_Outliers/14. Enron Outliers.html
7.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data with Visuals.html
7.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example.html
7.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5.html
7.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6.html
7.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3.html
7.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4.html
7.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes.html
7.8 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/07. Video Confidence Interval Applications.html
7.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios.html
7.8 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/11. Time for Live Practice with Pramp.html
7.8 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/08. Coding 2-qEteyPNRSwU.en.vtt
7.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.ar.vtt
7.8 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/10. Creating a slideshow.html
7.8 kB
Part 16-Module 01-Lesson 08_Outliers/10. Slope of Regression with Outliers.html
7.8 kB
Part 03-Module 03-Lesson 02_SQL Joins/18. Video JOINs and Filtering.html
7.8 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/07. Resume Review (Prior Industry Experience).html
7.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First.html
7.8 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt
7.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial.html
7.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation.html
7.8 kB
Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness.html
7.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling and EDA.html
7.8 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability.html
7.8 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Projects.html
7.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results.html
7.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables.html
7.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/17. Text Recap + Next Steps.html
7.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting with Pandas.html
7.7 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Video + Text Recap.html
7.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.en.vtt
7.7 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/08. Solutions More On Subqueries.html
7.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions.html
7.7 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/08. Click Through Rate.html
7.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.pt-BR.vtt
7.7 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/09. Fixing Data Types Pt 1.html
7.7 kB
Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/Project Rubric - Test a Perceptual Phenomenon.html
7.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example.html
7.7 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/09. Bubble Sort Practice.html
7.7 kB
Part 18-Module 01-Lesson 04_Functions/16. [Optional] Solution Iterators and Generators.html
7.7 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. How Do I Find Time for My Nanodegree.html
7.7 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/12. Merge Sort Practice.html
7.7 kB
Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.ar.vtt
7.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data.html
7.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!.html
7.7 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/Project Description - Analyze AB Test Results.html
7.7 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/07. Resume Review (Career Change).html
7.7 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset.html
7.7 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview.html
7.7 kB
Part 16-Module 01-Lesson 11_Text Learning/18. Deploying Stemming.html
7.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose.html
7.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction.html
7.7 kB
Part 16-Module 01-Lesson 07_Regressions/index.html
7.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Video Introduction to Window Functions.html
7.7 kB
Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac.html
7.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion.html
7.7 kB
Part 09-Module 01-Lesson 02_Design/16. General Design Tips.html
7.7 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/13. Solutions CAST.html
7.7 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value.html
7.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.ja.vtt
7.7 kB
Part 03-Module 03-Lesson 02_SQL Joins/03. Video Introduction to JOINs.html
7.7 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value.html
7.7 kB
Part 04-Module 01-Lesson 14_Regression/01. Video Introduction.html
7.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Video Aggregates in Window Functions.html
7.7 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/09. Price per Carat by Cut.html
7.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.ar.vtt
7.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/05. DAP Overview-qdV4sifMmWI.zh-CN.vtt
7.6 kB
Part 16-Module 01-Lesson 14_Validation/18. Deploying a TrainingTesting Regime.html
7.6 kB
Part 09-Module 01-Lesson 02_Design/21. Recap.html
7.6 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/06. Quiz POSITION, STRPOS, SUBSTR - AME DATA AS QUIZ 1.html
7.6 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Video Introduction to Percentiles.html
7.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. How Do I Find Time for My Nanodegree.html
7.6 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/07. Resume Review (Entry-level).html
7.6 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/06. prop_initiated vs. tenure.html
7.6 kB
Part 15-Module 02-Lesson 02_List-Based Collections/12. Queue Practice.html
7.6 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/12. Adjustments - price vs. volume.html
7.6 kB
Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.ar.vtt
7.6 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/05. Cheaper Diamonds.html
7.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather (CSV Files).html
7.6 kB
Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages.html
7.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset.html
7.6 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review.html
7.6 kB
Part 16-Module 01-Lesson 08_Outliers/17. Any More Outliers.html
7.6 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data.html
7.6 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Video ROW_NUMBER RANK.html
7.6 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/Project Description - Wrangle and Analyze Data.html
7.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.en.vtt
7.6 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Video Recap.html
7.6 kB
Part 16-Module 01-Lesson 10_Feature Scaling/17. When to Deploy Feature Scaling.html
7.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather (Intro).html
7.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate.html
7.6 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots.html
7.6 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/14. Types of Merges.html
7.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/21. Assessing Summary.html
7.6 kB
Part 16-Module 01-Lesson 11_Text Learning/20. TfIdf It.html
7.6 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Video LEFT RIGHT.html
7.6 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/05. Adjustments - price vs. depth.html
7.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion.html
7.6 kB
Part 03-Module 01-Lesson 01_Anaconda/03. Installing Anaconda.html
7.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction.html
7.6 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/09. Solution Video More On Subqueries.html
7.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/26. Gathering Summary.html
7.5 kB
Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/01. Project Overview.html
7.5 kB
Part 15-Module 02-Lesson 05_Trees/04. Tree Practice.html
7.5 kB
Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual.html
7.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion.html
7.5 kB
Part 18-Module 01-Lesson 04_Functions/09. Quiz Documentation.html
7.5 kB
Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.pt-BR.vtt
7.5 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Video Introduction.html
7.5 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions.html
7.5 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation.html
7.5 kB
Part 08-Module 03-Lesson 01_Assessing Data/08. Visual Assessment Acquaint Yourself.html
7.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.ar.vtt
7.5 kB
Part 16-Module 01-Lesson 08_Outliers/19. Remove These Outliers.html
7.5 kB
Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.pt-BR.vtt
7.5 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration.html
7.5 kB
Part 16-Module 01-Lesson 08_Outliers/18. Identifying Two More Outliers.html
7.5 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending and NumPy.html
7.4 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/07. Appending Data.html
7.4 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/08. Date Projection.html
7.4 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.pt-BR.vtt
7.4 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/15. Dictionaries IV.html
7.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.pt-BR.vtt
7.4 kB
Part 16-Module 01-Lesson 09_Clustering/18. K-Means Clustering Mini-Project.html
7.4 kB
Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn.html
7.4 kB
Part 09-Module 01-Lesson 02_Design/07. Chart Junk.html
7.4 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/07. Most Frequent Word.html
7.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.en.vtt
7.4 kB
Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.en.vtt
7.4 kB
Part 09-Module 01-Lesson 02_Design/12. Text Effective Explanatory Visual Recap.html
7.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/index.html
7.4 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Video Subquery Conclusion.html
7.4 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations.html
7.4 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/03. Scripting Your Analysis.html
7.4 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate.html
7.4 kB
Part 09-Module 01-Lesson 02_Design/13. Using Color.html
7.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction.html
7.4 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.en.vtt
7.4 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components.html
7.4 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/01. Project Overview.html
7.4 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/04. Price vs. Volume and Diamond Clarity.html
7.4 kB
Part 16-Module 01-Lesson 10_Feature Scaling/16. Computing Rescaled Features.html
7.4 kB
Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3.html
7.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.ar.vtt
7.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/index.html
7.4 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/13. Meet the Careers Team.html
7.4 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview.html
7.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/22. Conclusion.html
7.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.ar.vtt
7.4 kB
Part 16-Module 01-Lesson 08_Outliers/16. Remove Enron Outlier.html
7.4 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/13. Resources in Your Career Portal.html
7.4 kB
Part 18-Module 01-Lesson 04_Functions/07. Solution Variable Scope.html
7.4 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Case Study Introduction.html
7.4 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/07. Solutions POSITION, STRPOS, SUBSTR.html
7.4 kB
Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects.html
7.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.en.vtt
7.3 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/02. Linear Regression Models.html
7.3 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II.html
7.3 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/01. Price Histograms with Facet and Color.html
7.3 kB
Part 09-Module 02-Lesson 01_Create a Tableau Story/Project Description - Create a Tableau Story.html
7.3 kB
Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.ja.vtt
7.3 kB
Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means.html
7.3 kB
Part 18-Module 01-Lesson 04_Functions/10. Solution Documentation.html
7.3 kB
Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio.html
7.3 kB
Part 18-Module 01-Lesson 04_Functions/18. Conclusion.html
7.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/index.html
7.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/index.html
7.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/index.html
7.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/12. Meet the Careers Team.html
7.3 kB
Part 02-Module 02-Lesson 01_Python Project/02. Project Details.html
7.3 kB
Part 04-Module 01-Lesson 14_Regression/21. Video Recap.html
7.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.pt-BR.vtt
7.3 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots.html
7.3 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview.html
7.3 kB
Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning.html
7.3 kB
Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/Project Description - Test a Perceptual Phenomenon.html
7.3 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/img/resid-plots.gif
7.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.ar.vtt
7.3 kB
Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items.html
7.3 kB
Part 16-Module 01-Lesson 08_Outliers/15. Identify the Biggest Enron Outlier.html
7.3 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/16. Video Confidence Intervals Hypothesis Tests.html
7.3 kB
Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn.html
7.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.pt-BR.vtt
7.3 kB
Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.pt-BR.vtt
7.3 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type Quality Plot - Part 1.html
7.3 kB
Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction.html
7.3 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/14. Pandas Query.html
7.3 kB
Part 16-Module 01-Lesson 11_Text Learning/21. Accessing TfIdf Features.html
7.3 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/10. PriceCarat Binned, Faceted, Colored.html
7.3 kB
Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter.html
7.3 kB
Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies.html
7.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty vs. Messy 1.html
7.2 kB
Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie.html
7.2 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Video Self JOINs.html
7.2 kB
Part 09-Module 01-Lesson 02_Design/18. Tell A Story.html
7.2 kB
Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.ar.vtt
7.2 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Video Communicating With Your Data.html
7.2 kB
Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion.html
7.2 kB
Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video.html
7.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/index.html
7.2 kB
Part 18-Module 01-Lesson 04_Functions/01. Introduction.html
7.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.ar.vtt
7.2 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/09. price vs. volume.html
7.2 kB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/04. Evaluation and Submission.html
7.2 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview.html
7.2 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/09. Iterative Programming III.html
7.2 kB
Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment.html
7.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/13. Access Your Career Portal.html
7.2 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/01. Video Introduction.html
7.2 kB
Part 16-Module 01-Lesson 11_Text Learning/16. Text Learning Mini-Project.html
7.2 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby.html
7.2 kB
Part 16-Module 01-Lesson 09_Clustering/12. Sklearn.html
7.2 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example.html
7.2 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/02. Price vs. Table Colored by Cut.html
7.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/15. What Kind of Scaling.html
7.2 kB
Part 08-Module 04-Lesson 01_Cleaning Data/08. Address Missing Data First.html
7.2 kB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.ar.vtt
7.2 kB
Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring.html
7.2 kB
Part 18-Module 01-Lesson 04_Functions/06. Variable Scope.html
7.2 kB
Part 18-Module 01-Lesson 04_Functions/13. Solution Lambda Expressions.html
7.1 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/19. Plotting with Matplotlib.html
7.1 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Video Hierarchies with Trina.html
7.1 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.ar.vtt
7.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-FC_GNjqj5zI.zh-CN.vtt
7.1 kB
Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy.html
7.1 kB
Part 07-Module 01-Lesson 02_R Basics/15. Data Munging.html
7.1 kB
Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary.html
7.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/01. Video Motivation.html
7.1 kB
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes.html
7.1 kB
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.ar.vtt
7.1 kB
Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2.html
7.1 kB
Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video.html
7.1 kB
Part 07-Module 01-Lesson 02_R Basics/09. Getting Help.html
7.1 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.ar.vtt
7.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.ar.vtt
7.1 kB
Part 15-Module 01-Lesson 05_Interview Practice/09. Resources in Your Career Portal.html
7.1 kB
Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning.html
7.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Data Visualization Introduction.html
7.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.en.vtt
7.1 kB
Part 08-Module 03-Lesson 01_Assessing Data/03. Dataset Oral Insulin Clinical Trial Data-R-HT78SPxpE.zh-CN.vtt
7.1 kB
Part 08-Module 04-Lesson 01_Cleaning Data/03. Dataset Oral Insulin Clinical Trial Data -R-HT78SPxpE.zh-CN.vtt
7.1 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/17. Cleaning Example-7bnSPYtPDzQ.zh-CN.vtt
7.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Conclusion.html
7.1 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/07. Completing and Submitting this Project in the Classroom.html
7.0 kB
Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit.html
7.0 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/07. Correlation - price and depth.html
7.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. David's Data Wrangling Example-TN-CWy3GK44.zh-CN.vtt
7.0 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2.html
7.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/16. Outro.html
7.0 kB
Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project.html
7.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/16. Text Summary.html
7.0 kB
Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words.html
7.0 kB
Part 03-Module 01-Lesson 01_Anaconda/06. More environment actions.html
7.0 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. Video COALESCE.html
7.0 kB
Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.pt-BR.vtt
7.0 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/08. Resources in Your Career Portal.html
7.0 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/11. Code with Branches V.html
7.0 kB
Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data.html
7.0 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion.html
7.0 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Video Introduction to SQL Data Cleaning.html
7.0 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Video Performance Tuning Motivation.html
7.0 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/11. Correlations on Subsets.html
7.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1.html
7.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2.html
7.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3.html
7.0 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.en-US.vtt
7.0 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.en.vtt
7.0 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/07. Smoothing prop_initiated vs. tenure.html
7.0 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Video Introduction to Advanced SQL.html
7.0 kB
Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video.html
7.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/10. Solution Missing Data.html
7.0 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Video Introduction to Subqueries.html
7.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/06. Cleaning Sequences.html
7.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/09. Quiz Missing Data.html
7.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/13. Solution Tidiness.html
7.0 kB
Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK.html
7.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/16. Solution Quality.html
7.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.en.vtt
7.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/12. Quiz Tidiness.html
7.0 kB
Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm.html
7.0 kB
assets/css/fonts/KaTeX_Size1-Regular.woff
7.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/15. Quiz Quality.html
7.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/index.html
7.0 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding-zhQYREUI8Z0.zh-CN.vtt
7.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository.html
7.0 kB
Part 16-Module 01-Lesson 08_Outliers/11. Score of Regression with Outliers.html
7.0 kB
Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows.html
7.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/index.html
7.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 1-nDWAZOU3W3U.zh-CN.vtt
7.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/19. Cleaning Summary.html
7.0 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards.html
7.0 kB
Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables.html
6.9 kB
Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction.html
6.9 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/08. Resources in Your Career Portal.html
6.9 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type Quality Plot - Part 2.html
6.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Video Performance Tuning 2.html
6.9 kB
Part 09-Module 01-Lesson 02_Design/01. Introduction.html
6.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Video Performance Tuning 3.html
6.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Video SQL Completion Congratulations.html
6.9 kB
Part 09-Module 02-Lesson 01_Create a Tableau Story/01. Project Overview.html
6.9 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/08. Resources in Your Career Portal.html
6.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales.html
6.9 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/09. Converting notebooks.html
6.9 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/06. Price by Cut Histograms.html
6.9 kB
Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video.html
6.9 kB
Part 16-Module 01-Lesson 08_Outliers/13. Score After Cleaning.html
6.9 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. Video CONCAT.html
6.9 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next.html
6.9 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.en.vtt
6.9 kB
Part 04-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.en.vtt
6.9 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics.html
6.9 kB
Part 09-Module 01-Lesson 02_Design/22. Onwards!.html
6.9 kB
Part 16-Module 01-Lesson 13_PCA/index.html
6.9 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/01. price vs. x.html
6.9 kB
Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.en.vtt
6.9 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.ar.vtt
6.9 kB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/05. Example Project.html
6.9 kB
Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes #1.html
6.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video.html
6.9 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/09. Resources in Your Career Portal.html
6.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/09. Quality Visual Assessment 1 -XfKc5PtJ7cc.zh-CN.vtt
6.9 kB
Part 16-Module 01-Lesson 08_Outliers/09. Outliers Mini-Project.html
6.9 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/03. Typical Table Value.html
6.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.ar.vtt
6.9 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/04. price vs. depth.html
6.9 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/04. Diamond Counts.html
6.9 kB
Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration.html
6.9 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/03. Correlations.html
6.9 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/Project Description - Udacity Professional Profile Review.html
6.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/12. Data Quality Dimensions 1-5UYGvKDsd-M.zh-CN.vtt
6.9 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/08. Resources in Your Career Portal.html
6.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.ar.vtt
6.8 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/08. price vs. carat.html
6.8 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/01. Project Details.html
6.8 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns.html
6.8 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/03. Personal Branding.html
6.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual vs. Programmatic Cleaning.html
6.8 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/11. Sets II.html
6.8 kB
Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists.html
6.8 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/05. Recruitment Data.html
6.8 kB
Part 03-Module 01-Lesson 01_Anaconda/08. Python Versions.html
6.8 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/01. Introduction.html
6.8 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/18. Introduction to Data Dashboards.html
6.8 kB
Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.ar.vtt
6.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.zh-CN.vtt
6.8 kB
Part 15-Module 02-Lesson 05_Trees/07. Tree Traversal Practice.html
6.8 kB
Part 03-Module 01-Lesson 01_Anaconda/07. Best practices.html
6.8 kB
Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.en.vtt
6.8 kB
Part 01-Module 02-Lesson 02_Explore Weather Trends/02. Accessing Data With SQL.html
6.8 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/05. Video Building Dashboards Stories with Trina.html
6.8 kB
Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn.html
6.8 kB
Part 11-Module 01-Lesson 06_Undoing Changes/02. Modifying The Last Commit.html
6.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.ar.vtt
6.8 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion.html
6.8 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Welcome Back!.html
6.8 kB
Part 07-Module 01-Lesson 02_R Basics/02. Why R.html
6.8 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/14. Data Wrangling with R.html
6.8 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.pt-BR.vtt
6.8 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/15. Quick Sort Practice.html
6.8 kB
Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.pt-BR.vtt
6.8 kB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/03. Project Template RMD File.html
6.8 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/06. Implementing the Program III.html
6.7 kB
Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA.html
6.7 kB
Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning for Tidiness.html
6.7 kB
Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning for Quality.html
6.7 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/02. Course Outline.html
6.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/index.html
6.7 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/index.html
6.7 kB
Part 18-Module 01-Lesson 04_Functions/17. [Optional] Generator Expressions.html
6.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.ar.vtt
6.7 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/02. Price Histogram.html
6.7 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips.html
6.7 kB
Part 07-Module 01-Lesson 02_R Basics/06. Ready to Explore Data.html
6.7 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/17. Compound Data Structures II.html
6.7 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/09. Reorganizing Code II.html
6.7 kB
Part 18-Module 01-Lesson 04_Functions/19. Further Learning.html
6.7 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/06. Choose-Your-Own Algorithm Checklist.html
6.7 kB
assets/css/fonts/KaTeX_Size2-Regular.woff
6.7 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/Project Description - Resume Review Project (Entry-level).html
6.7 kB
Part 16-Module 01-Lesson 14_Validation/16. Validation Mini-Project.html
6.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.ar.vtt
6.7 kB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.ar.vtt
6.7 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/04. Defining Functions III.html
6.7 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It.html
6.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.ar.vtt
6.7 kB
Part 08-Module 04-Lesson 01_Cleaning Data/17. Flashforward.html
6.7 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch.html
6.7 kB
Part 07-Module 01-Lesson 02_R Basics/17. Congratulations.html
6.7 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips.html
6.7 kB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability.html
6.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.zh-CN.vtt
6.6 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/08. Greatest prop_initiated Group.html
6.6 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion.html
6.6 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/Project Description - Resume Review Project (Prior Industry Experience).html
6.6 kB
Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.pt-BR.vtt
6.6 kB
Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.en.vtt
6.6 kB
Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.en.vtt
6.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files In Python 2-3caDGTxcoCw.pt-BR.vtt
6.6 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills.html
6.6 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.ar.vtt
6.6 kB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.en-US.vtt
6.6 kB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.en.vtt
6.6 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/11. Text Lesson Recap.html
6.6 kB
Part 01-Module 02-Lesson 02_Explore Weather Trends/Project Rubric - Explore Weather Trends.html
6.6 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/03. Completing and Submitting this Project - Two Options.html
6.6 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/06. Typical Depth Range.html
6.6 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format.html
6.6 kB
Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion.html
6.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.pt-BR.vtt
6.6 kB
Part 16-Module 01-Lesson 03_SVM/index.html
6.6 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/09. Check Rubric.html
6.6 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/08. Can You Beat Our High Score.html
6.6 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up.html
6.5 kB
Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability.html
6.5 kB
Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/02. Completing and Submitting this Project - Two Options.html
6.5 kB
Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals.html
6.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.ar.vtt
6.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary.html
6.5 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.pt-BR.vtt
6.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/index.html
6.5 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/08. Resources in Your Career Portal.html
6.5 kB
Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees.html
6.5 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/Project Description - Resume Review Project (Career Change).html
6.5 kB
Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees.html
6.5 kB
Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation.html
6.5 kB
Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion.html
6.5 kB
Part 15-Module 02-Lesson 05_Trees/08. Search and Delete.html
6.5 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review.html
6.5 kB
Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology.html
6.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.ar.vtt
6.5 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.ar.vtt
6.5 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.ja.vtt
6.5 kB
Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal.html
6.5 kB
Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations.html
6.5 kB
Part 02-Module 02-Lesson 01_Python Project/04. Code Cells.html
6.5 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.ar.vtt
6.5 kB
assets/css/fonts/KaTeX_Size4-Regular.woff
6.5 kB
Part 15-Module 02-Lesson 05_Trees/02. Tree Basics.html
6.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.ar.vtt
6.4 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Welcome Back!.html
6.4 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.en.vtt
6.4 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/12. Text Recap + Next Steps.html
6.4 kB
Part 16-Module 01-Lesson 10_Feature Scaling/14. Feature Scaling Mini-Project.html
6.4 kB
Part 15-Module 02-Lesson 05_Trees/16. Heapify.html
6.4 kB
Part 18-Module 01-Lesson 03_Control Flow/index.html
6.4 kB
Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.ar.vtt
6.4 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work.html
6.4 kB
Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.en.vtt
6.4 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Video Extra Practice with Dashboards.html
6.4 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/02. Getting Started.html
6.4 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review.html
6.4 kB
Part 07-Module 01-Lesson 02_R Basics/03. Using Windows.html
6.4 kB
Part 15-Module 02-Lesson 05_Trees/09. Insert.html
6.4 kB
Part 18-Module 01-Lesson 01_Why Python Programming/04. Course Overview.html
6.4 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome to Term 2 of the Data Analyst Nanodegree program.html
6.4 kB
Part 15-Module 02-Lesson 05_Trees/01. Trees.html
6.4 kB
Part 15-Module 02-Lesson 05_Trees/15. Heaps.html
6.4 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review.html
6.4 kB
Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.en.vtt
6.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/10. HTML Files in Python 1-0VZumC18UvQ.pt-BR.vtt
6.4 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/07. While Loops II.html
6.4 kB
Part 15-Module 02-Lesson 05_Trees/12. BSTs.html
6.4 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/13. Dictionaries II.html
6.4 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/01. Introduction.html
6.4 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/03. STAR Method.html
6.4 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question.html
6.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.pt-BR.vtt
6.4 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/02. Why Study a New Algorithm Solo.html
6.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/index.html
6.4 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction.html
6.4 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/01. Introduction.html
6.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.ja.vtt
6.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability.html
6.4 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/08. Project Workspace Complete and Submit Project.html
6.4 kB
Part 18-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.zh-CN.vtt
6.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.ar.vtt
6.3 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/09. Largest Group Mean prop_initiated.html
6.3 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/index.html
6.3 kB
Part 18-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.zh-CN.vtt
6.3 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion.html
6.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work.html
6.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs.html
6.3 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress.html
6.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis.html
6.3 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/10. Findings - price vs. volume.html
6.3 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences.html
6.3 kB
Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.ar.vtt
6.3 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!.html
6.3 kB
Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA.html
6.3 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative.html
6.3 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/03. Price Histogram Summary.html
6.3 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/02. Findings - price vs. x.html
6.3 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/03. Analyzing Behavioral Answers.html
6.3 kB
Part 02-Module 02-Lesson 01_Python Project/01. Project Overview.html
6.3 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Video Congratulations!.html
6.3 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/15. Trends in Mean Price.html
6.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming.html
6.3 kB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.ar.vtt
6.3 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/05. Resources in Your Career Portal.html
6.3 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Orientation Introduction.html
6.3 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/03. Candy Conundrum.html
6.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases.html
6.3 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects.html
6.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging.html
6.3 kB
Part 15-Module 02-Lesson 05_Trees/13. BST Complications.html
6.3 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Conclusion.html
6.3 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace.html
6.3 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure.html
6.3 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation.html
6.3 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/12. Study Habits of Successful Graduates.html
6.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.pt-BR.vtt
6.2 kB
Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course.html
6.2 kB
Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.es-MX.vtt
6.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress.html
6.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/index.html
6.2 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/07. Coding.html
6.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Looking Ahead.html
6.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.en.vtt
6.2 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences.html
6.2 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search.html
6.2 kB
Part 13-Module 01-Lesson 02_LinkedIn Review/02. Resources in Your Career Portal.html
6.2 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company.html
6.2 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences.html
6.2 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/04. Football Statistics.html
6.2 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort.html
6.2 kB
Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.pt-BR.vtt
6.2 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/05. Learning Plan - First Two Weeks.html
6.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.ar.vtt
6.2 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort.html
6.2 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort.html
6.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects.html
6.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Orientation Introduction.html
6.2 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/06. Skills.html
6.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary.html
6.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/11. Study Habits of Successful Graduates.html
6.2 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/index.html
6.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/index.html
6.1 kB
Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.ar.vtt
6.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting.html
6.1 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro.html
6.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer.html
6.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction.html
6.1 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.ar.vtt
6.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.ar.vtt
6.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search.html
6.1 kB
Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data.html
6.1 kB
Part 15-Module 01-Lesson 05_Interview Practice/01. Analyzing an Interview.html
6.1 kB
Part 13-Module 01-Lesson 02_LinkedIn Review/Project Description - LinkedIn Profile Review Project.html
6.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary.html
6.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort.html
6.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.ar.vtt
6.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort.html
6.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort.html
6.1 kB
Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.pt-BR.vtt
6.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/04. Recursion.html
6.1 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely.html
6.1 kB
Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-cXluuqCVg18.en.vtt
6.1 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components.html
6.1 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction.html
6.1 kB
Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database.html
6.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.pt-BR.vtt
6.0 kB
Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview.html
6.0 kB
Part 09-Module 02-Lesson 01_Create a Tableau Story/03. Share Your Work.html
6.0 kB
Part 07-Module 01-Lesson 01_What is EDA/01. Handoff to Chris Saden.html
6.0 kB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.ar.vtt
6.0 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1.html
6.0 kB
Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview.html
6.0 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers of Statistics.html
6.0 kB
Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.ar.vtt
6.0 kB
Part 18-Module 01-Lesson 05_Scripting/index.html
6.0 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.ar.vtt
6.0 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely.html
6.0 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network.html
6.0 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection.html
6.0 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components.html
6.0 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure.html
6.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.pt-BR.vtt
6.0 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely.html
6.0 kB
Part 03-Module 01-Lesson 01_Anaconda/01. Introduction.html
6.0 kB
Part 02-Module 02-Lesson 01_Python Project/07. Project Notebook.html
6.0 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components.html
6.0 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/05. Code cells.html
6.0 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/03. Accuracy vs. Training Set Size-9w1Yi5nMNgw.zh-CN.vtt
5.9 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion.html
5.9 kB
Part 02-Module 01-Lesson 04_Files and Modules/08. The Standard Library II.html
5.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/index.html
5.9 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson.html
5.9 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.ar.vtt
5.9 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/02. Socks from a Box.html
5.9 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.zh-CN.vtt
5.9 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare.html
5.9 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/04. What's Next in Your Journey!.html
5.9 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites.html
5.9 kB
Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles.html
5.9 kB
Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations.html
5.9 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/08. Coding 2.html
5.9 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection.html
5.9 kB
Part 04-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.zh-CN.vtt
5.9 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure.html
5.9 kB
Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction.html
5.9 kB
Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices.html
5.9 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection.html
5.9 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/01. Introduction.html
5.9 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/04. Project Workspace Complete and Submit Project.html
5.9 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure.html
5.9 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys.html
5.9 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm.html
5.9 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure.html
5.9 kB
Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph.html
5.9 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/04. Downloading Enron Data-TgkBAtaTqJk.zh-CN.vtt
5.9 kB
Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal.html
5.9 kB
Part 07-Module 01-Lesson 02_R Basics/10. Read and Subset Data-UdniaeLsViQ.zh-CN.vtt
5.9 kB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.zh-CN.vtt
5.9 kB
Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path.html
5.9 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris.html
5.9 kB
Part 15-Module 02-Lesson 06_Graphs/04. Connectivity.html
5.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.ja.vtt
5.8 kB
Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/03. Project Workspace Complete and Submit Project.html
5.8 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process.html
5.8 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/08. Experience.html
5.8 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.en.vtt
5.8 kB
Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.pt-BR.vtt
5.8 kB
Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.en.vtt
5.8 kB
Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.en.vtt
5.8 kB
assets/css/fonts/KaTeX_Size1-Regular.woff2
5.8 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/05. Project Workspace Complete and Submit Project.html
5.8 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Data Scientist at Facebook.html
5.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.en.vtt
5.8 kB
Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.pt-BR.vtt
5.8 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options.html
5.8 kB
Part 18-Module 01-Lesson 01_Why Python Programming/02. Welcome to the Course!.html
5.8 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations.html
5.8 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.en-US.vtt
5.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/index.html
5.8 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.en.vtt
5.8 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project.html
5.8 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/07. Keyboard shortcuts.html
5.8 kB
Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.ar.vtt
5.8 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/01. Introduction.html
5.8 kB
Part 02-Module 01-Lesson 04_Files and Modules/06. Reading from a File II.html
5.8 kB
Part 05-Module 01-Lesson 01_Congratulations & Next Steps/01. Congratulations Next Steps.html
5.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.ar.vtt
5.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.en-US.vtt
5.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.ar.vtt
5.8 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose of the Cover Letter.html
5.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.en.vtt
5.8 kB
Part 15-Module 02-Lesson 06_Graphs/10. DFS.html
5.8 kB
Part 15-Module 02-Lesson 06_Graphs/11. BFS.html
5.8 kB
Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections.html
5.8 kB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-Zyq0FQ0XO3o.pt-BR.vtt
5.8 kB
Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth.html
5.8 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/01. Congratulations!.html
5.8 kB
Part 02-Module 02-Lesson 01_Python Project/08. Project Walkthrough.html
5.8 kB
Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.pt-BR.vtt
5.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.th.vtt
5.7 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction.html
5.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/index.html
5.7 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.pt-BR.vtt
5.7 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued.html
5.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/index.html
5.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.pt-BR.vtt
5.7 kB
Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro.html
5.7 kB
Part 16-Module 01-Lesson 09_Clustering/12. Sklearn-3zHUAXcoZ7c.zh-CN.vtt
5.7 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes.html
5.7 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/02. Data Dimensions.html
5.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/index.html
5.7 kB
Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details.html
5.7 kB
Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.ar.vtt
5.7 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.pt-BR.vtt
5.7 kB
Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists.html
5.7 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction, Part II.html
5.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/index.html
5.7 kB
Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara-CgK2HxdJzc8.zh-CN.vtt
5.7 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/02. Installing Jupyter Notebook.html
5.7 kB
Part 04-Module 01-Lesson 14_Regression/index.html
5.7 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps.html
5.7 kB
Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.pt-BR.vtt
5.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/index.html
5.7 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency.html
5.7 kB
Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.ar.vtt
5.7 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/03. Course Expectations.html
5.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.pt-BR.vtt
5.7 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms.html
5.7 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter.html
5.7 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.pt-BR.vtt
5.6 kB
Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays.html
5.6 kB
Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks.html
5.6 kB
Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues.html
5.6 kB
Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.ar.vtt
5.6 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax.html
5.6 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/11. Finishing up.html
5.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.en.vtt
5.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/index.html
5.6 kB
Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists.html
5.6 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing.html
5.6 kB
Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.ar.vtt
5.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.ar.vtt
5.6 kB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.pt-BR.vtt
5.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.ar.vtt
5.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem.html
5.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.pt-BR.vtt
5.6 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps.html
5.6 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Data Scientist at Hired.html
5.6 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Why Use Elevator Pitches.html
5.6 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/01. Introduction.html
5.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm.html
5.6 kB
Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.pt-BR.vtt
5.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction.html
5.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.en.vtt
5.6 kB
Part 16-Module 01-Lesson 13_PCA/31. Eigenfaces Code-LgLYw-G4sLQ.zh-CN.vtt
5.6 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/08. Conclusion.html
5.6 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch.html
5.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem.html
5.6 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Sinthuja Nagalingam at Summit Schools.html
5.6 kB
assets/css/fonts/KaTeX_Size2-Regular.woff2
5.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming.html
5.6 kB
Part 18-Module 01-Lesson 01_Why Python Programming/03. Programming in Python.html
5.6 kB
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.ar.vtt
5.6 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps.html
5.5 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm.html
5.5 kB
Part 16-Module 01-Lesson 10_Feature Scaling/11. MinMax Scaler in sklearn-lgoh5R05YM0.zh-CN.vtt
5.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.th.vtt
5.5 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem.html
5.5 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/index.html
5.5 kB
Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.ar.vtt
5.5 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions.html
5.5 kB
Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.en.vtt
5.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.en-US.vtt
5.5 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.ar.vtt
5.5 kB
Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.en.vtt
5.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.ar.vtt
5.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.pt-BR.vtt
5.5 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction, Part I.html
5.5 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/01. Intro.html
5.5 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/07. Outro.html
5.5 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing.html
5.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.en.vtt
5.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.pt-BR.vtt
5.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.ar.vtt
5.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.ja.vtt
5.5 kB
Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.pt-BR.vtt
5.5 kB
Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt
5.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/index.html
5.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.pt-BR.vtt
5.4 kB
Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.ar.vtt
5.4 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.pt-BR.vtt
5.4 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.en.vtt
5.4 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/05. Project Walkthrough.html
5.4 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/02. Next Steps.html
5.4 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.en.vtt
5.4 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer.html
5.4 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/01. CEO, Sparta Science.html
5.4 kB
Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.en.vtt
5.4 kB
Part 16-Module 01-Lesson 09_Clustering/index.html
5.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.en.vtt
5.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.ar.vtt
5.4 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.en.vtt
5.4 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.ar.vtt
5.4 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It-7IKqdW30GvQ.pt-BR.vtt
5.4 kB
Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-cXluuqCVg18.zh-CN.vtt
5.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/index.html
5.4 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Intro.html
5.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.ar.vtt
5.4 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity.html
5.4 kB
Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.en-US.vtt
5.4 kB
Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.en.vtt
5.4 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.en.vtt
5.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.pt-BR.vtt
5.3 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.ar.vtt
5.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.ar.vtt
5.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.pt-BR.vtt
5.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.pt-BR.vtt
5.3 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.pt-BR.vtt
5.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.en.vtt
5.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.ja.vtt
5.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.en.vtt
5.3 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.es-MX.vtt
5.3 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Intro.html
5.3 kB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.en.vtt
5.3 kB
Part 03-Module 03-Lesson 02_SQL Joins/index.html
5.3 kB
Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-cXluuqCVg18.pt-BR.vtt
5.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.ar.vtt
5.3 kB
Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.ar.vtt
5.3 kB
Part 02-Module 01-Lesson 04_Files and Modules/02. Tuples II.html
5.3 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.pt-BR.vtt
5.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.en.vtt
5.3 kB
Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit.html
5.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (After Cleaning)-OF2486euiRE.zh-CN.vtt
5.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.ar.vtt
5.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.en.vtt
5.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.ar.vtt
5.3 kB
Part 15-Module 01-Lesson 03_Interview Fails/04. Interviewing Fails Lyla Fujiwara.html
5.3 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.ar.vtt
5.3 kB
Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.en.vtt
5.3 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.ar.vtt
5.3 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.ar.vtt
5.3 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset.html
5.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.th.vtt
5.3 kB
Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.ar.vtt
5.2 kB
Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales.html
5.2 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.ar.vtt
5.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.ar.vtt
5.2 kB
Part 11-Module 01-Lesson 06_Undoing Changes/01. Intro.html
5.2 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/01. Intro.html
5.2 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.pt-BR.vtt
5.2 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction, Part III.html
5.2 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/index.html
5.2 kB
Part 16-Module 01-Lesson 11_Text Learning/index.html
5.2 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction.html
5.2 kB
Part 12-Module 01-Lesson 01_GitHub Review/index.html
5.2 kB
Part 16-Module 01-Lesson 14_Validation/index.html
5.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.en.vtt
5.2 kB
Part 11-Module 01-Lesson 01_What is Version Control/06. Onward.html
5.2 kB
Part 11-Module 01-Lesson 06_Undoing Changes/05. Lesson Outro.html
5.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.pt-BR.vtt
5.2 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.en.vtt
5.2 kB
Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary.html
5.2 kB
assets/css/fonts/KaTeX_Size4-Regular.woff2
5.2 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/index.html
5.2 kB
Part 09-Module 01-Lesson 02_Design/index.html
5.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.pt-BR.vtt
5.2 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.ar.vtt
5.2 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/img/lag-1-innerquery.png
5.2 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro.html
5.2 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro.html
5.2 kB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/06. Project Walkthrough.html
5.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.ar.vtt
5.2 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/05. Outro.html
5.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.pt-BR.vtt
5.1 kB
Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro.html
5.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.ar.vtt
5.1 kB
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.pt-BR.vtt
5.1 kB
Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails.html
5.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.en-US.vtt
5.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.en-US.vtt
5.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.en.vtt
5.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.en.vtt
5.1 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.ar.vtt
5.1 kB
Part 18-Module 01-Lesson 01_Why Python Programming/01. Instructor.html
5.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.en.vtt
5.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.pt-BR.vtt
5.1 kB
Part 16-Module 01-Lesson 08_Outliers/index.html
5.1 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.ar.vtt
5.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.ja.vtt
5.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.zh-CN.vtt
5.1 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/index.html
5.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.ar.vtt
5.1 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/01. Lesson Overview.html
5.1 kB
Part 16-Module 01-Lesson 11_Text Learning/06. Bag of Words in Sklearn-aCdg-d_476Y.zh-CN.vtt
5.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.zh-CN.vtt
5.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-v4UGBUB6jO4.zh-CN.vtt
5.1 kB
Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.ar.vtt
5.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.pt-BR.vtt
5.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/index.html
5.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.en-US.vtt
5.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.en.vtt
5.1 kB
Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.ar.vtt
5.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/03. Finding the Best Movies-aq3qM2EkwrI.zh-CN.vtt
5.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.zh-CN.vtt
5.0 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.ar.vtt
5.0 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviews are Conversations.html
5.0 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.en.vtt
5.0 kB
Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer.html
5.0 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.ar.vtt
5.0 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.en.vtt
5.0 kB
Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt
5.0 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.en.vtt
5.0 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/index.html
5.0 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Finding the First Link-_bPdJBJtNqo.pt-BR.vtt
5.0 kB
Part 09-Module 01-Lesson 02_Design/08. Data Ink Ratio-gW2FapuYV4A.zh-CN.vtt
5.0 kB
Part 09-Module 01-Lesson 02_Design/13. Using Color-6bAedqD3ilw.pt-BR.vtt
5.0 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It-7IKqdW30GvQ.en.vtt
5.0 kB
Part 18-Module 01-Lesson 04_Functions/index.html
5.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.en.vtt
5.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.en.vtt
5.0 kB
Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.ar.vtt
5.0 kB
Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content.html
5.0 kB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.pt-BR.vtt
5.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.en.vtt
5.0 kB
Part 16-Module 01-Lesson 13_PCA/29. When to Use PCA-hJZHcmJBk1o.zh-CN.vtt
5.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/index.html
5.0 kB
Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction.html
5.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.en.vtt
4.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.pt-BR.vtt
4.9 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.ar.vtt
4.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 Solution-E5tAoCK6GcQ.zh-CN.vtt
4.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/01. ML in The Google Self-Driving Car-lL16AQItG1g.zh-CN.vtt
4.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.ar.vtt
4.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.pt-BR.vtt
4.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/25. Smoothing Conditional Means-hxk2cgdChUw.zh-CN.vtt
4.9 kB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.ar.vtt
4.9 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.zh-CN.vtt
4.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.en.vtt
4.9 kB
Part 18-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.zh-CN.vtt
4.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.en.vtt
4.9 kB
Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.ja.vtt
4.9 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/img/twitter-logo-whiteonblue.png
4.9 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt
4.9 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt
4.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet -K-Owid_mf8o.zh-CN.vtt
4.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.th.vtt
4.8 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/index.html
4.8 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.en-US.vtt
4.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/18. Gaussian NB Example-wpnDwiqTCJA.zh-CN.vtt
4.8 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/index.html
4.8 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.en.vtt
4.8 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.zh-CN.vtt
4.8 kB
Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.ar.vtt
4.8 kB
Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.en.vtt
4.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.pt-BR.vtt
4.8 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.ar.vtt
4.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.ja.vtt
4.8 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.ja.vtt
4.8 kB
Part 16-Module 01-Lesson 13_PCA/28. PCA in sklearn-SBYdqlLgbGk.zh-CN.vtt
4.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.pt-BR.vtt
4.8 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/01. Introduction-ICKBWIkfeJ8.zh-CN.vtt
4.8 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.en.vtt
4.8 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/index.html
4.8 kB
Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-Uy89Ff49pRc.en.vtt
4.8 kB
Part 09-Module 01-Lesson 02_Design/13. Using Color-6bAedqD3ilw.en.vtt
4.8 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.zh-CN.vtt
4.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.ar.vtt
4.8 kB
assets/css/fonts/KaTeX_Size3-Regular.woff
4.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.ar.vtt
4.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.pt-BR.vtt
4.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.ar.vtt
4.8 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.ar.vtt
4.8 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.ar.vtt
4.8 kB
Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-Uy89Ff49pRc.pt-BR.vtt
4.8 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/index.html
4.8 kB
Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.ar.vtt
4.8 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.ar.vtt
4.7 kB
Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.pt-BR.vtt
4.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.en.vtt
4.7 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/index.html
4.7 kB
Part 15-Module 02-Lesson 05_Trees/index.html
4.7 kB
Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.en.vtt
4.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-GdsLRKjjKLw.zh-CN.vtt
4.7 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.ar.vtt
4.7 kB
Part 04-Module 01-Lesson 04_Probability/index.html
4.7 kB
Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.ar.vtt
4.7 kB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.th.vtt
4.7 kB
Part 07-Module 01-Lesson 04_Problem Set Explore One Variable/index.html
4.7 kB
Part 07-Module 01-Lesson 06_Problem Set Explore Two Variables/index.html
4.7 kB
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.ar.vtt
4.7 kB
Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt
4.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.ar.vtt
4.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/06. Flat File Structure-bLKVRIhrZUY.zh-CN.vtt
4.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.en.vtt
4.7 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/index.html
4.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2-ZXy8jgywY5g.zh-CN.vtt
4.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.ar.vtt
4.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.ar.vtt
4.7 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/index.html
4.7 kB
Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt
4.7 kB
Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.pt-BR.vtt
4.7 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.zh-CN.vtt
4.7 kB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.en.vtt
4.7 kB
Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.pt-BR.vtt
4.6 kB
Part 07-Module 01-Lesson 02_R Basics/index.html
4.6 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/03. Industry Interview Sinthuja-R5XBQ7dSz7w.zh-CN.vtt
4.6 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.pt-BR.vtt
4.6 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.zh-CN.vtt
4.6 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.pt-BR.vtt
4.6 kB
Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.ja.vtt
4.6 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.ar.vtt
4.6 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.ar.vtt
4.6 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.zh-CN.vtt
4.6 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.pt-BR.vtt
4.6 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.es-MX.vtt
4.6 kB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.ar.vtt
4.6 kB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.pt-BR.vtt
4.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/index.html
4.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.ar.vtt
4.6 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/index.html
4.6 kB
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.pt-BR.vtt
4.6 kB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.en.vtt
4.6 kB
Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.ar.vtt
4.6 kB
Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.ar.vtt
4.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-O9d9dKyHtIc.zh-CN.vtt
4.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ar.vtt
4.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.ar.vtt
4.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.en.vtt
4.6 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.en.vtt
4.6 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.pt-BR.vtt
4.6 kB
Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.pt-BR.vtt
4.6 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/06. A Problem and How You Dealt With It-7IKqdW30GvQ.zh-CN.vtt
4.6 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.ar.vtt
4.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-5571wc0iWCI.zh-CN.vtt
4.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.ar.vtt
4.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.ar.vtt
4.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.ar.vtt
4.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.pt-BR.vtt
4.6 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.ar.vtt
4.6 kB
Part 07-Module 01-Lesson 08_Problem Set Explore Many Variables/index.html
4.5 kB
Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.pt-BR.vtt
4.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/index.html
4.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.ja.vtt
4.5 kB
Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.ar.vtt
4.5 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.en-US.vtt
4.5 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.en.vtt
4.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/11. Flashforward 1-Sr5v0i9m_sw.zh-CN.vtt
4.5 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/index.html
4.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.ar.vtt
4.5 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.zh-CN.vtt
4.5 kB
Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.pt-BR.vtt
4.5 kB
Part 16-Module 01-Lesson 14_Validation/10. Practical Advice for K-Fold in sklearn-COVRSk0GDEE.zh-CN.vtt
4.5 kB
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.en.vtt
4.5 kB
Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.ar.vtt
4.5 kB
Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.pt-BR.vtt
4.5 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/index.html
4.5 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/index.html
4.5 kB
Part 15-Module 01-Lesson 05_Interview Practice/index.html
4.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.zh-CN.vtt
4.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.ja.vtt
4.5 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.pt-BR.vtt
4.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.ar.vtt
4.5 kB
Part 04-Module 02-Lesson 01_Analyze AB Test Results/index.html
4.5 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.zh-CN.vtt
4.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/16. JSON File Structure-hO2CayzZBoA.zh-CN.vtt
4.5 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.ar.vtt
4.5 kB
Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.ar.vtt
4.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.ar.vtt
4.5 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.ar.vtt
4.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.ar.vtt
4.5 kB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-4GBJk6R0pb4.zh-CN.vtt
4.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.en.vtt
4.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.pt-BR.vtt
4.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.pt-BR.vtt
4.4 kB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.en.vtt
4.4 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.ar.vtt
4.4 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt
4.4 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.pt-BR.vtt
4.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.ar.vtt
4.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.ar.vtt
4.4 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.en.vtt
4.4 kB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.ar.vtt
4.4 kB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.ar.vtt
4.4 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt
4.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt
4.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt
4.4 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/index.html
4.4 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/index.html
4.4 kB
Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.ar.vtt
4.4 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.pt-BR.vtt
4.4 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.pt-BR.vtt
4.4 kB
Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.ar.vtt
4.4 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/index.html
4.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.ar.vtt
4.4 kB
Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.en.vtt
4.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.zh-CN.vtt
4.4 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.ar.vtt
4.4 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.en.vtt
4.4 kB
Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.en.vtt
4.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/index.html
4.3 kB
Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.pt-BR.vtt
4.3 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt
4.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.pt-BR.vtt
4.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.ar.vtt
4.3 kB
Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.pt-BR.vtt
4.3 kB
Part 09-Module 01-Lesson 02_Design/13. Using Color-6bAedqD3ilw.zh-CN.vtt
4.3 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.en-US.vtt
4.3 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/index.html
4.3 kB
Part 15-Module 01-Lesson 05_Interview Practice/04. Query a SQL database-UVSFLWdAKl4.zh-CN.vtt
4.3 kB
Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.ar.vtt
4.3 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.en.vtt
4.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.pt-BR.vtt
4.3 kB
Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.en.vtt
4.3 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.en-US.vtt
4.3 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.en.vtt
4.3 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.pt-BR.vtt
4.3 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/index.html
4.3 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/index.html
4.3 kB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.pt-BR.vtt
4.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ar.vtt
4.3 kB
Part 13-Module 01-Lesson 03_Udacity Professional Profile/index.html
4.3 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/index.html
4.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.en.vtt
4.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.zh-CN.vtt
4.3 kB
Part 15-Module 02-Lesson 06_Graphs/index.html
4.3 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/01. Ud1110 IntroPy L5 01 A Wikipedia Crawl-osrplIl1m-k.zh-CN.vtt
4.3 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What Is A P-value Anyway-eU6pUZjqviA.pt-BR.vtt
4.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.ar.vtt
4.3 kB
Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.pt-BR.vtt
4.3 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.ja.vtt
4.3 kB
Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.en-US.vtt
4.3 kB
Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.en.vtt
4.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.ar.vtt
4.3 kB
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.ar.vtt
4.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.zh-CN.vtt
4.3 kB
Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.pt-BR.vtt
4.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.ar.vtt
4.3 kB
Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.ar.vtt
4.3 kB
Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.pt-BR.vtt
4.3 kB
Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.en.vtt
4.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.en.vtt
4.2 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.ar.vtt
4.2 kB
Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.en.vtt
4.2 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.ar.vtt
4.2 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/index.html
4.2 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.pt-BR.vtt
4.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.pt-BR.vtt
4.2 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.pt-BR.vtt
4.2 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/05. Brainstorming-LJFYhMDCCsU.pt-BR.vtt
4.2 kB
Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.ar.vtt
4.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.ar.vtt
4.2 kB
Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.en-US.vtt
4.2 kB
Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.en-US.vtt
4.2 kB
Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.en.vtt
4.2 kB
Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.ar.vtt
4.2 kB
Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.en.vtt
4.2 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.zh-CN.vtt
4.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.en.vtt
4.2 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/index.html
4.2 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.ar.vtt
4.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.pt-BR.vtt
4.2 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/index.html
4.2 kB
Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt
4.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.ar.vtt
4.2 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/index.html
4.2 kB
Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.en.vtt
4.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.en.vtt
4.2 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.ar.vtt
4.2 kB
Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.en-US.vtt
4.2 kB
Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.en.vtt
4.2 kB
Part 07-Module 01-Lesson 01_What is EDA/index.html
4.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/22. Transforming Data-0L3Obq4FSVQ.zh-CN.vtt
4.2 kB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-TIgfjmp-4BA.zh-CN.vtt
4.2 kB
Part 02-Module 02-Lesson 01_Python Project/index.html
4.2 kB
Part 15-Module 02-Lesson 02_List-Based Collections/index.html
4.2 kB
Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.ar.vtt
4.2 kB
Part 16-Module 01-Lesson 07_Regressions/31. R Squared in SKlearn-Dxf1I4IE6co.zh-CN.vtt
4.2 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.pt-BR.vtt
4.2 kB
Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.en.vtt
4.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.en.vtt
4.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.ar.vtt
4.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.pt-BR.vtt
4.2 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.en-US.vtt
4.2 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.en-US.vtt
4.2 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What Is A P-value Anyway-eU6pUZjqviA.en.vtt
4.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.ar.vtt
4.2 kB
Part 07-Module 01-Lesson 01_What is EDA/09. Aude Explores Coordinated Migration-7ihp6ofAJG8.zh-CN.vtt
4.2 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.en.vtt
4.2 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.en.vtt
4.2 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.ar.vtt
4.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.pt-BR.vtt
4.1 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.pt-BR.vtt
4.1 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.pt-BR.vtt
4.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 2-W2tL3QSBi3k.zh-CN.vtt
4.1 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.en.vtt
4.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.en.vtt
4.1 kB
Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.en-US.vtt
4.1 kB
Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.en.vtt
4.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.en.vtt
4.1 kB
Part 02-Module 01-Lesson 04_Files and Modules/index.html
4.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.ja.vtt
4.1 kB
Part 07-Module 02-Lesson 01_Explore and Summarize Data/index.html
4.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.en-US.vtt
4.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.en.vtt
4.1 kB
Part 03-Module 04-Lesson 01_Investigate a Dataset/index.html
4.1 kB
Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt
4.1 kB
Part 06-Module 02-Lesson 02_Test a Perceptual Phenomenon/index.html
4.1 kB
Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.ar.vtt
4.1 kB
Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.en.vtt
4.1 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.ar.vtt
4.1 kB
Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.ar.vtt
4.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.ar.vtt
4.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.ar.vtt
4.1 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/index.html
4.1 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.ar.vtt
4.1 kB
Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.pt-BR.vtt
4.1 kB
Part 17-Module 01-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt
4.1 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/index.html
4.1 kB
Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.ar.vtt
4.1 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/index.html
4.1 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.ja.vtt
4.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.ja.vtt
4.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.ar.vtt
4.1 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.pt-BR.vtt
4.0 kB
Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.ar.vtt
4.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.ar.vtt
4.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.ja.vtt
4.0 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.ja.vtt
4.0 kB
Part 06-Module 02-Lesson 01_Statistics and Programming Exercises/index.html
4.0 kB
Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.en.vtt
4.0 kB
Part 08-Module 05-Lesson 01_Wrangle and Analyze Data/index.html
4.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.ar.vtt
4.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.ar.vtt
4.0 kB
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.ar.vtt
4.0 kB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.zh-CN.vtt
4.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.pt-BR.vtt
4.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.ar.vtt
4.0 kB
Part 18-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt
4.0 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/index.html
4.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.pt-BR.vtt
4.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.ar.vtt
4.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.pt-BR.vtt
4.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.ar.vtt
4.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.ar.vtt
4.0 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.en.vtt
4.0 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.pt-BR.vtt
4.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.en.vtt
4.0 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.ar.vtt
4.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.pt-BR.vtt
4.0 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.ar.vtt
4.0 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.pt-BR.vtt
4.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.ar.vtt
4.0 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.pt-BR.vtt
4.0 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.en.vtt
4.0 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/index.html
4.0 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.ar.vtt
4.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.pt-BR.vtt
4.0 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.en-US.vtt
4.0 kB
Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.en.vtt
4.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.pt-BR.vtt
4.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/36. Groups And Sets-Yb-91NVNgTA.zh-CN.vtt
4.0 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.en.vtt
4.0 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.ar.vtt
4.0 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-FORb9Tja-p0.zh-CN.vtt
4.0 kB
Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.ar.vtt
4.0 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.ar.vtt
4.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.en.vtt
4.0 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.zh-CN.vtt
4.0 kB
Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.en-US.vtt
4.0 kB
Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.en.vtt
4.0 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.pt-BR.vtt
4.0 kB
Part 03-Module 01-Lesson 01_Anaconda/index.html
4.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.ar.vtt
4.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ar.vtt
4.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.ar.vtt
4.0 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.ar.vtt
3.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.ar.vtt
3.9 kB
Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.pt-BR.vtt
3.9 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.pt-BR.vtt
3.9 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.pt-BR.vtt
3.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.en.vtt
3.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.en.vtt
3.9 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.zh-CN.vtt
3.9 kB
Part 15-Module 01-Lesson 05_Interview Practice/06. Design a Spam Classifier-Uy89Ff49pRc.zh-CN.vtt
3.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/12. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt
3.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.zh-CN.vtt
3.9 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/13. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt
3.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.ar.vtt
3.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.pt-BR.vtt
3.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.en.vtt
3.9 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.pt-BR.vtt
3.9 kB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.pt-BR.vtt
3.9 kB
Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt
3.9 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.ar.vtt
3.9 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.en.vtt
3.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.ar.vtt
3.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.en.vtt
3.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.ar.vtt
3.9 kB
Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.en.vtt
3.9 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.ar.vtt
3.9 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.ar.vtt
3.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ar.vtt
3.9 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.en.vtt
3.9 kB
Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.pt-BR.vtt
3.9 kB
Part 03-Module 03-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.zh-CN.vtt
3.9 kB
Part 07-Module 01-Lesson 01_What is EDA/04. Why learn EDA-YM68DrqJw1I.zh-CN.vtt
3.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.ja.vtt
3.9 kB
Part 09-Module 01-Lesson 02_Design/09. Design Integrity-y72_fVFtqlY.zh-CN.vtt
3.9 kB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5DvUOwA7xhU.zh-CN.vtt
3.9 kB
Part 11-Module 01-Lesson 01_What is Version Control/index.html
3.9 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.zh-CN.vtt
3.9 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.en.vtt
3.9 kB
assets/css/fonts/KaTeX_Size3-Regular.woff2
3.9 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.pt-BR.vtt
3.9 kB
Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.pt-BR.vtt
3.9 kB
assets/css/styles.css
3.9 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.zh-CN.vtt
3.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.pt-BR.vtt
3.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.ar.vtt
3.8 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/index.html
3.8 kB
Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.pt-BR.vtt
3.8 kB
Part 15-Module 02-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.zh-CN.vtt
3.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.pt-BR.vtt
3.8 kB
Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.pt-BR.vtt
3.8 kB
Part 09-Module 02-Lesson 01_Create a Tableau Story/index.html
3.8 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.ar.vtt
3.8 kB
Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.pt-BR.vtt
3.8 kB
Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.pt-BR.vtt
3.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.pt-BR.vtt
3.8 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/index.html
3.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.en-US.vtt
3.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.en.vtt
3.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import-tU1N-8aNB_M.zh-CN.vtt
3.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.ar.vtt
3.8 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/index.html
3.8 kB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.en.vtt
3.8 kB
Part 13-Module 01-Lesson 02_LinkedIn Review/index.html
3.8 kB
Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.ar.vtt
3.8 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.zh-CN.vtt
3.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.ar.vtt
3.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.pt-BR.vtt
3.8 kB
Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.ar.vtt
3.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.pt-BR.vtt
3.8 kB
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.ar.vtt
3.8 kB
Part 11-Module 01-Lesson 06_Undoing Changes/index.html
3.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.ar.vtt
3.8 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.pt-BR.vtt
3.8 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.pt-BR.vtt
3.8 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.pt-BR.vtt
3.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.pt-BR.vtt
3.8 kB
Part 01-Module 02-Lesson 02_Explore Weather Trends/index.html
3.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-28iU6GrDVfU.zh-CN.vtt
3.8 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/index.html
3.8 kB
Part 12-Module 01-Lesson 01_GitHub Review/13. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt
3.8 kB
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.ar.vtt
3.8 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.es-MX.vtt
3.8 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.es-MX.vtt
3.8 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.es-MX.vtt
3.8 kB
Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.ar.vtt
3.8 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.en.vtt
3.8 kB
Part 15-Module 01-Lesson 03_Interview Fails/index.html
3.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.pt-BR.vtt
3.8 kB
Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.ar.vtt
3.8 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/index.html
3.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.pt-BR.vtt
3.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.pt-BR.vtt
3.7 kB
Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.ar.vtt
3.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.ar.vtt
3.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.ar.vtt
3.7 kB
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.ar.vtt
3.7 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt
3.7 kB
Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt
3.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt
3.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-w6CLWh1dLCU.zh-CN.vtt
3.7 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.ja.vtt
3.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/22. Looking at Samples of Households-kQePh6UTB90.zh-CN.vtt
3.7 kB
Part 18-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.zh-CN.vtt
3.7 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.pt-BR.vtt
3.7 kB
Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.ar.vtt
3.7 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.pt-BR.vtt
3.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/12. Meet the Careers Team-cuKecPpZ7PM.en.vtt
3.7 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/13. Meet the Careers Team-cuKecPpZ7PM.en.vtt
3.7 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.ar.vtt
3.7 kB
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-spVqFnSvlIU.zh-CN.vtt
3.7 kB
Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.en.vtt
3.7 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.ja.vtt
3.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.pt-BR.vtt
3.7 kB
Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.pt-BR.vtt
3.7 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/index.html
3.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.pt-BR.vtt
3.7 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.en.vtt
3.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.ja.vtt
3.7 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.en-US.vtt
3.7 kB
Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.ja.vtt
3.7 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.en.vtt
3.7 kB
Part 15-Module 02-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.zh-CN.vtt
3.7 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.pt-BR.vtt
3.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.pt-BR.vtt
3.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.ar.vtt
3.7 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/index.html
3.7 kB
Part 15-Module 02-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.zh-CN.vtt
3.7 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.en.vtt
3.7 kB
Part 15-Module 02-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.zh-CN.vtt
3.7 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.en.vtt
3.7 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.en.vtt
3.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.pt-BR.vtt
3.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Calculating the p-value-_W3Jg7jQ8jI.en.vtt
3.7 kB
Part 18-Module 01-Lesson 01_Why Python Programming/index.html
3.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Calculating the p-value-_W3Jg7jQ8jI.pt-BR.vtt
3.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.en.vtt
3.7 kB
Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.ar.vtt
3.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.ja.vtt
3.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.pt-BR.vtt
3.7 kB
Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.ar.vtt
3.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.ar.vtt
3.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.ar.vtt
3.7 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.pt-BR.vtt
3.7 kB
Part 03-Module 02-Lesson 04_Programming Workflow for Data Analysis/index.html
3.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.pt-BR.vtt
3.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.ja.vtt
3.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.pt-BR.vtt
3.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.en.vtt
3.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.en.vtt
3.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.ar.vtt
3.6 kB
Part 16-Module 01-Lesson 14_Validation/03. TrainTest Split in sklearn-lSwvUmZCvco.zh-CN.vtt
3.6 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt
3.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.ar.vtt
3.6 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.en.vtt
3.6 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.en.vtt
3.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.ar.vtt
3.6 kB
Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.en.vtt
3.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.pt-BR.vtt
3.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.ja.vtt
3.6 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.pt-BR.vtt
3.6 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/04. Lada's Money Bag Meme - Data Analysis with R-Isa_FGQrvgs.zh-CN.vtt
3.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/21. Lada's Money Bag Meme-Isa_FGQrvgs.zh-CN.vtt
3.6 kB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.en.vtt
3.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/13. Worksheets-2xRKvQTRtlk.zh-CN.vtt
3.6 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.pt-BR.vtt
3.6 kB
Part 16-Module 01-Lesson 16_Tying It All Together/index.html
3.6 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.en.vtt
3.6 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.zh-CN.vtt
3.6 kB
Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.pt-BR.vtt
3.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.ar.vtt
3.6 kB
Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt
3.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.en-US.vtt
3.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.th.vtt
3.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.en.vtt
3.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.pt-BR.vtt
3.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.ar.vtt
3.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.ar.vtt
3.6 kB
Part 16-Module 01-Lesson 13_PCA/23. PCA for Feature Transformation-8kUPRUEMCA8.zh-CN.vtt
3.6 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/index.html
3.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.ar.vtt
3.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt
3.6 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt
3.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.ja.vtt
3.6 kB
Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.en.vtt
3.6 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.en-US.vtt
3.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.en-US.vtt
3.6 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.pt-BR.vtt
3.6 kB
Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.pt-BR.vtt
3.6 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.en.vtt
3.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.en.vtt
3.6 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.ar.vtt
3.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.pt-BR.vtt
3.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.pt-BR.vtt
3.6 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/14. What is the Question-xQJyObqxg3E.zh-CN.vtt
3.6 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt
3.6 kB
Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.en.vtt
3.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.ar.vtt
3.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.en.vtt
3.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.ar.vtt
3.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.th.vtt
3.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/20. Hierarchies-wl_AM-spH68.zh-CN.vtt
3.6 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.ar.vtt
3.6 kB
Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.en.vtt
3.6 kB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.pt-BR.vtt
3.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment -BNRJdhA8_s8.zh-CN.vtt
3.6 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt
3.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.en.vtt
3.6 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt
3.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML Structure-UjCbXQ8Coic.zh-CN.vtt
3.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ar.vtt
3.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.it.vtt
3.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.en.vtt
3.5 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.en.vtt
3.5 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.en.vtt
3.5 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.en.vtt
3.5 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.zh-CN.vtt
3.5 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.pt-BR.vtt
3.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.ar.vtt
3.5 kB
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.ja.vtt
3.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.pt-BR.vtt
3.5 kB
Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.ar.vtt
3.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.it.vtt
3.5 kB
Part 16-Module 01-Lesson 07_Regressions/19. Extracting Information from sklearn-zDIRQE_oxfk.zh-CN.vtt
3.5 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.pt-BR.vtt
3.5 kB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.ar.vtt
3.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.es-ES.vtt
3.5 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.pt-BR.vtt
3.5 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.en-US.vtt
3.5 kB
Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.en.vtt
3.5 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.en.vtt
3.5 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.pt-BR.vtt
3.5 kB
Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.ar.vtt
3.5 kB
Part 18-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.pt-BR.vtt
3.5 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.en.vtt
3.5 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-FDSmlIBy7ko.zh-CN.vtt
3.5 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.pt-BR.vtt
3.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.en.vtt
3.5 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-krV6r7HxmZU.zh-CN.vtt
3.5 kB
Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.ar.vtt
3.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.en.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Congratulations & Next Steps/index.html
3.5 kB
Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.ar.vtt
3.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.ja.vtt
3.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.es-ES.vtt
3.5 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.pt-BR.vtt
3.5 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.ar.vtt
3.5 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.zh-CN.vtt
3.5 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.ar.vtt
3.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.pt-BR.vtt
3.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.pt-BR.vtt
3.5 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt
3.5 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.ar.vtt
3.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.ar.vtt
3.5 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.en.vtt
3.5 kB
Part 12-Module 01-Lesson 01_GitHub Review/04. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt
3.5 kB
Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.pt-BR.vtt
3.5 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt
3.5 kB
Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.pt-BR.vtt
3.5 kB
Part 04-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.pt-BR.vtt
3.5 kB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.pt-BR.vtt
3.5 kB
Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.pt-BR.vtt
3.5 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.en.vtt
3.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.en.vtt
3.5 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.zh-CN.vtt
3.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.th.vtt
3.5 kB
Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.en-US.vtt
3.5 kB
Part 16-Module 01-Lesson 11_Text Learning/11. Stemming with NLTK-gWbkW_cyNs8.zh-CN.vtt
3.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/20. Flashforward 2-Sbyn8aT-8G8.zh-CN.vtt
3.5 kB
Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.en.vtt
3.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.pt-BR.vtt
3.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.ar.vtt
3.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.en.vtt
3.5 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.ar.vtt
3.5 kB
Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.ar.vtt
3.5 kB
Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.en.vtt
3.5 kB
Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.pt-BR.vtt
3.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.en.vtt
3.5 kB
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.ar.vtt
3.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.ar.vtt
3.4 kB
Part 15-Module 01-Lesson 04_Land a Job Offer/index.html
3.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.pt-BR.vtt
3.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.en.vtt
3.4 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/02. What Is A POI-wDQhif-MWuY.zh-CN.vtt
3.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.ja.vtt
3.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/14. Balancing Error with Number of Features-IwiIFMcDwoA.zh-CN.vtt
3.4 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.ar.vtt
3.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.ar.vtt
3.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.pt-BR.vtt
3.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.pt-BR.vtt
3.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.ja.vtt
3.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/16. What Is A P-value Anyway-eU6pUZjqviA.zh-CN.vtt
3.4 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.th.vtt
3.4 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.zh-CN.vtt
3.4 kB
Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.pt-BR.vtt
3.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.en.vtt
3.4 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.en.vtt
3.4 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.en.vtt
3.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.en.vtt
3.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.en.vtt
3.4 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.ar.vtt
3.4 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.ar.vtt
3.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.ar.vtt
3.4 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/02. Interview with a Data Scientist-kNnFA5hxI2Q.zh-CN.vtt
3.4 kB
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.ar.vtt
3.4 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.en.vtt
3.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.ar.vtt
3.4 kB
Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.en.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.en.vtt
3.4 kB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.en.vtt
3.4 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.pt-BR.vtt
3.4 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.pt-BR.vtt
3.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.en.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.en.vtt
3.4 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.zh-CN.vtt
3.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.ar.vtt
3.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Simulating From the Null-sL2yJtHZd8Y.en.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1-mUfrDUEEa_k.zh-CN.vtt
3.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.ja.vtt
3.4 kB
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.en.vtt
3.4 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.ar.vtt
3.4 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Using Python to get HTML-1Y_CZyKNWe4.zh-CN.vtt
3.4 kB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.ar.vtt
3.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-CPDMSJEH16s.zh-CN.vtt
3.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.pt-BR.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.ar.vtt
3.4 kB
Part 16-Module 01-Lesson 07_Regressions/27. Problem with Minimizing Absolute Errors-U46D7oEijlI.zh-CN.vtt
3.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.pt-BR.vtt
3.4 kB
Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.en-US.vtt
3.4 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.pt-BR.vtt
3.4 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.zh-CN.vtt
3.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.ja.vtt
3.4 kB
Part 18-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.zh-CN.vtt
3.4 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.ar.vtt
3.4 kB
Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.en.vtt
3.4 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.en-US.vtt
3.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.ar.vtt
3.4 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.ar.vtt
3.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.en.vtt
3.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.en.vtt
3.4 kB
Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.ar.vtt
3.4 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.en.vtt
3.4 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.en.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.ar.vtt
3.4 kB
Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.pt-BR.vtt
3.4 kB
Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.ar.vtt
3.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ja.vtt
3.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.ar.vtt
3.4 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.pt-BR.vtt
3.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.pt-BR.vtt
3.4 kB
Part 16-Module 01-Lesson 14_Validation/09. K-Fold CV in sklearn-QSYMwFbE7PA.zh-CN.vtt
3.3 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Simulating From the Null-sL2yJtHZd8Y.pt-BR.vtt
3.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-c-v-Xa_R4SA.zh-CN.vtt
3.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.pt-BR.vtt
3.3 kB
Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.pt-BR.vtt
3.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.ar.vtt
3.3 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.pt-BR.vtt
3.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.ar.vtt
3.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.ar.vtt
3.3 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.zh-CN.vtt
3.3 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.zh-CN.vtt
3.3 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.zh-CN.vtt
3.3 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.pt-BR.vtt
3.3 kB
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.pt-BR.vtt
3.3 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/06. Appending And NumPy-fdpKvovBMe4.zh-CN.vtt
3.3 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.en.vtt
3.3 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.ar.vtt
3.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.en.vtt
3.3 kB
Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.en-US.vtt
3.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt
3.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt
3.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt
3.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.ar.vtt
3.3 kB
Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.en.vtt
3.3 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.th.vtt
3.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.pt-BR.vtt
3.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.ar.vtt
3.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.ar.vtt
3.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces) 2-tobH58uO24U.zh-CN.vtt
3.3 kB
Part 03-Module 01-Lesson 01_Anaconda/01. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt
3.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.ar.vtt
3.3 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.en.vtt
3.3 kB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.pt-BR.vtt
3.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.pt-BR.vtt
3.3 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/01. Sparta Science-MkjoaUmdOXc.pt-BR.vtt
3.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt
3.3 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt
3.3 kB
Part 09-Module 01-Lesson 02_Design/03. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.zh-CN.vtt
3.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.en.vtt
3.3 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.es-MX.vtt
3.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.en.vtt
3.3 kB
Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.zh-CN.vtt
3.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.ja.vtt
3.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.pt-BR.vtt
3.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.en.vtt
3.3 kB
Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.en.vtt
3.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.ar.vtt
3.3 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-YbVuN2KOlt4.zh-CN.vtt
3.3 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.es-MX.vtt
3.3 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.pt-BR.vtt
3.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.ar.vtt
3.3 kB
Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.en-US.vtt
3.3 kB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.zh-CN.vtt
3.3 kB
Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.en.vtt
3.3 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.pt-BR.vtt
3.3 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.pt-BR.vtt
3.3 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.pt-BR.vtt
3.3 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.pt-BR.vtt
3.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.pt-BR.vtt
3.3 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.pt-BR.vtt
3.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-9JfaMZcSlQA.zh-CN.vtt
3.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.ar.vtt
3.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.en.vtt
3.3 kB
Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.pt-BR.vtt
3.3 kB
Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.en.vtt
3.3 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.zh-CN.vtt
3.3 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.pt-BR.vtt
3.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.ar.vtt
3.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.ar.vtt
3.3 kB
Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.en.vtt
3.3 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.pt-BR.vtt
3.2 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.en.vtt
3.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.en.vtt
3.2 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.en-US.vtt
3.2 kB
Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.en.vtt
3.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.pt-BR.vtt
3.2 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.en-US.vtt
3.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.ar.vtt
3.2 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.en.vtt
3.2 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.ar.vtt
3.2 kB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.en.vtt
3.2 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.en.vtt
3.2 kB
Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.en-US.vtt
3.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.pt-BR.vtt
3.2 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/24. What If Our Sample Is Large-WoTCeSTL1eM.en.vtt
3.2 kB
Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.en.vtt
3.2 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/20. Plotting With Pandas-kR7KZFqciFE.zh-CN.vtt
3.2 kB
Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.pt-BR.vtt
3.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.pt-BR.vtt
3.2 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.pt-BR.vtt
3.2 kB
Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.pt-BR.vtt
3.2 kB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.ar.vtt
3.2 kB
Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.ar.vtt
3.2 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.en.vtt
3.2 kB
Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt
3.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.pt-BR.vtt
3.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.ja.vtt
3.2 kB
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.ar.vtt
3.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.ar.vtt
3.2 kB
Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.pt-BR.vtt
3.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.ja.vtt
3.2 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/09. Debugging-Bz1tlvkql9Q.zh-CN.vtt
3.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-oEhevl5DWpk.zh-CN.vtt
3.2 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.en.vtt
3.2 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.en.vtt
3.2 kB
Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview-wg535YU4jFw.en.vtt
3.2 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.en.vtt
3.2 kB
Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.ja.vtt
3.2 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.ar.vtt
3.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.pt-BR.vtt
3.2 kB
Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.pt-BR.vtt
3.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.pt-BR.vtt
3.2 kB
Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.pt-BR.vtt
3.2 kB
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.en.vtt
3.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.ar.vtt
3.2 kB
Part 09-Module 01-Lesson 02_Design/05. What Makes a Bad Visual-zbvB_9f7bFs.zh-CN.vtt
3.2 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types Of Errors - Part II-mbdSQ5CjdFs.en.vtt
3.2 kB
Part 01-Module 01-Lesson 02_The Life of a Data Analyst/01. Sparta Science-MkjoaUmdOXc.en.vtt
3.2 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.zh-CN.vtt
3.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.pt-BR.vtt
3.2 kB
Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.en.vtt
3.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/20. Clean Define-qHB4jsqcfi4.zh-CN.vtt
3.2 kB
Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.pt-BR.vtt
3.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.ar.vtt
3.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.ar.vtt
3.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.pt-BR.vtt
3.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.ar.vtt
3.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.en.vtt
3.2 kB
Part 18-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.zh-CN.vtt
3.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.zh-CN.vtt
3.2 kB
Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.en.vtt
3.2 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.en.vtt
3.2 kB
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.pt-BR.vtt
3.2 kB
Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.pt-BR.vtt
3.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/09. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt
3.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt
3.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt
3.2 kB
Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.ar.vtt
3.2 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.en.vtt
3.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.ar.vtt
3.2 kB
Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.es-MX.vtt
3.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.pt-BR.vtt
3.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.pt-BR.vtt
3.1 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.pt-BR.vtt
3.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.pt-BR.vtt
3.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.ja.vtt
3.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.en.vtt
3.1 kB
Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.en.vtt
3.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.en.vtt
3.1 kB
Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.ar.vtt
3.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.ar.vtt
3.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.zh-CN.vtt
3.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.en.vtt
3.1 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.pt-BR.vtt
3.1 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/12. Gathering Data-JsVg95-amjI.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.ja.vtt
3.1 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.zh-CN.vtt
3.1 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.ar.vtt
3.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.pt-BR.vtt
3.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.ar.vtt
3.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.zh-CN.vtt
3.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.en.vtt
3.1 kB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.zh-CN.vtt
3.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.ar.vtt
3.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.en.vtt
3.1 kB
Part 09-Module 01-Lesson 02_Design/15. Shape, Size, and other Tools-fzEliHW3ZLM.zh-CN.vtt
3.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt
3.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt
3.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt
3.1 kB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.zh-CN.vtt
3.1 kB
Part 04-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.en.vtt
3.1 kB
Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.ar.vtt
3.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.pt-BR.vtt
3.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.en.vtt
3.1 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.ar.vtt
3.1 kB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -exMGBx6Rs_E.en.vtt
3.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Beautiful Soup Demonstration-dk7ESZXLnk4.pt-BR.vtt
3.1 kB
Part 15-Module 02-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.ar.vtt
3.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.en.vtt
3.1 kB
Part 08-Module 03-Lesson 01_Assessing Data/07. Visual Assessment -GVVibuIg3Ro.zh-CN.vtt
3.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.zh-CN.vtt
3.1 kB
Part 16-Module 01-Lesson 09_Clustering/10. K-Means Clustering Visualization 2-fQXXa-CAoS0.zh-CN.vtt
3.1 kB
Part 18-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.en.vtt
3.1 kB
Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.en.vtt
3.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.ar.vtt
3.1 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.zh-CN.vtt
3.1 kB
Part 04-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.en.vtt
3.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.en.vtt
3.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.en.vtt
3.1 kB
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.pt-BR.vtt
3.1 kB
Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.pt-BR.vtt
3.1 kB
Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.pt-BR.vtt
3.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.ar.vtt
3.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.en.vtt
3.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.en-US.vtt
3.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.ar.vtt
3.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.pt-BR.vtt
3.1 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.en.vtt
3.1 kB
Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.ar.vtt
3.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/13. Text File Structure-O4qEWpXZLQg.zh-CN.vtt
3.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.en.vtt
3.1 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/24. What If Our Sample Is Large-WoTCeSTL1eM.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.it.vtt
3.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.ar.vtt
3.1 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.pt-BR.vtt
3.1 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.en.vtt
3.1 kB
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.zh-CN.vtt
3.1 kB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.ar.vtt
3.1 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.en.vtt
3.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.ja.vtt
3.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.ar.vtt
3.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.ar.vtt
3.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.ar.vtt
3.1 kB
Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.ja.vtt
3.1 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/10. Welcome to the end of the lesson-nWFJ_eOU27I.zh-CN.vtt
3.1 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.ar.vtt
3.1 kB
Part 04-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.pt-BR.vtt
3.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.ar.vtt
3.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.ar.vtt
3.1 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types Of Errors - Part II-mbdSQ5CjdFs.pt-BR.vtt
3.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-E3NhvAC3Ghw.zh-CN.vtt
3.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.es-ES.vtt
3.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.en.vtt
3.1 kB
Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.pt-BR.vtt
3.1 kB
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.ar.vtt
3.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.zh-CN.vtt
3.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-wPI9WOfpZbM.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.pt-BR.vtt
3.1 kB
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.en.vtt
3.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.en.vtt
3.1 kB
Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.ar.vtt
3.1 kB
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.en.vtt
3.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.th.vtt
3.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.zh-CN.vtt
3.0 kB
Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.pt-BR.vtt
3.0 kB
Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.ar.vtt
3.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.ar.vtt
3.0 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.ar.vtt
3.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.ja.vtt
3.0 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.zh-CN.vtt
3.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.zh-CN.vtt
3.0 kB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.ar.vtt
3.0 kB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.en.vtt
3.0 kB
Part 04-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.pt-BR.vtt
3.0 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.pt-BR.vtt
3.0 kB
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.ar.vtt
3.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.ja.vtt
3.0 kB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.ar.vtt
3.0 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.ar.vtt
3.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.pt-BR.vtt
3.0 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.pt-BR.vtt
3.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.en.vtt
3.0 kB
Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.pt-BR.vtt
3.0 kB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.ar.vtt
3.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.en.vtt
3.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.ar.vtt
3.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.pt-BR.vtt
3.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.en.vtt
3.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/11. Cleaning For Tidiness -6nMKFhpVCRU.zh-CN.vtt
3.0 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.zh-CN.vtt
3.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.en.vtt
3.0 kB
Part 07-Module 01-Lesson 02_R Basics/04. Install RStudio on Windows-5ZbjUEg4a1g.zh-CN.vtt
3.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.en.vtt
3.0 kB
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-vLlj5nNj8x4.zh-CN.vtt
3.0 kB
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.pt-BR.vtt
3.0 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types Of Errors - Part III-Z-srkCPsdaM.pt-BR.vtt
3.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.ar.vtt
3.0 kB
Part 04-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.pt-BR.vtt
3.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.en.vtt
3.0 kB
Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.pt-BR.vtt
3.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.pt-BR.vtt
3.0 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.pt-BR.vtt
3.0 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.en-US.vtt
3.0 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.ar.vtt
3.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.zh-CN.vtt
3.0 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.en.vtt
3.0 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.en.vtt
3.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.en.vtt
3.0 kB
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.ar.vtt
3.0 kB
Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.en.vtt
3.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.zh-CN.vtt
3.0 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.zh-CN.vtt
3.0 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.pt-BR.vtt
3.0 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.en.vtt
3.0 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.ar.vtt
3.0 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.en.vtt
3.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.ar.vtt
3.0 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.pt-BR.vtt
3.0 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.en.vtt
3.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.ar.vtt
3.0 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.en.vtt
3.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.pt-BR.vtt
3.0 kB
Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.en.vtt
3.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.th.vtt
3.0 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types Of Errors - Part III-Z-srkCPsdaM.en.vtt
3.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.ja.vtt
3.0 kB
Part 15-Module 01-Lesson 03_Interview Fails/03. Interviewing Fails Siya Raj Purohit-wYop-N5YgeA.zh-CN.vtt
3.0 kB
Part 15-Module 02-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.zh-CN.vtt
3.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/03. Pseudo-Facebook User Data-8FD_iOP24UA.zh-CN.vtt
3.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-GXT_vXBA0vQ.zh-CN.vtt
3.0 kB
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.ar.vtt
3.0 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.en.vtt
3.0 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.en.vtt
3.0 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.pt-BR.vtt
3.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.pt-BR.vtt
3.0 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.en.vtt
3.0 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt
3.0 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.en.vtt
3.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.ar.vtt
3.0 kB
Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.ar.vtt
3.0 kB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.ar.vtt
3.0 kB
Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.ar.vtt
3.0 kB
Part 18-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.zh-CN.vtt
3.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.pt-BR.vtt
3.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/17. Tidiness Visual Assessment Solution-H50mPHHp6fY.zh-CN.vtt
3.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.ar.vtt
3.0 kB
Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.pt-BR.vtt
2.9 kB
Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.pt-BR.vtt
2.9 kB
Part 15-Module 02-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.zh-CN.vtt
2.9 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.en.vtt
2.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.ar.vtt
2.9 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.pt-BR.vtt
2.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.en.vtt
2.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.it.vtt
2.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.pt-BR.vtt
2.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt
2.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt
2.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt
2.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.zh-CN.vtt
2.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.pt-BR.vtt
2.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.pt-BR.vtt
2.9 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.en.vtt
2.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.ar.vtt
2.9 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/17. Calculating the p-value-_W3Jg7jQ8jI.zh-CN.vtt
2.9 kB
Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.ja.vtt
2.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.ja.vtt
2.9 kB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.ar.vtt
2.9 kB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-x-8-2zy8gmI.zh-CN.vtt
2.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.pt-BR.vtt
2.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.pt-BR.vtt
2.9 kB
Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.en-US.vtt
2.9 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.en.vtt
2.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ja.vtt
2.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.ar.vtt
2.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.ja.vtt
2.9 kB
Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.en.vtt
2.9 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.zh-CN.vtt
2.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.en.vtt
2.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-in2hLEl_eJU.zh-CN.vtt
2.9 kB
Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.ar.vtt
2.9 kB
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.en.vtt
2.9 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.th.vtt
2.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.pt-BR.vtt
2.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.ja.vtt
2.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.es-ES.vtt
2.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.en.vtt
2.9 kB
Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.en.vtt
2.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.zh-CN.vtt
2.9 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.pt-BR.vtt
2.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.pt-BR.vtt
2.9 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.en.vtt
2.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/17. Aggregations-4nGL3y3Nq-0.zh-CN.vtt
2.9 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.pt-BR.vtt
2.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.en.vtt
2.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-Q2M8xyY47fc.zh-CN.vtt
2.9 kB
Part 15-Module 02-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.zh-CN.vtt
2.9 kB
Part 04-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.pt-BR.vtt
2.9 kB
Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.pt-BR.vtt
2.9 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.pt-BR.vtt
2.9 kB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.zh-CN.vtt
2.9 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.pt-BR.vtt
2.9 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.pt-BR.vtt
2.9 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.pt-BR.vtt
2.9 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.en.vtt
2.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.ar.vtt
2.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.ar.vtt
2.9 kB
Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt
2.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.ar.vtt
2.9 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.en.vtt
2.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 Solution-kqcuw1qCLEM.zh-CN.vtt
2.9 kB
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.pt-BR.vtt
2.9 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.ar.vtt
2.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/16. Assess Programmatic-6JubHCD7dh4.zh-CN.vtt
2.9 kB
Part 15-Module 02-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.zh-CN.vtt
2.9 kB
Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.ar.vtt
2.9 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.en.vtt
2.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-TjY0Q66Yh-s.zh-CN.vtt
2.9 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.pt-BR.vtt
2.9 kB
Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.ar.vtt
2.9 kB
Part 18-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.zh-CN.vtt
2.9 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.ar.vtt
2.9 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.ar.vtt
2.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.ar.vtt
2.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.ja.vtt
2.9 kB
Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.en.vtt
2.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.pt-BR.vtt
2.9 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.pt-BR.vtt
2.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.pt-BR.vtt
2.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.pt-BR.vtt
2.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.en.vtt
2.9 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses - Part II-nByvHz77GiA.pt-BR.vtt
2.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.ar.vtt
2.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.pt-BR.vtt
2.9 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.pt-BR.vtt
2.9 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.pt-BR.vtt
2.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.pt-BR.vtt
2.9 kB
Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.en.vtt
2.9 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.zh-CN.vtt
2.9 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/16. Type And Quality Plot - Part 1-iRCS1sE78KI.zh-CN.vtt
2.9 kB
Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.en.vtt
2.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/01. Welcome To DAND Term 1-Q1GEXzXXLN0.zh-CN.vtt
2.9 kB
Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.ar.vtt
2.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.en.vtt
2.8 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.pt-BR.vtt
2.8 kB
Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.en.vtt
2.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.ar.vtt
2.8 kB
Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.ar.vtt
2.8 kB
Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.en.vtt
2.8 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-joTa_FeMZ2s.zh-CN.vtt
2.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.en.vtt
2.8 kB
Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.pt-BR.vtt
2.8 kB
Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.en.vtt
2.8 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.ar.vtt
2.8 kB
Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview-wg535YU4jFw.pt-BR.vtt
2.8 kB
Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.en.vtt
2.8 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/24. What If Our Sample Is Large-WoTCeSTL1eM.zh-CN.vtt
2.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.ar.vtt
2.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.ar.vtt
2.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt
2.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt
2.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.pt-BR.vtt
2.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt
2.8 kB
Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.pt-BR.vtt
2.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.zh-CN.vtt
2.8 kB
Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.pt-BR.vtt
2.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.pt-BR.vtt
2.8 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.en.vtt
2.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.ar.vtt
2.8 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.ar.vtt
2.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/15. Regularization-l9V5tlIWTvs.zh-CN.vtt
2.8 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.en-US.vtt
2.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/27. Box Plots, Quartiles, and Friendships-ykFuZOPCU88.zh-CN.vtt
2.8 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.en.vtt
2.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.ja.vtt
2.8 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.en.vtt
2.8 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.en.vtt
2.8 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.en.vtt
2.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/08. Addressing Missing Data First -ArAGZCUMj9Q.zh-CN.vtt
2.8 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt
2.8 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt
2.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.en.vtt
2.8 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.es-MX.vtt
2.8 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.ja.vtt
2.8 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.en.vtt
2.8 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.es-MX.vtt
2.8 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.es-MX.vtt
2.8 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.es-MX.vtt
2.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.pt-BR.vtt
2.8 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.ja.vtt
2.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.ja.vtt
2.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.en.vtt
2.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.pt-BR.vtt
2.8 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.zh-CN.vtt
2.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.ar.vtt
2.8 kB
Part 18-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.zh-CN.vtt
2.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.pt-BR.vtt
2.8 kB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ja.vtt
2.8 kB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.th.vtt
2.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.en.vtt
2.8 kB
Part 16-Module 01-Lesson 13_PCA/25. ReviewDefinition of PCA-oFBGXUUuKyI.zh-CN.vtt
2.8 kB
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.ar.vtt
2.8 kB
Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.en.vtt
2.8 kB
Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.ar.vtt
2.8 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/13. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.pt-BR.vtt
2.8 kB
Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.ja.vtt
2.8 kB
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.ar.vtt
2.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-TeFF9wXiFfs.zh-CN.vtt
2.8 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/02. DSND Trailer Final-X2xQnb-bR8A.pt-BR.vtt
2.8 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.zh-CN.vtt
2.8 kB
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.en.vtt
2.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.pt-BR.vtt
2.8 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.es-MX.vtt
2.8 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ar.vtt
2.8 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.ar.vtt
2.8 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses - Part II-nByvHz77GiA.en.vtt
2.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.zh-CN.vtt
2.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/01. What is Tableau-LeCpU8HvVg8.zh-CN.vtt
2.8 kB
Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.en.vtt
2.8 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.pt-BR.vtt
2.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.pt-BR.vtt
2.8 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.en.vtt
2.8 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.zh-CN.vtt
2.8 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/14. Simulating From the Null-sL2yJtHZd8Y.zh-CN.vtt
2.8 kB
Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.en.vtt
2.8 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.en.vtt
2.8 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.pt-BR.vtt
2.8 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.pt-BR.vtt
2.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.pt-BR.vtt
2.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.pt-BR.vtt
2.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.pt-BR.vtt
2.8 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.pt-BR.vtt
2.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.en.vtt
2.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.ar.vtt
2.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.pt-BR.vtt
2.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/23. Marks And Filters-FeYRmZHHu0A.zh-CN.vtt
2.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.pt-BR.vtt
2.8 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.en.vtt
2.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt
2.7 kB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt
2.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt
2.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.pt-BR.vtt
2.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.ar.vtt
2.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-HEnJRwJ23us.zh-CN.vtt
2.7 kB
Part 18-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.pt-BR.vtt
2.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.es-ES.vtt
2.7 kB
Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.en-US.vtt
2.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-iJEBxsKDDoE.zh-CN.vtt
2.7 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.zh-CN.vtt
2.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.en.vtt
2.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.ar.vtt
2.7 kB
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-DxCwtkrYR-s.zh-CN.vtt
2.7 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.en.vtt
2.7 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.ar.vtt
2.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.ar.vtt
2.7 kB
Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.en.vtt
2.7 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.pt-BR.vtt
2.7 kB
Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.pt-BR.vtt
2.7 kB
Part 16-Module 01-Lesson 09_Clustering/01. Unsupervised Learning-Mx9f99bRB3Q.zh-CN.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.ar.vtt
2.7 kB
Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.en.vtt
2.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.en.vtt
2.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.ja.vtt
2.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.ar.vtt
2.7 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.ar.vtt
2.7 kB
Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.ar.vtt
2.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/36. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.zh-CN.vtt
2.7 kB
Part 07-Module 01-Lesson 02_R Basics/12. Factor Variables-0bkvt4KEqjE.zh-CN.vtt
2.7 kB
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.ar.vtt
2.7 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.zh-CN.vtt
2.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.pt-BR.vtt
2.7 kB
Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.en.vtt
2.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.pt-BR.vtt
2.7 kB
Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.pt-BR.vtt
2.7 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.ja.vtt
2.7 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.en.vtt
2.7 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.en.vtt
2.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.ar.vtt
2.7 kB
Part 12-Module 01-Lesson 01_GitHub Review/02. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt
2.7 kB
Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.en-US.vtt
2.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.en.vtt
2.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/04. ggplot Syntax-7XyFjPDPoZQ.zh-CN.vtt
2.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.ar.vtt
2.7 kB
Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.en.vtt
2.7 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.en.vtt
2.7 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.pt-BR.vtt
2.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.pt-BR.vtt
2.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.en.vtt
2.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/13. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.en.vtt
2.7 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.en.vtt
2.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-20aUUbuzALM.zh-CN.vtt
2.7 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.zh-CN.vtt
2.7 kB
Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.pt-BR.vtt
2.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.zh-CN.vtt
2.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.ar.vtt
2.7 kB
Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ja.vtt
2.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.ar.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.en.vtt
2.7 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.pt-BR.vtt
2.7 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.ar.vtt
2.7 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.en.vtt
2.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python-KS6cKoKe8ms.ar.vtt
2.7 kB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.en.vtt
2.7 kB
Part 16-Module 01-Lesson 11_Text Learning/10. Stemming to Consolidate Vocabulary-gBwGPI0srBE.zh-CN.vtt
2.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.en.vtt
2.7 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.es-MX.vtt
2.7 kB
Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.pt-BR.vtt
2.7 kB
Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.ar.vtt
2.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/06. Types vs. Steps -oZmndg-BnPk.zh-CN.vtt
2.7 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.pt-BR.vtt
2.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.zh-CN.vtt
2.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.en.vtt
2.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.ar.vtt
2.7 kB
Part 04-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.zh-CN.vtt
2.7 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.pt-BR.vtt
2.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.ar.vtt
2.7 kB
Part 04-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-PZSPhQCVABg.zh-CN.vtt
2.7 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/15. What About More Than Two Variables -ufKcdUbLj9c.zh-CN.vtt
2.7 kB
Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.en.vtt
2.7 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.ar.vtt
2.7 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.ar.vtt
2.7 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.ar.vtt
2.7 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.zh-CN.vtt
2.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.pt-BR.vtt
2.7 kB
Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.ja.vtt
2.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.pt-BR.vtt
2.7 kB
Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.ar.vtt
2.7 kB
Part 07-Module 01-Lesson 01_What is EDA/06. Goals of EDA-NEvuulahg2g.zh-CN.vtt
2.7 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.ar.vtt
2.7 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ar.vtt
2.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.en.vtt
2.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-OurfO1ZR2GU.zh-CN.vtt
2.7 kB
Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.en.vtt
2.7 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ar.vtt
2.7 kB
Part 18-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.zh-CN.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.ar.vtt
2.7 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.zh-CN.vtt
2.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.en.vtt
2.7 kB
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.ar.vtt
2.7 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.pt-BR.vtt
2.7 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/06. Ud1110 IntroPy L218 My Python Programming Setup-wrnov8J5zto.zh-CN.vtt
2.7 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.es-MX.vtt
2.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/04. Unclean Data Dirty Messy -WG6mil60jq0.en.vtt
2.7 kB
Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.ar.vtt
2.7 kB
Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.en.vtt
2.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-JqyUT7RbvgI.zh-CN.vtt
2.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.ar.vtt
2.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.en.vtt
2.6 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/08. Types Of Errors - Part II-mbdSQ5CjdFs.zh-CN.vtt
2.6 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.pt-BR.vtt
2.6 kB
Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.en-US.vtt
2.6 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.zh-CN.vtt
2.6 kB
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.zh-CN.vtt
2.6 kB
Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.en.vtt
2.6 kB
Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.ar.vtt
2.6 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.pt-BR.vtt
2.6 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.pt-BR.vtt
2.6 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.pt-BR.vtt
2.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.ar.vtt
2.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.ar.vtt
2.6 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.en.vtt
2.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment Solution-LhdGQC_vjEs.zh-CN.vtt
2.6 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.ar.vtt
2.6 kB
Part 15-Module 02-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.zh-CN.vtt
2.6 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.en.vtt
2.6 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests-8hv8KnvQ6JY.en.vtt
2.6 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.ar.vtt
2.6 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.pt-BR.vtt
2.6 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.zh-CN.vtt
2.6 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.pt-BR.vtt
2.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/03. Problems Solved by Data Analysts-zbjRiYSSR_Y.zh-CN.vtt
2.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-Gl6anQql914.zh-CN.vtt
2.6 kB
Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.en.vtt
2.6 kB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.ar.vtt
2.6 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.pt-BR.vtt
2.6 kB
Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt
2.6 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.ar.vtt
2.6 kB
Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.ar.vtt
2.6 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.zh-CN.vtt
2.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.ar.vtt
2.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.pt-BR.vtt
2.6 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.zh-CN.vtt
2.6 kB
Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.pt-BR.vtt
2.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.ar.vtt
2.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.ar.vtt
2.6 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.th.vtt
2.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.ja.vtt
2.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.pt-BR.vtt
2.6 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/02. Interviewing Conversations-klqXp09Pen4.zh-CN.vtt
2.6 kB
Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.ja.vtt
2.6 kB
Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.ar.vtt
2.6 kB
Part 04-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.en.vtt
2.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.en.vtt
2.6 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.en.vtt
2.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.ar.vtt
2.6 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.en.vtt
2.6 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.ar.vtt
2.6 kB
Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.en-US.vtt
2.6 kB
Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.pt-BR.vtt
2.6 kB
Part 16-Module 01-Lesson 10_Feature Scaling/06. Comparing Features with Different Scales-PRL8trOU7Rs.zh-CN.vtt
2.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.en.vtt
2.6 kB
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.ar.vtt
2.6 kB
Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.en.vtt
2.6 kB
Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.en.vtt
2.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.ar.vtt
2.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.ar.vtt
2.6 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/10. Types Of Errors - Part III-Z-srkCPsdaM.zh-CN.vtt
2.6 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.zh-CN.vtt
2.6 kB
Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.pt-BR.vtt
2.6 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.pt-BR.vtt
2.6 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.es-MX.vtt
2.6 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.es-MX.vtt
2.6 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.es-MX.vtt
2.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-EL5z2lUuxY4.zh-CN.vtt
2.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.en.vtt
2.6 kB
Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.ar.vtt
2.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.pt-BR.vtt
2.6 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/18. Problem Solving Skills-el9knzvU4TM.zh-CN.vtt
2.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.en.vtt
2.6 kB
Part 16-Module 01-Lesson 03_SVM/23. SVM Gamma Parameter-m2a2K4lprQw.zh-CN.vtt
2.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.pt-BR.vtt
2.6 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.en.vtt
2.6 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.en.vtt
2.6 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.en.vtt
2.6 kB
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.en.vtt
2.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.en.vtt
2.6 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.ar.vtt
2.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.ar.vtt
2.6 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.pt-BR.vtt
2.6 kB
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.pt-BR.vtt
2.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.en.vtt
2.6 kB
Part 16-Module 01-Lesson 09_Clustering/02. Clustering Movies-g8PKffm8IRY.zh-CN.vtt
2.6 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.en.vtt
2.6 kB
Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.en-US.vtt
2.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.en.vtt
2.6 kB
Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.en.vtt
2.6 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ar.vtt
2.6 kB
Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.ar.vtt
2.6 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.en-US.vtt
2.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.en.vtt
2.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.zh-CN.vtt
2.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.ar.vtt
2.6 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.en.vtt
2.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.en.vtt
2.6 kB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.en.vtt
2.6 kB
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-NjuenhkC-44.zh-CN.vtt
2.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. Trees-OVeJU18ADmw.zh-CN.vtt
2.6 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.en-US.vtt
2.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.pt-BR.vtt
2.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.pt-BR.vtt
2.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.pt-BR.vtt
2.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.pt-BR.vtt
2.6 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.pt-BR.vtt
2.6 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.en.vtt
2.6 kB
Part 18-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.zh-CN.vtt
2.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.en-US.vtt
2.6 kB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.pt-BR.vtt
2.6 kB
Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.pt-BR.vtt
2.6 kB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.pt-BR.vtt
2.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.ar.vtt
2.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.ar.vtt
2.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.ar.vtt
2.6 kB
Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.pt-BR.vtt
2.6 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.pt-BR.vtt
2.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.en.vtt
2.6 kB
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.en.vtt
2.6 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.ar.vtt
2.6 kB
Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.pt-BR.vtt
2.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/23. Drawing Conclusions Example-yAl58ccwyvU.zh-CN.vtt
2.5 kB
Part 18-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.zh-CN.vtt
2.5 kB
Part 11-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.zh-CN.vtt
2.5 kB
Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.en-US.vtt
2.5 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.pt-BR.vtt
2.5 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure-Qb4o_4hCuyg.en.vtt
2.5 kB
Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.en.vtt
2.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.ar.vtt
2.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.ar.vtt
2.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.ar.vtt
2.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.en.vtt
2.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ar.vtt
2.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.ar.vtt
2.5 kB
Part 16-Module 01-Lesson 07_Regressions/17. Coding It Up-BTFOf2qXy5U.zh-CN.vtt
2.5 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.en.vtt
2.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.en.vtt
2.5 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.en.vtt
2.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.pt-BR.vtt
2.5 kB
Part 15-Module 01-Lesson 05_Interview Practice/07. Jimmy's Analysis of the Interview-wg535YU4jFw.zh-CN.vtt
2.5 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.pt-BR.vtt
2.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ar.vtt
2.5 kB
Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-R9AtVBq2Z5E.en.vtt
2.5 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.en.vtt
2.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.ja.vtt
2.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.pt-BR.vtt
2.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/03. How This Lesson Is Structured-xfRtO4aFpv0.zh-CN.vtt
2.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.zh-CN.vtt
2.5 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.pt-BR.vtt
2.5 kB
Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.en-US.vtt
2.5 kB
Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.en.vtt
2.5 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.zh-CN.vtt
2.5 kB
Part 11-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.zh-CN.vtt
2.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests-8hv8KnvQ6JY.pt-BR.vtt
2.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.en.vtt
2.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.pt-BR.vtt
2.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/21. Training and Testing Data-x2dmBUEKQIA.zh-CN.vtt
2.5 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.pt-BR.vtt
2.5 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.en.vtt
2.5 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.pt-BR.vtt
2.5 kB
Part 15-Module 02-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.zh-CN.vtt
2.5 kB
Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.ar.vtt
2.5 kB
Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.en.vtt
2.5 kB
Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.en.vtt
2.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.pt-BR.vtt
2.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.ar.vtt
2.5 kB
Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.pt-BR.vtt
2.5 kB
Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.ar.vtt
2.5 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.es-MX.vtt
2.5 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.en.vtt
2.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.pt-BR.vtt
2.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.pt-BR.vtt
2.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.zh-CN.vtt
2.5 kB
Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.ar.vtt
2.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.zh-CN.vtt
2.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.ja.vtt
2.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.pt-BR.vtt
2.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.en.vtt
2.5 kB
Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.en.vtt
2.5 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure-Qb4o_4hCuyg.pt-BR.vtt
2.5 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/02. Exploring HTML with Developer Tools-YWbCvLCBQrg.zh-CN.vtt
2.5 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ar.vtt
2.5 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.ar.vtt
2.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.ja.vtt
2.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.en.vtt
2.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.zh-CN.vtt
2.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.en.vtt
2.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/06. Connecting To Data-WmsAtqbwRI0.zh-CN.vtt
2.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.ar.vtt
2.5 kB
Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.ar.vtt
2.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.ar.vtt
2.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.pt-BR.vtt
2.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.pt-BR.vtt
2.5 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.zh-CN.vtt
2.5 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.ar.vtt
2.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.zh-CN.vtt
2.5 kB
Part 08-Module 03-Lesson 01_Assessing Data/14. Programatic Assessment -Bk_Ve3-4eps.zh-CN.vtt
2.5 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.en.vtt
2.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.pt-BR.vtt
2.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.ja.vtt
2.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.pt-BR.vtt
2.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.pt-BR.vtt
2.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.pt-BR.vtt
2.5 kB
Part 18-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.zh-CN.vtt
2.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ar.vtt
2.5 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company-CcTfHemUvbM.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.ja.vtt
2.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.en.vtt
2.5 kB
Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.pt-BR.vtt
2.5 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.ar.vtt
2.5 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.zh-CN.vtt
2.5 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.en-US.vtt
2.5 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.en.vtt
2.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.en.vtt
2.5 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 43 Case Study Review-jiZwuN6zTFs.zh-CN.vtt
2.5 kB
Part 03-Module 01-Lesson 02_Jupyter Notebooks/01. Jupyter-qiYDWFLyXvg.pt-BR.vtt
2.5 kB
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.pt-BR.vtt
2.5 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.ar.vtt
2.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.pt-BR.vtt
2.5 kB
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.ar.vtt
2.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.pt-BR.vtt
2.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.pt-BR.vtt
2.5 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.ar.vtt
2.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.pt-BR.vtt
2.5 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.ar.vtt
2.5 kB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.ar.vtt
2.5 kB
Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.pt-BR.vtt
2.5 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.zh-CN.vtt
2.5 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.ja.vtt
2.5 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.zh-CN.vtt
2.5 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.zh-CN.vtt
2.5 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.zh-CN.vtt
2.5 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.en.vtt
2.5 kB
Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt
2.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.en.vtt
2.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.ja.vtt
2.5 kB
Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.en.vtt
2.5 kB
Part 16-Module 01-Lesson 03_SVM/10. SVM in SKlearn-R7xQtQzkvTk.zh-CN.vtt
2.5 kB
Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.pt-BR.vtt
2.5 kB
Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.en.vtt
2.5 kB
Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.ja.vtt
2.5 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.en.vtt
2.5 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.en.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.pt-BR.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.ar.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.en.vtt
2.4 kB
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.ar.vtt
2.4 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.ar.vtt
2.4 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.ar.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.ja.vtt
2.4 kB
Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.en.vtt
2.4 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.ar.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/07. Reshaping Data-zQj_waidR5w.zh-CN.vtt
2.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/40. Calculated Fields-tR-K9Mvd4B0.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.ja.vtt
2.4 kB
Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.en-US.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.pt-BR.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1 Solution -I1enB5CA85Q.zh-CN.vtt
2.4 kB
Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.pt-BR.vtt
2.4 kB
Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.en.vtt
2.4 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/08. Overplotting and Domain Knowledge-DMhldSg2_vs.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.ar.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.en.vtt
2.4 kB
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-hfmvk8DzTGA.zh-CN.vtt
2.4 kB
Part 18-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.en-US.vtt
2.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ja.vtt
2.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.en.vtt
2.4 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.ar.vtt
2.4 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.en.vtt
2.4 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.en.vtt
2.4 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.en.vtt
2.4 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/04. Algorithm Options-S-cGZ-FEdjQ.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-YZb-Uam-Ics.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 07_Regressions/34. Comparing Classification and Regression-G_0W912qmGc.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.zh-CN.vtt
2.4 kB
Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-R9AtVBq2Z5E.pt-BR.vtt
2.4 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/08. Time When You Dealt With Failure-Qb4o_4hCuyg.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.en.vtt
2.4 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.en-US.vtt
2.4 kB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.pt-BR.vtt
2.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.ar.vtt
2.4 kB
Part 18-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.zh-CN.vtt
2.4 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.en.vtt
2.4 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.en.vtt
2.4 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.en.vtt
2.4 kB
Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.ar.vtt
2.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.pt-BR.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.pt-BR.vtt
2.4 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.ja.vtt
2.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML and Trees-766JMEtZCPE.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.pt-BR.vtt
2.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.en.vtt
2.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-H7IlFC5wbjk.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/27. Heat Maps-zSSNWZuVG8Y.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.ar.vtt
2.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.en.vtt
2.4 kB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.en.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.pt-BR.vtt
2.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.ar.vtt
2.4 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.en.vtt
2.4 kB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.en.vtt
2.4 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.zh-CN.vtt
2.4 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.zh-CN.vtt
2.4 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.pt-BR.vtt
2.4 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.ar.vtt
2.4 kB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.pt-BR.vtt
2.4 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.pt-BR.vtt
2.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.pt-BR.vtt
2.4 kB
Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.pt-BR.vtt
2.4 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.pt-BR.vtt
2.4 kB
Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.pt-BR.vtt
2.4 kB
Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.en.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.pt-BR.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.en.vtt
2.4 kB
Part 18-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.zh-CN.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.pt-BR.vtt
2.4 kB
Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.en.vtt
2.4 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.en.vtt
2.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.pt-BR.vtt
2.4 kB
Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.en.vtt
2.4 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.en.vtt
2.4 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.en.vtt
2.4 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.en.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.ja.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 1-J4X9r0EGH3k.zh-CN.vtt
2.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/16. Lasso Regression-qU1_cj4LfLY.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.pt-BR.vtt
2.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.ar.vtt
2.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.ar.vtt
2.4 kB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.pt-BR.vtt
2.4 kB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.ar.vtt
2.4 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.en.vtt
2.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.en.vtt
2.4 kB
Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.ar.vtt
2.4 kB
Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.en-US.vtt
2.4 kB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.ar.vtt
2.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.ar.vtt
2.4 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.zh-CN.vtt
2.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.ar.vtt
2.4 kB
Part 15-Module 02-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.zh-CN.vtt
2.4 kB
Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.en.vtt
2.4 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/13. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.zh-CN.vtt
2.4 kB
Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.en-US.vtt
2.4 kB
Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.ja.vtt
2.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.ja.vtt
2.3 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company-CcTfHemUvbM.en.vtt
2.3 kB
Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.en.vtt
2.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.ja.vtt
2.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.zh-CN.vtt
2.3 kB
Part 16-Module 01-Lesson 16_Tying It All Together/02. Summary-avqZaTECZTQ.zh-CN.vtt
2.3 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.en.vtt
2.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.pt-BR.vtt
2.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.en.vtt
2.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.en.vtt
2.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.en.vtt
2.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.pt-BR.vtt
2.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.en.vtt
2.3 kB
Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.pt-BR.vtt
2.3 kB
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.en.vtt
2.3 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses - Part II-nByvHz77GiA.zh-CN.vtt
2.3 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.ar.vtt
2.3 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.zh-CN.vtt
2.3 kB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.pt-BR.vtt
2.3 kB
Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.ar.vtt
2.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.pt-BR.vtt
2.3 kB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.pt-BR.vtt
2.3 kB
Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.pt-BR.vtt
2.3 kB
Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.en-US.vtt
2.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.en.vtt
2.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.pt-BR.vtt
2.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.pt-BR.vtt
2.3 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.en.vtt
2.3 kB
Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.en.vtt
2.3 kB
Part 16-Module 01-Lesson 09_Clustering/11. K-Means Clustering Visualization 3-WfwX3B4d8_I.zh-CN.vtt
2.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.pt-BR.vtt
2.3 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.en.vtt
2.3 kB
Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.en.vtt
2.3 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ar.vtt
2.3 kB
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-GuBics_6HOk.zh-CN.vtt
2.3 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.pt-BR.vtt
2.3 kB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.en.vtt
2.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.ar.vtt
2.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.pt-BR.vtt
2.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.ja.vtt
2.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.ar.vtt
2.3 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.ar.vtt
2.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.pt-BR.vtt
2.3 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 34 Finding The First Link 2-bsMtF-705EU.pt-BR.vtt
2.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.pt-BR.vtt
2.3 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.en.vtt
2.3 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.en.vtt
2.3 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.zh-CN.vtt
2.3 kB
Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.pt-BR.vtt
2.3 kB
Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.ar.vtt
2.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.en.vtt
2.3 kB
Part 15-Module 02-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.zh-CN.vtt
2.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.en.vtt
2.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 07_Regressions/20. Extracting Score Data from sklearn-NhD4oUuhvO8.zh-CN.vtt
2.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.en.vtt
2.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.ar.vtt
2.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.en.vtt
2.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.zh-CN.vtt
2.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.en.vtt
2.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.en.vtt
2.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.zh-CN.vtt
2.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.ja.vtt
2.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.en.vtt
2.3 kB
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.pt-BR.vtt
2.3 kB
Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.pt-BR.vtt
2.3 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.pt-BR.vtt
2.3 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.es-MX.vtt
2.3 kB
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-tfYAGBIR_Ws.zh-CN.vtt
2.3 kB
Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.pt-BR.vtt
2.3 kB
Part 15-Module 02-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.zh-CN.vtt
2.3 kB
Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.ar.vtt
2.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.ar.vtt
2.3 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.ar.vtt
2.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/26. Box Plots-Hk26Zn3xQEY.zh-CN.vtt
2.3 kB
Part 15-Module 02-Lesson 05_Trees/13. BST Complications-pcB0wV7myy4.zh-CN.vtt
2.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.en.vtt
2.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.ar.vtt
2.3 kB
Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.en.vtt
2.3 kB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.ar.vtt
2.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.en.vtt
2.3 kB
Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.en-US.vtt
2.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.pt-BR.vtt
2.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/03. Third Qualitative Variable-qXvnpC2UdVU.zh-CN.vtt
2.3 kB
Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.en.vtt
2.3 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.zh-CN.vtt
2.3 kB
Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.pt-BR.vtt
2.3 kB
Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.en.vtt
2.3 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.ar.vtt
2.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.en.vtt
2.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.en.vtt
2.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.zh-CN.vtt
2.3 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.en.vtt
2.3 kB
Part 04-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.zh-CN.vtt
2.3 kB
Part 15-Module 02-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.zh-CN.vtt
2.3 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.en-US.vtt
2.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/07. Packages Overview-sCQoQsmI3F0.zh-CN.vtt
2.3 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative-29mkriaGT0E.pt-BR.vtt
2.3 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.en.vtt
2.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.en.vtt
2.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.en.vtt
2.3 kB
Part 14-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.zh-CN.vtt
2.3 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.en.vtt
2.3 kB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.en.vtt
2.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.zh-CN.vtt
2.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.pt-BR.vtt
2.3 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Multiple Testing Corrections-DuMgeHrkIF0.en.vtt
2.3 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.ja.vtt
2.3 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Multiple Testing Corrections-DuMgeHrkIF0.pt-BR.vtt
2.3 kB
Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.ar.vtt
2.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.pt-BR.vtt
2.3 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.zh-CN.vtt
2.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.ar.vtt
2.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.ar.vtt
2.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. Assess Intro -vj3CYBlWj3k.zh-CN.vtt
2.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.ar.vtt
2.3 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.ar.vtt
2.3 kB
Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.en.vtt
2.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-VYwgHHqaUII.zh-CN.vtt
2.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/24. Frequency Polygons-bDRGbJP7YMY.zh-CN.vtt
2.3 kB
Part 15-Module 02-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.zh-CN.vtt
2.3 kB
Part 07-Module 01-Lesson 02_R Basics/02. Why R-VlJnNSeO1uQ.zh-CN.vtt
2.3 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.pt-BR.vtt
2.3 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.th.vtt
2.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/09. Gather Open Jupyter Notebook-IaExjsrVMgQ.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values-hFNjd5l9CLs.en.vtt
2.2 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.en.vtt
2.2 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.ar.vtt
2.2 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ar.vtt
2.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.zh-CN.vtt
2.2 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.ja.vtt
2.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.ja.vtt
2.2 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.pt-BR.vtt
2.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.ar.vtt
2.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.ar.vtt
2.2 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.ar.vtt
2.2 kB
Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.en.vtt
2.2 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.en.vtt
2.2 kB
Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.ar.vtt
2.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/43. Table Calculations-VJfCNO0J9jY.zh-CN.vtt
2.2 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt
2.2 kB
Part 15-Module 02-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.zh-CN.vtt
2.2 kB
Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.pt-BR.vtt
2.2 kB
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/11. Moira Histogram Summary Scatterplots-GmR3uEM189M.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/12. Common Types of Hypothesis Tests-8hv8KnvQ6JY.zh-CN.vtt
2.2 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.pt-BR.vtt
2.2 kB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.en.vtt
2.2 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/17. Type And Quality Plot - Part 2-Ui1rF6McOBA.zh-CN.vtt
2.2 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.ar.vtt
2.2 kB
Part 18-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.en.vtt
2.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.en.vtt
2.2 kB
Part 18-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.zh-CN.vtt
2.2 kB
Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.pt-BR.vtt
2.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.en.vtt
2.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt
2.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt
2.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt
2.2 kB
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.en.vtt
2.2 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.en.vtt
2.2 kB
Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.en.vtt
2.2 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.ar.vtt
2.2 kB
Part 15-Module 02-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.es-ES.vtt
2.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.pt-BR.vtt
2.2 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.pt-BR.vtt
2.2 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.pt-BR.vtt
2.2 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.pt-BR.vtt
2.2 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/10. Scatterplot Transformation-h1wbEPuADz0.zh-CN.vtt
2.2 kB
Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.ar.vtt
2.2 kB
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.ar.vtt
2.2 kB
Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt
2.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.ja.vtt
2.2 kB
Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.ar.vtt
2.2 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.ar.vtt
2.2 kB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-SwbreslrpqQ.zh-CN.vtt
2.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.en.vtt
2.2 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.ar.vtt
2.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.ar.vtt
2.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.ja.vtt
2.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/11. Gather CSV Files-FpWi4tExVwg.zh-CN.vtt
2.2 kB
Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.pt-BR.vtt
2.2 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.ar.vtt
2.2 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.ar.vtt
2.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.en.vtt
2.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.en.vtt
2.2 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.ar.vtt
2.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.en.vtt
2.2 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.zh-CN.vtt
2.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.en.vtt
2.2 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/02. Lesson Overview-1EzlGH4Biu0.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.zh-CN.vtt
2.2 kB
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.ja.vtt
2.2 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.ar.vtt
2.2 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-gpwlI9Wa8xI.zh-CN.vtt
2.2 kB
Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.ar.vtt
2.2 kB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.pt-BR.vtt
2.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.pt-BR.vtt
2.2 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.ar.vtt
2.2 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/07. Univariate Plots-kgmYLreYB0A.zh-CN.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.ja.vtt
2.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Solution -lJEMTES2Ar8.zh-CN.vtt
2.2 kB
Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.pt-BR.vtt
2.2 kB
Part 18-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types Of Errors - Part I-aw6GMxIvENc.en.vtt
2.2 kB
Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.en.vtt
2.2 kB
Part 09-Module 01-Lesson 02_Design/16. General Design Tips-Zq-wMwOfQqY.zh-CN.vtt
2.2 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.zh-CN.vtt
2.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.ja.vtt
2.2 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.pt-BR.vtt
2.2 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.zh-CN.vtt
2.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.ja.vtt
2.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.en.vtt
2.2 kB
Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.pt-BR.vtt
2.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.es-ES.vtt
2.2 kB
Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.ar.vtt
2.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.zh-CN.vtt
2.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/17. Introducing the Yogurt Dataset-5J9GxnJVo78.zh-CN.vtt
2.2 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.pt-BR.vtt
2.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.en.vtt
2.2 kB
Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.ja.vtt
2.2 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.zh-CN.vtt
2.2 kB
Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.pt-BR.vtt
2.2 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/05. Investigation Process-5o2x4UsumLY.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ar.vtt
2.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.en.vtt
2.2 kB
Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.pt-BR.vtt
2.2 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.it.vtt
2.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.zh-CN.vtt
2.2 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.en.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.en-US.vtt
2.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.ja.vtt
2.2 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.ar.vtt
2.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.pt-BR.vtt
2.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.pt-BR.vtt
2.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.pt-BR.vtt
2.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.pt-BR.vtt
2.2 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/07. What Do You Know About the Company-CcTfHemUvbM.zh-CN.vtt
2.2 kB
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.en.vtt
2.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.pt-BR.vtt
2.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.es-ES.vtt
2.2 kB
Part 15-Module 02-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.zh-CN.vtt
2.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/02. Acerous Vs. Non-Acerous-M5pj2CrO-2w.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.pt-BR.vtt
2.2 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.es-MX.vtt
2.2 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.es-MX.vtt
2.2 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.es-MX.vtt
2.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.en.vtt
2.2 kB
Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.pt-BR.vtt
2.2 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.zh-CN.vtt
2.2 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.zh-CN.vtt
2.2 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.zh-CN.vtt
2.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.en.vtt
2.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.pt-BR.vtt
2.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.it.vtt
2.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.ar.vtt
2.1 kB
Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.ar.vtt
2.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.ar.vtt
2.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.zh-CN.vtt
2.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.en.vtt
2.1 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.en.vtt
2.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.pt-BR.vtt
2.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-NvgWKf-iBsw.zh-CN.vtt
2.1 kB
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.en.vtt
2.1 kB
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.en.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.pt-BR.vtt
2.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.ar.vtt
2.1 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/08. Self JOINs-tw_VzEGBOvI.zh-CN.vtt
2.1 kB
Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.pt-BR.vtt
2.1 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-wZDgVcAW_es.zh-CN.vtt
2.1 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.zh-CN.vtt
2.1 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.zh-CN.vtt
2.1 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.zh-CN.vtt
2.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.pt-BR.vtt
2.1 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.pt-BR.vtt
2.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.ar.vtt
2.1 kB
Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.es-MX.vtt
2.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.ar.vtt
2.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.ja.vtt
2.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.en.vtt
2.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.en.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.ar.vtt
2.1 kB
Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.ar.vtt
2.1 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.en.vtt
2.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Continue Crawl Solution-cFwJ_MO3ofs.zh-CN.vtt
2.1 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.pt-BR.vtt
2.1 kB
Part 12-Module 01-Lesson 01_GitHub Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt
2.1 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative-29mkriaGT0E.en.vtt
2.1 kB
Part 15-Module 01-Lesson 05_Interview Practice/05. Maximum Difference in an Integer Array-R9AtVBq2Z5E.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.ja.vtt
2.1 kB
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.en-US.vtt
2.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python-KS6cKoKe8ms.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.en.vtt
2.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.ar.vtt
2.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.ar.vtt
2.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.en.vtt
2.1 kB
Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.en.vtt
2.1 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.zh-CN.vtt
2.1 kB
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.ar.vtt
2.1 kB
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.en.vtt
2.1 kB
Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.en.vtt
2.1 kB
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.ar.vtt
2.1 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/12. Pandas Groupby-aWc18hHpXRk.zh-CN.vtt
2.1 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.en.vtt
2.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.zh-CN.vtt
2.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/05. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt
2.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt
2.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt
2.1 kB
Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.en-US.vtt
2.1 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/02. Introduction Part II-2ldF64FPWw4.zh-CN.vtt
2.1 kB
Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt
2.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.en.vtt
2.1 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.zh-CN.vtt
2.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.ja.vtt
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Solution --faitcQ7SKs.zh-CN.vtt
2.1 kB
Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.en.vtt
2.1 kB
Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.en.vtt
2.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.en.vtt
2.1 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.ar.vtt
2.1 kB
Part 15-Module 02-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.ar.vtt
2.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/22. WHERE Statements -mN0uTnlXaxg.zh-CN.vtt
2.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.en.vtt
2.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.th.vtt
2.1 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.en.vtt
2.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.pt-BR.vtt
2.1 kB
Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.ar.vtt
2.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/08. Scraping Webpages -bAeGbBBAIkE.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.ar.vtt
2.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.ar.vtt
2.1 kB
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.en.vtt
2.1 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 02_R Basics/09. Getting Help-ABVX527RODE.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.ja.vtt
2.1 kB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.en.vtt
2.1 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.ja.vtt
2.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/41. AND BETWEEN Operators-nBuDPneWcKY.zh-CN.vtt
2.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.en.vtt
2.1 kB
Part 09-Module 01-Lesson 02_Design/06. What Experts Say About Visual Encodings-98aog0eVcC4.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.en.vtt
2.1 kB
Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.en.vtt
2.1 kB
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.pt-BR.vtt
2.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.ar.vtt
2.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.pt-BR.vtt
2.1 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.pt-BR.vtt
2.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.ar.vtt
2.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.ja.vtt
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/06. Gather Intro-K5ITQn1L1R0.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.ja.vtt
2.1 kB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.en.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.ar.vtt
2.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.en.vtt
2.1 kB
Part 04-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.en.vtt
2.1 kB
Part 04-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.en.vtt
2.1 kB
Part 16-Module 01-Lesson 07_Regressions/35. Multivariate Regression Quiz-YPPQy_eB2mU.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.ja.vtt
2.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.en.vtt
2.1 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.en.vtt
2.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.ar.vtt
2.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.en.vtt
2.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/02. Clarifying the Question-XvvKBmKC_84.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.en.vtt
2.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/31. Small Multiples And Dual Axis-bx6MxsoDqsI.zh-CN.vtt
2.1 kB
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.en.vtt
2.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ja.vtt
2.1 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.en.vtt
2.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/01. Interview Introduction-dRsHYt1Lddc.pt-BR.vtt
2.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.ja.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/17. Moira on Correlation-2vql64jk77I.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.es-ES.vtt
2.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.pt-BR.vtt
2.1 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.pt-BR.vtt
2.1 kB
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.zh-CN.vtt
2.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces--VxKwVvrNY0.zh-CN.vtt
2.1 kB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-XDvus8zHJbA.zh-CN.vtt
2.1 kB
Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.en.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.ar.vtt
2.1 kB
Part 15-Module 02-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 03_SVM/25. SVM Strengths and Weaknesses-U9-ZsbaaGAs.zh-CN.vtt
2.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/38. NOT Operator-dSQF87oW8a0.zh-CN.vtt
2.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.ja.vtt
2.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.en-US.vtt
2.1 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.en-US.vtt
2.1 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.pt-BR.vtt
2.1 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.pt-BR.vtt
2.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.pt-BR.vtt
2.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.en.vtt
2.0 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.en.vtt
2.0 kB
Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.en.vtt
2.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/13. Overfitting by Eye-sJgPnuiHrs8.zh-CN.vtt
2.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.en.vtt
2.0 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-61sZUjEPzt0.zh-CN.vtt
2.0 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.ar.vtt
2.0 kB
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.th.vtt
2.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.pt-BR.vtt
2.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.ar.vtt
2.0 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.ar.vtt
2.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.en.vtt
2.0 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.en.vtt
2.0 kB
Part 15-Module 02-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.pt-BR.vtt
2.0 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.en.vtt
2.0 kB
Part 16-Module 01-Lesson 16_Tying It All Together/04. Outro-VCNcNnZ6V_s.zh-CN.vtt
2.0 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.it.vtt
2.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.en.vtt
2.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.ja.vtt
2.0 kB
Part 15-Module 02-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.en.vtt
2.0 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.ar.vtt
2.0 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.es-MX.vtt
2.0 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.en.vtt
2.0 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt
2.0 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.en-US.vtt
2.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/24. Many Variables-okzOTH15r3Y.zh-CN.vtt
2.0 kB
Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.en-US.vtt
2.0 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions In Hypothesis Testing-I0Mo7hcxahY.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types Of Errors - Part I-aw6GMxIvENc.pt-BR.vtt
2.0 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.en.vtt
2.0 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.en.vtt
2.0 kB
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.pt-BR.vtt
2.0 kB
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.en.vtt
2.0 kB
Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.en.vtt
2.0 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.en-US.vtt
2.0 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.zh-CN.vtt
2.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.ar.vtt
2.0 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.pt-BR.vtt
2.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.pt-BR.vtt
2.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.pt-BR.vtt
2.0 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.pt-BR.vtt
2.0 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.pt-BR.vtt
2.0 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.pt-BR.vtt
2.0 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.ar.vtt
2.0 kB
Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ja.vtt
2.0 kB
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.en.vtt
2.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.es-ES.vtt
2.0 kB
Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.en.vtt
2.0 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ar.vtt
2.0 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions In Hypothesis Testing-I0Mo7hcxahY.en.vtt
2.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.ar.vtt
2.0 kB
Part 15-Module 02-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.zh-CN.vtt
2.0 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.zh-CN.vtt
2.0 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.pt-BR.vtt
2.0 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/17. Getting Started With sklearn-olGPVtH7KGU.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.ar.vtt
2.0 kB
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.pt-BR.vtt
2.0 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.zh-CN.vtt
2.0 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.ar.vtt
2.0 kB
Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.ar.vtt
2.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.ar.vtt
2.0 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values-hFNjd5l9CLs.pt-BR.vtt
2.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.ar.vtt
2.0 kB
Part 16-Module 01-Lesson 13_PCA/21. Info Loss and Principal Components-LTPV8lxQeZQ.zh-CN.vtt
2.0 kB
Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.pt-BR.vtt
2.0 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.pt-BR.vtt
2.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.ar.vtt
2.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-9v9zh0O_0go.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.en.vtt
2.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.pt-BR.vtt
2.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.ja.vtt
2.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 03_SVM/19. Kernel Trick-3Xw6FKYP7e4.zh-CN.vtt
2.0 kB
Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.en.vtt
2.0 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.en.vtt
2.0 kB
Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.en.vtt
2.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.es-ES.vtt
2.0 kB
Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.pt-BR.vtt
2.0 kB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.pt-BR.vtt
2.0 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.ar.vtt
2.0 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.es-MX.vtt
2.0 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.es-MX.vtt
2.0 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.es-MX.vtt
2.0 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.en.vtt
2.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-AY5nywPa3GI.zh-CN.vtt
2.0 kB
Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.pt-BR.vtt
2.0 kB
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.pt-BR.vtt
2.0 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.ar.vtt
2.0 kB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.ar.vtt
2.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.th.vtt
2.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-7PyV7HxpSYA.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-oaqjLyiKOIA.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt
2.0 kB
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.en.vtt
2.0 kB
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.en.vtt
2.0 kB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-XZNKM3xMZNY.zh-CN.vtt
2.0 kB
Part 18-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.zh-CN.vtt
2.0 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.en.vtt
2.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.ja.vtt
2.0 kB
Part 16-Module 01-Lesson 13_PCA/38. Selecting Principal Components-IwcoGtFuYSo.zh-CN.vtt
2.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.ja.vtt
2.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.en.vtt
2.0 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt
2.0 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt
2.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.pt-BR.vtt
2.0 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.pt-BR.vtt
2.0 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.en.vtt
2.0 kB
Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.en.vtt
2.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en-GB.vtt
2.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.ar.vtt
2.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.ja.vtt
2.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.en.vtt
2.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.ar.vtt
2.0 kB
Part 09-Module 01-Lesson 02_Design/07. Chart Junk-3BTBEYOG2o8.zh-CN.vtt
2.0 kB
Part 15-Module 02-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-eAKVYAR_VlY.zh-CN.vtt
2.0 kB
Part 18-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.ar.vtt
2.0 kB
Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.en.vtt
2.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.pt-BR.vtt
2.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.en.vtt
2.0 kB
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.ar.vtt
2.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.en.vtt
2.0 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.ar.vtt
2.0 kB
Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.ar.vtt
2.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.ar.vtt
2.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.zh-CN.vtt
2.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python-KS6cKoKe8ms.en.vtt
2.0 kB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-WyoU2otqsd8.zh-CN.vtt
2.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.ar.vtt
2.0 kB
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.zh-CN.vtt
2.0 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.en.vtt
2.0 kB
Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.pt-BR.vtt
2.0 kB
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8xFV-I4VqZ0.en.vtt
2.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.ar.vtt
2.0 kB
Part 08-Module 02-Lesson 01_Gathering Data/01. Introduction-XtJN72lBo94.zh-CN.vtt
2.0 kB
Part 12-Module 01-Lesson 01_GitHub Review/03. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.en.vtt
2.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.en.vtt
2.0 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.ar.vtt
2.0 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.pt-BR.vtt
2.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/23. Add a Scaling Layer-SsNYXdi3q-I.zh-CN.vtt
2.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-S3f9BoG9TYA.zh-CN.vtt
2.0 kB
Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.en-US.vtt
2.0 kB
Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.ar.vtt
2.0 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.en.vtt
2.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.en.vtt
2.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.en.vtt
2.0 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.en.vtt
2.0 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.pt-BR.vtt
2.0 kB
Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.en.vtt
2.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.en.vtt
2.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.ja.vtt
2.0 kB
Part 11-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.zh-CN.vtt
2.0 kB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.ar.vtt
2.0 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.ar.vtt
2.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.ar.vtt
2.0 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.pt-BR.vtt
1.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.ar.vtt
1.9 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.zh-CN.vtt
1.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-StmEUgT1XSY.zh-CN.vtt
1.9 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.en.vtt
1.9 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/25. Multiple Testing Corrections-DuMgeHrkIF0.zh-CN.vtt
1.9 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.zh-CN.vtt
1.9 kB
Part 04-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 11_Text Learning/14. Why Upweight Rare Words-xYQb6f1SIEk.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.ja.vtt
1.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.ar.vtt
1.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.en.vtt
1.9 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.es-MX.vtt
1.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.en.vtt
1.9 kB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.en.vtt
1.9 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.zh-CN.vtt
1.9 kB
Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.en.vtt
1.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/20. Building the Linear Model-zyIc0sXYk2A.zh-CN.vtt
1.9 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.pt-BR.vtt
1.9 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.en.vtt
1.9 kB
Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.ar.vtt
1.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.pt-BR.vtt
1.9 kB
Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.en.vtt
1.9 kB
Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.en.vtt
1.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.ja.vtt
1.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.ja.vtt
1.9 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/05. Ud1110 IntroPy L212 Put A Python In Your Computer-P-Lr3WED7pg.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ar.vtt
1.9 kB
Part 04-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.zh-CN.vtt
1.9 kB
Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.pt-BR.vtt
1.9 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/09. Scatter Plots -DvlxZ37O4i8.zh-CN.vtt
1.9 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.zh-CN.vtt
1.9 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.en.vtt
1.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.ar.vtt
1.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.en.vtt
1.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.en.vtt
1.9 kB
Part 15-Module 01-Lesson 03_Interview Fails/02. Interviewing Fails Mike Wales-OGXRmzBglI4.zh-CN.vtt
1.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.ar.vtt
1.9 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.ja.vtt
1.9 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.ar.vtt
1.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.ja.vtt
1.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.pt-BR.vtt
1.9 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.ar.vtt
1.9 kB
Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.pt-BR.vtt
1.9 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.ar.vtt
1.9 kB
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.ar.vtt
1.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.ar.vtt
1.9 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.ar.vtt
1.9 kB
Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.pt-BR.vtt
1.9 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.ar.vtt
1.9 kB
Part 04-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.en.vtt
1.9 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.ja.vtt
1.9 kB
Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.ar.vtt
1.9 kB
Part 12-Module 01-Lesson 01_GitHub Review/06. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt
1.9 kB
Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-OGK9SHt8SWg.zh-CN.vtt
1.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-FT0dM2um34E.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.ja.vtt
1.9 kB
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.ar.vtt
1.9 kB
Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.zh-CN.vtt
1.9 kB
Part 11-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.zh-CN.vtt
1.9 kB
Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.ar.vtt
1.9 kB
Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.ar.vtt
1.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.en.vtt
1.9 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.en.vtt
1.9 kB
Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.ar.vtt
1.9 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Welcome to Introduction to Python Programming-IILB-5hIeZM.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.it.vtt
1.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Operator-3vLGEuXAAvA.zh-CN.vtt
1.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.zh-CN.vtt
1.9 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/26. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.en.vtt
1.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-jKZAcZw9xLA.zh-CN.vtt
1.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.zh-CN.vtt
1.9 kB
Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.ar.vtt
1.9 kB
Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy--gJJmckPBAg.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.en.vtt
1.9 kB
Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.pt-BR.vtt
1.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/10. Time Commitment-d-VfUw7wNEQ.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/11. Time Commitment-d-VfUw7wNEQ.zh-CN.vtt
1.9 kB
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.ar.vtt
1.9 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.pt-BR.vtt
1.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.en.vtt
1.9 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ja.vtt
1.9 kB
Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.en.vtt
1.9 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.pt-BR.vtt
1.9 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.pt-BR.vtt
1.9 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ja.vtt
1.9 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.en.vtt
1.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.ar.vtt
1.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.ar.vtt
1.9 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.es-ES.vtt
1.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-DlDQLxYRB4w.zh-CN.vtt
1.9 kB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.pt-BR.vtt
1.9 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.ar.vtt
1.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-CSVf96g0XGM.zh-CN.vtt
1.9 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.en.vtt
1.9 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ar.vtt
1.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.th.vtt
1.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.pt-BR.vtt
1.9 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/15. Omitting NA Observations-SdYtgaZ5riY.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 01_What is EDA/03. Go Exploring-dias-YUpewk.zh-CN.vtt
1.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.en.vtt
1.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.ar.vtt
1.9 kB
Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.en-US.vtt
1.9 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/10. The Completed Program-yGDHoIOfwt8.zh-CN.vtt
1.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.pt-BR.vtt
1.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.pt-BR.vtt
1.9 kB
Part 08-Module 03-Lesson 01_Assessing Data/01. Introduction-4U3nFMf2KEs.zh-CN.vtt
1.9 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.es-MX.vtt
1.9 kB
Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.en.vtt
1.9 kB
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-aZqYc7v8BK4.zh-CN.vtt
1.9 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.ar.vtt
1.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.ar.vtt
1.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.zh-CN.vtt
1.9 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.zh-CN.vtt
1.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/19. Order By Part II-XQCjREdOqwE.zh-CN.vtt
1.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.pt-BR.vtt
1.9 kB
Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.en.vtt
1.9 kB
Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.en.vtt
1.9 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.en.vtt
1.9 kB
Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.en.vtt
1.9 kB
Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.en-US.vtt
1.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.ja.vtt
1.9 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.ja.vtt
1.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.ar.vtt
1.9 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.en.vtt
1.9 kB
Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.en.vtt
1.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.ar.vtt
1.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.ar.vtt
1.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.zh-CN.vtt
1.9 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.en.vtt
1.9 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. What are we going to do-rK6YlbBiKQM.pt-BR.vtt
1.9 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.en.vtt
1.9 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/02. What's Ahead-ggbCydfI1JM.zh-CN.vtt
1.9 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.en.vtt
1.9 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.en.vtt
1.9 kB
Part 16-Module 01-Lesson 02_Naive Bayes/30. Bayes Rule Diagram-LIQrs3dviIs.zh-CN.vtt
1.9 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.ar.vtt
1.9 kB
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.pt-BR.vtt
1.9 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.en.vtt
1.9 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/20. Connecting Errors and P-Values-hFNjd5l9CLs.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 03_Explore One Variable/12. Limiting the Axes-1W3QAzrybMk.zh-CN.vtt
1.9 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.pt-BR.vtt
1.9 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.en.vtt
1.9 kB
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.ar.vtt
1.9 kB
Part 18-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.zh-CN.vtt
1.9 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/06. The Rise of Diamonds-MD9RIDRVc-A.zh-CN.vtt
1.9 kB
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.ar.vtt
1.9 kB
Part 16-Module 01-Lesson 04_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.zh-CN.vtt
1.9 kB
Part 03-Module 03-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.pt-BR.vtt
1.9 kB
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.th.vtt
1.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.ar.vtt
1.8 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.es-MX.vtt
1.8 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.es-MX.vtt
1.8 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.es-MX.vtt
1.8 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.en.vtt
1.8 kB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-jQaYAlZ1fp0.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/06. Types Of Errors - Part I-aw6GMxIvENc.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/18. Labeling Plots-llvIDIu3Sw8.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.pt-BR.vtt
1.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.ar.vtt
1.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.ar.vtt
1.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.ar.vtt
1.8 kB
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.en.vtt
1.8 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.en.vtt
1.8 kB
Part 09-Module 01-Lesson 02_Design/18. Tell A Story-_IdOUEhjVGI.zh-CN.vtt
1.8 kB
Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.pt-BR.vtt
1.8 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.zh-CN.vtt
1.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/16. ORDER BY Statement-wqj2As31LqI.zh-CN.vtt
1.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.zh-CN.vtt
1.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.en.vtt
1.8 kB
Part 16-Module 01-Lesson 16_Tying It All Together/01. Introduction-8tm1144C4T0.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.es-ES.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.en.vtt
1.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.en.vtt
1.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/28. Arithmetic Operators-fgcJdiNECxI.zh-CN.vtt
1.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.ar.vtt
1.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.ar.vtt
1.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.en.vtt
1.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.en.vtt
1.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.pt-BR.vtt
1.8 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.ja.vtt
1.8 kB
Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.pt-BR.vtt
1.8 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.ar.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.zh-CN.vtt
1.8 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/04. Time When You Showed Initiative-29mkriaGT0E.zh-CN.vtt
1.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.zh-CN.vtt
1.8 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.ar.vtt
1.8 kB
Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ja.vtt
1.8 kB
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.th.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.ar.vtt
1.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.pt-BR.vtt
1.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.en.vtt
1.8 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-hxxa0KAkB1o.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.zh-CN.vtt
1.8 kB
Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.ja.vtt
1.8 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.en.vtt
1.8 kB
Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.ja.vtt
1.8 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.pt-BR.vtt
1.8 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/04. Gathering Data-r7BHGq_0P9Q.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.ar.vtt
1.8 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-DclTt9xqS4s.zh-CN.vtt
1.8 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ja.vtt
1.8 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-CvTXyvw7QLc.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.zh-CN.vtt
1.8 kB
Part 09-Module 01-Lesson 02_Design/19. Same Data Different Stories-jSSnkz3QT5Y.zh-CN.vtt
1.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.ar.vtt
1.8 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.en.vtt
1.8 kB
Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.en.vtt
1.8 kB
Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.en.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.ja.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.en-US.vtt
1.8 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.en.vtt
1.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/32. LIKE Operator-O5z6eWkNip4.zh-CN.vtt
1.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.it.vtt
1.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.ja.vtt
1.8 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.en.vtt
1.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.en.vtt
1.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.ar.vtt
1.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.en.vtt
1.8 kB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.zh-CN.vtt
1.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/02. Projects Term 1 V2-1e1y6QB34YM.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.zh-CN.vtt
1.8 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.en.vtt
1.8 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.en.vtt
1.8 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.en.vtt
1.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.ar.vtt
1.8 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/21. Conclusions In Hypothesis Testing-I0Mo7hcxahY.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.en.vtt
1.8 kB
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.ar.vtt
1.8 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.en.vtt
1.8 kB
Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.en.vtt
1.8 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.ar.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.en-US.vtt
1.8 kB
Part 08-Module 04-Lesson 01_Cleaning Data/01. Introduction -rkRn1Nh-6lg.zh-CN.vtt
1.8 kB
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.ar.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.pt-BR.vtt
1.8 kB
Part 15-Module 02-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.en.vtt
1.8 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.pt-BR.vtt
1.8 kB
Part 18-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.zh-CN.vtt
1.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.pt-BR.vtt
1.8 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.ja.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.ja.vtt
1.8 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.es-ES.vtt
1.8 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.ja.vtt
1.8 kB
Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.ar.vtt
1.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.ar.vtt
1.8 kB
Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.en.vtt
1.8 kB
Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.ja.vtt
1.8 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.ja.vtt
1.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.en.vtt
1.8 kB
Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.ar.vtt
1.8 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.en.vtt
1.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ar.vtt
1.8 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.ar.vtt
1.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.es-ES.vtt
1.8 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.ar.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.en.vtt
1.8 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.en.vtt
1.8 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.en.vtt
1.8 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.ar.vtt
1.8 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.en.vtt
1.8 kB
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.zh-CN.vtt
1.8 kB
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-djTM5fADIVs.zh-CN.vtt
1.8 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.en.vtt
1.8 kB
Part 04-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.zh-CN.vtt
1.8 kB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.en.vtt
1.8 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.zh-CN.vtt
1.8 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.pt-BR.vtt
1.8 kB
Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.en.vtt
1.8 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 08_Outliers/04. Outlier DetectionRemoval Algorithm-hGKY6BAqJ6o.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.en.vtt
1.8 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.pt-BR.vtt
1.8 kB
Part 11-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.pt-BR.vtt
1.8 kB
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.en.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.en.vtt
1.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.en.vtt
1.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/01. Welcome!-KJT4Z0xpHns.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.pt-BR.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.ja.vtt
1.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.ja.vtt
1.7 kB
Part 14-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.zh-CN.vtt
1.7 kB
Part 14-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.zh-CN.vtt
1.7 kB
Part 14-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.ar.vtt
1.7 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.pt-BR.vtt
1.7 kB
Part 04-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.zh-CN.vtt
1.7 kB
Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.ar.vtt
1.7 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/26. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.en.vtt
1.7 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.ar.vtt
1.7 kB
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.ar.vtt
1.7 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ja.vtt
1.7 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.en.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.en.vtt
1.7 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-t2Nq3MFK_pg.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.en.vtt
1.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.en.vtt
1.7 kB
Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.pt-BR.vtt
1.7 kB
Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.pt-BR.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.ja.vtt
1.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.pt-BR.vtt
1.7 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/02. Data Overview-u_qB4w4kL1o.zh-CN.vtt
1.7 kB
Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.ja.vtt
1.7 kB
Part 16-Module 01-Lesson 07_Regressions/30. R Squared Metric for Regression-yDJEP-XSWdU.zh-CN.vtt
1.7 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ar.vtt
1.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.ar.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.pt-BR.vtt
1.7 kB
Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt
1.7 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.ar.vtt
1.7 kB
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.th.vtt
1.7 kB
Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.en-US.vtt
1.7 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.en.vtt
1.7 kB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-wl3gjMMrYwM.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.en.vtt
1.7 kB
Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.en.vtt
1.7 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.es-ES.vtt
1.7 kB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.es-ES.vtt
1.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-h-YgETh80h4.zh-CN.vtt
1.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.en.vtt
1.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.ar.vtt
1.7 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ja.vtt
1.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.ar.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.ar.vtt
1.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.ja.vtt
1.7 kB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.en.vtt
1.7 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.hr.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.ar.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/01. Introduction to Data Wrangling-4cFsT9KBRs8.zh-CN.vtt
1.7 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ar.vtt
1.7 kB
Part 11-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.ar.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.en.vtt
1.7 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.en.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.pt-BR.vtt
1.7 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.pt-BR.vtt
1.7 kB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.en.vtt
1.7 kB
Part 03-Module 03-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.en.vtt
1.7 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-VUfaXWrr3oY.zh-CN.vtt
1.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 07_Regressions/32. Visualizing Regression-zQAHZhcsXoQ.zh-CN.vtt
1.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.ar.vtt
1.7 kB
Part 04-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.en.vtt
1.7 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.ar.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.en.vtt
1.7 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.pt-BR.vtt
1.7 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.en.vtt
1.7 kB
Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.en.vtt
1.7 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.en.vtt
1.7 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.en.vtt
1.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.pt-BR.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.ja.vtt
1.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.en.vtt
1.7 kB
Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.en.vtt
1.7 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.en.vtt
1.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.ja.vtt
1.7 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.en.vtt
1.7 kB
Part 04-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.en.vtt
1.7 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.pt-BR.vtt
1.7 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/02. Projects Term 2-jSRJblo-Ptw.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.en.vtt
1.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.en-US.vtt
1.7 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.en.vtt
1.7 kB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.en.vtt
1.7 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.en.vtt
1.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.pt-BR.vtt
1.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.en.vtt
1.7 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.en.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.ja.vtt
1.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.ar.vtt
1.7 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/09. Asking Questions-EvhIgrXtOao.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-t18YC5rLyWg.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/10. Feature Selection in TfIdf Vectorizer-oZkDSuhBEkE.zh-CN.vtt
1.7 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.ar.vtt
1.7 kB
Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.ar.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.ar.vtt
1.7 kB
Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.pt-BR.vtt
1.7 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.pt-BR.vtt
1.7 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.zh-CN.vtt
1.7 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.th.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.en.vtt
1.7 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.it.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.zh-CN.vtt
1.7 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.en.vtt
1.7 kB
Part 07-Module 01-Lesson 01_What is EDA/05. Aude's Interest in Data-DDNSMG_RltY.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.pt-BR.vtt
1.7 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.pt-BR.vtt
1.7 kB
Part 18-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.en.vtt
1.7 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.en.vtt
1.7 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.pt-BR.vtt
1.7 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.en.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-2DwKMiFjGPE.zh-CN.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.en.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.ar.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.ar.vtt
1.7 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.ar.vtt
1.7 kB
Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.en.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-S1yjJWWza7g.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.ar.vtt
1.7 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.ar.vtt
1.7 kB
Part 07-Module 01-Lesson 02_R Basics/05. Install RStudio on a Mac-buCEFFuLpYo.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.ja.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip File 1-V7STsHoZ2gA.pt-BR.vtt
1.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/02. A New Enron Feature-m2-LkgEfLO0.zh-CN.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.ar.vtt
1.7 kB
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.pt-BR.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.ar.vtt
1.7 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ar.vtt
1.7 kB
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-pH51jLfGXe0.zh-CN.vtt
1.7 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.ar.vtt
1.7 kB
Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.pt-BR.vtt
1.7 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ja.vtt
1.7 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.en.vtt
1.7 kB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.pt-BR.vtt
1.7 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.pt-BR.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.ja.vtt
1.7 kB
Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.zh-CN.vtt
1.7 kB
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.ar.vtt
1.7 kB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.ar.vtt
1.7 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.ar.vtt
1.7 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.ja.vtt
1.7 kB
Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.pt-BR.vtt
1.7 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ja.vtt
1.7 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.zh-CN.vtt
1.7 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.en.vtt
1.7 kB
Part 15-Module 02-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.zh-CN.vtt
1.7 kB
Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.ar.vtt
1.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ar.vtt
1.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.en.vtt
1.6 kB
Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.en.vtt
1.6 kB
Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.pt-BR.vtt
1.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.pt-BR.vtt
1.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.en.vtt
1.6 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.en.vtt
1.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.pt-BR.vtt
1.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/01. Instructor Introduction Juno Lee-to8Pp3PCOZo.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.en.vtt
1.6 kB
Part 18-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.zh-CN.vtt
1.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.ja.vtt
1.6 kB
Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.en.vtt
1.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.ar.vtt
1.6 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.en.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.en.vtt
1.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.pt-BR.vtt
1.6 kB
Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.ar.vtt
1.6 kB
Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.ja.vtt
1.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.ar.vtt
1.6 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.pt-BR.vtt
1.6 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.en.vtt
1.6 kB
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.th.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.en.vtt
1.6 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.en.vtt
1.6 kB
Part 18-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.zh-CN.vtt
1.6 kB
Part 15-Module 02-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.zh-CN.vtt
1.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/13. LIMIT Statement-cCPHNNhBgpQ.zh-CN.vtt
1.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.zh-CN.vtt
1.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.en.vtt
1.6 kB
Part 15-Module 02-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.ar.vtt
1.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.zh-CN.vtt
1.6 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.ar.vtt
1.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/10. Overlaying Summaries with Raw Data-wqvEtUA0n-s.zh-CN.vtt
1.6 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.en.vtt
1.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ja.vtt
1.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.ja.vtt
1.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.ja.vtt
1.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ar.vtt
1.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.ja.vtt
1.6 kB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.ar.vtt
1.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.zh-CN.vtt
1.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-CiS4rBbr6tw.zh-CN.vtt
1.6 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.en.vtt
1.6 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.en.vtt
1.6 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/01. Introduction to Data Visualization-MUZXLvBI2sw.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.en.vtt
1.6 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.ar.vtt
1.6 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.pt-BR.vtt
1.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.ar.vtt
1.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.en.vtt
1.6 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.ar.vtt
1.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.ja.vtt
1.6 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.en.vtt
1.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.pt-BR.vtt
1.6 kB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.pt-BR.vtt
1.6 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.pt-BR.vtt
1.6 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.en-US.vtt
1.6 kB
Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.ja.vtt
1.6 kB
Part 12-Module 01-Lesson 01_GitHub Review/01. Introduction-Vnj2VNQROtI.en.vtt
1.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/21. Feature Selection Mini-Project Video-sJzKx_FiMXA.zh-CN.vtt
1.6 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.pt-BR.vtt
1.6 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.en.vtt
1.6 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.pt-BR.vtt
1.6 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.en.vtt
1.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.pt-BR.vtt
1.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.pt-BR.vtt
1.6 kB
Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.en.vtt
1.6 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/28. Getting Logical-52o_ZtwFuXE.zh-CN.vtt
1.6 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.ar.vtt
1.6 kB
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.ar.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.pt-BR.vtt
1.6 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.ar.vtt
1.6 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.pt-BR.vtt
1.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.en.vtt
1.6 kB
Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.en.vtt
1.6 kB
Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.ar.vtt
1.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/05. Source Files On Hand-PjP-EaeXTiY.zh-CN.vtt
1.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files from the Internet-UceKUJ07Bn8.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.zh-CN.vtt
1.6 kB
Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-wkWDrSBBtz0.en.vtt
1.6 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.en.vtt
1.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.en.vtt
1.6 kB
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.en.vtt
1.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/09. Conditional Means-8oM8KjsntG8.zh-CN.vtt
1.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.en.vtt
1.6 kB
Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.en.vtt
1.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.ar.vtt
1.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.ar.vtt
1.6 kB
Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.en.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.en.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-3pT4mwTqxoA.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.pt-BR.vtt
1.6 kB
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.ar.vtt
1.6 kB
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.en.vtt
1.6 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.ar.vtt
1.6 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.pt-BR.vtt
1.6 kB
Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.es-ES.vtt
1.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/26. Communicating Results Example-Ae_UOATWmDM.zh-CN.vtt
1.6 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.ar.vtt
1.6 kB
Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.en.vtt
1.6 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/04. Prerequisites-0ANDJ8i_deE.zh-CN.vtt
1.6 kB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.ar.vtt
1.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-t0iflCpBUDA.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.pt-BR.vtt
1.6 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.th.vtt
1.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.pt-BR.vtt
1.6 kB
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-NXbR9GQbtnk.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.pt-BR.vtt
1.6 kB
Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.en.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.en.vtt
1.6 kB
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.pt-BR.vtt
1.6 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.en.vtt
1.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.ja.vtt
1.6 kB
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.en.vtt
1.6 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.pt-BR.vtt
1.6 kB
Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.ar.vtt
1.6 kB
Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.en.vtt
1.6 kB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.ar.vtt
1.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.en.vtt
1.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.ar.vtt
1.6 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/03. Hierarchies with Trina-ys8Cn0o5gNI.zh-CN.vtt
1.6 kB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-pDELcPTP2BI.en.vtt
1.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.ja.vtt
1.6 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/21. Sampling Observations-PsRMReOqccg.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.ar.vtt
1.6 kB
Part 04-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.zh-CN.vtt
1.6 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.ar.vtt
1.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.ar.vtt
1.6 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.en.vtt
1.6 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.ar.vtt
1.6 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.pt-BR.vtt
1.6 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.ar.vtt
1.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.es-ES.vtt
1.6 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ja.vtt
1.6 kB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-pDELcPTP2BI.pt-BR.vtt
1.6 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace-Aa9SFwiRbho.pt-BR.vtt
1.6 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.en-US.vtt
1.6 kB
Part 09-Module 01-Lesson 02_Design/14. Designing for Color Blindness-k4iTzS7t2U4.zh-CN.vtt
1.6 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.zh-CN.vtt
1.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.en-US.vtt
1.6 kB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.en.vtt
1.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/17. JSON Files In Python-8JdUknZP59Q.zh-CN.vtt
1.6 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.en.vtt
1.6 kB
Part 16-Module 01-Lesson 13_PCA/30. PCA for Facial Recognition-B_JKtLN-i5I.zh-CN.vtt
1.6 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-P6ZOr7JiMLk.zh-CN.vtt
1.6 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-MV_e0z9kFjM.zh-CN.vtt
1.6 kB
Part 15-Module 02-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.zh-CN.vtt
1.6 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.pt-BR.vtt
1.6 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.en.vtt
1.6 kB
Part 08-Module 02-Lesson 01_Gathering Data/08. Source Scraping Webpages-ZqTad6Usf9g.zh-CN.vtt
1.6 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.en.vtt
1.6 kB
Part 16-Module 01-Lesson 02_Naive Bayes/04. Features and Labels Musical Example-rnv0-lG9yKU.zh-CN.vtt
1.6 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.en.vtt
1.6 kB
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.en-US.vtt
1.6 kB
Part 08-Module 04-Lesson 01_Cleaning Data/20. Conclusion -d_nKtLo5WYA.zh-CN.vtt
1.6 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.en.vtt
1.6 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.es-MX.vtt
1.6 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ar.vtt
1.6 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.pt-BR.vtt
1.6 kB
Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.en.vtt
1.6 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.ar.vtt
1.5 kB
Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/07. ggpairs Function-XUZIGbX3JIg.zh-CN.vtt
1.5 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.ar.vtt
1.5 kB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.pt-BR.vtt
1.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/44. OR Statement-DRmkKVhe6-s.zh-CN.vtt
1.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.en.vtt
1.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.ar.vtt
1.5 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/12. Ud1110 IntroPy L237 Break Up Your Code Ideas-qrp8r48BPUs.zh-CN.vtt
1.5 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.en.vtt
1.5 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 1-APRpwqFpGwI.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.en.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.en.vtt
1.5 kB
Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt
1.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.en.vtt
1.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-X_AS8NBngsk.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ar.vtt
1.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.en.vtt
1.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-3kH4ei9l4h8.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.en-US.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.hr.vtt
1.5 kB
Part 16-Module 01-Lesson 03_SVM/12. Coding Up the SVM-2ieszOqnpWs.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.ar.vtt
1.5 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.ja.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Intro -FnUrE4dhgh8.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.ar.vtt
1.5 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.ja.vtt
1.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.pt-BR.vtt
1.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.ar.vtt
1.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.ar.vtt
1.5 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/01. Welcome To DAND Term 2-OOcC8OUJmc0.zh-CN.vtt
1.5 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.en.vtt
1.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.ja.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-VkQwfVQ00EQ.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.en.vtt
1.5 kB
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.en.vtt
1.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.en.vtt
1.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-q46nO0mznXM.zh-CN.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/19. Clean Programmatic Data Cleaning Process-9-T1CFuOqdQ.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.ar.vtt
1.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.en.vtt
1.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.en.vtt
1.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.en.vtt
1.5 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.en.vtt
1.5 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.pt-BR.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.ar.vtt
1.5 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.en.vtt
1.5 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.ar.vtt
1.5 kB
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.ja.vtt
1.5 kB
Part 15-Module 01-Lesson 01_Ace Your Interview/01. Introduction-pg4HUMgKLxI.es-MX.vtt
1.5 kB
Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.en.vtt
1.5 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.en.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/16. Statistics 'by' Gender-GTLvqNrAETc.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.en.vtt
1.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.en.vtt
1.5 kB
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-qHk-FRWnYAo.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.en.vtt
1.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.en.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-iu6CxSkq-wg.zh-CN.vtt
1.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Tableau Desktop Download-End96VkLQc4.en.vtt
1.5 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.pt-BR.vtt
1.5 kB
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-qzs-3ltgTGo.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 11_Text Learning/07. Low-Information Words-8ZvLpWDITn4.zh-CN.vtt
1.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.en.vtt
1.5 kB
Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.en.vtt
1.5 kB
Part 04-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.zh-CN.vtt
1.5 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/11. Correlation Coefficients-rL5Bn8Fi-zE.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.en.vtt
1.5 kB
Part 08-Module 03-Lesson 01_Assessing Data/18. Tidiness Programmatic Assessment -YrX-oiFilyA.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.pt-BR.vtt
1.5 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.en.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.en.vtt
1.5 kB
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.ar.vtt
1.5 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.ar.vtt
1.5 kB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.ar.vtt
1.5 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.zh-CN.vtt
1.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.ar.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.ja.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.ar.vtt
1.5 kB
Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.en.vtt
1.5 kB
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ja.vtt
1.5 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.ar.vtt
1.5 kB
Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.pt-BR.vtt
1.5 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.ar.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.pt-BR.vtt
1.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/03. Shortcomings of Accuracy-UMWsyRYnfPk.zh-CN.vtt
1.5 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.en.vtt
1.5 kB
Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.en.vtt
1.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.ar.vtt
1.5 kB
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.ar.vtt
1.5 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-CxAxRCv9WoA.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.ar.vtt
1.5 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.ar.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.zh-CN.vtt
1.5 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.en.vtt
1.5 kB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.ja.vtt
1.5 kB
Part 11-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.ar.vtt
1.5 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ar.vtt
1.5 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.ar.vtt
1.5 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.ja.vtt
1.5 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.es-ES.vtt
1.5 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.ar.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.en.vtt
1.5 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.ar.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/02. Scatterplots and Perceived Audience Size-0XndEtOLwhk.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.ja.vtt
1.5 kB
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/26. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-Oyo2HOJstCs.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.ja.vtt
1.5 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace-Aa9SFwiRbho.en.vtt
1.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.es-ES.vtt
1.5 kB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.ar.vtt
1.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.en.vtt
1.5 kB
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.ar.vtt
1.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.en.vtt
1.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ar.vtt
1.5 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/07. Ud1110 IntroPy L5 30 Finding The First Link-Z-uuXDrMzqM.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/04. Picking the Most Suitable Metric-GAfPvj2SSiE.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-gBdKhmtrtG8.zh-CN.vtt
1.5 kB
Part 09-Module 01-Lesson 02_Design/02. Lesson Overview-Gg77PqkQkhs.zh-CN.vtt
1.5 kB
Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.ar.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.ja.vtt
1.5 kB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-MEtIAGKweXU.zh-CN.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.en.vtt
1.5 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt
1.5 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.ar.vtt
1.5 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.en.vtt
1.5 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.en.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.zh-CN.vtt
1.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.en.vtt
1.5 kB
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.en.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/25. Reassess and Iterate-eu1gO_76pSY.zh-CN.vtt
1.5 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.en.vtt
1.5 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.en.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.en.vtt
1.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.en.vtt
1.5 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.zh-CN.vtt
1.5 kB
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.en.vtt
1.5 kB
Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.ja.vtt
1.5 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.ar.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.ar.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.pt-BR.vtt
1.5 kB
Part 15-Module 01-Lesson 05_Interview Practice/03. Free Throw Probability-pDELcPTP2BI.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.it.vtt
1.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.ar.vtt
1.5 kB
Part 04-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.zh-CN.vtt
1.5 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.ar.vtt
1.5 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.pt-BR.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.pt-BR.vtt
1.5 kB
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.en.vtt
1.5 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.en.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.en.vtt
1.5 kB
Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.ar.vtt
1.5 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ar.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.en.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/10. Gather Unzip Solution -Pzy8nHA_EJc.en.vtt
1.5 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.zh-CN.vtt
1.5 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.ar.vtt
1.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.en.vtt
1.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.pt-BR.vtt
1.4 kB
Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.ar.vtt
1.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 02_R Basics/15. Data Munging-q_Ghc6VsDo0.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bgyN3RO2ICo.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.ja.vtt
1.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.ar.vtt
1.4 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.en.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.es-ES.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.en.vtt
1.4 kB
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.en.vtt
1.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.en.vtt
1.4 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.ja.vtt
1.4 kB
Part 13-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.en.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.en.vtt
1.4 kB
Part 03-Module 03-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.en.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/05. Moira's Investigation-Mak839YmmrA.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ar.vtt
1.4 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ja.vtt
1.4 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.en.vtt
1.4 kB
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt
1.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.ar.vtt
1.4 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ar.vtt
1.4 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.zh-CN.vtt
1.4 kB
Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.en.vtt
1.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.en.vtt
1.4 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.en.vtt
1.4 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/04. Further Motivation-sjGxUKrbKoI.zh-CN.vtt
1.4 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.ja.vtt
1.4 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.ja.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-n0lluEhKUfQ.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/38. Naive Bayes Mini-Project Video-UH2oSijkszo.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.zh-CN.vtt
1.4 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.en.vtt
1.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 14_Validation/15. Validation Mini-Project Video-dlbeMlRoFd4.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.ar.vtt
1.4 kB
Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.en.vtt
1.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.ja.vtt
1.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.en.vtt
1.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.it.vtt
1.4 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.en.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.en.vtt
1.4 kB
Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.en-US.vtt
1.4 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt
1.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.pt-BR.vtt
1.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.ja.vtt
1.4 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.en.vtt
1.4 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.en.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-GsSoLVhZPnA.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.pt-BR.vtt
1.4 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.pt-BR.vtt
1.4 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ja.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/16. Visualizing the New Feature-sAdM20gFi2M.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-HyjBus7S2gY.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.ar.vtt
1.4 kB
Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.ar.vtt
1.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.en.vtt
1.4 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.en.vtt
1.4 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.th.vtt
1.4 kB
Part 07-Module 01-Lesson 01_What is EDA/10. Course Overview-W8N0aSMPff8.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.pt-BR.vtt
1.4 kB
Part 08-Module 03-Lesson 01_Assessing Data/10. Assessing Vs Exploring V2 -hVFZ6jFKOso.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.en.vtt
1.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.ar.vtt
1.4 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.ar.vtt
1.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/21. Storing Data-hcosH34b-yw.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/23. The Limits of Cross Sectional Data-D7m25cvqUpw.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.zh-CN.vtt
1.4 kB
Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-wkWDrSBBtz0.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.pt-BR.vtt
1.4 kB
Part 15-Module 01-Lesson 05_Interview Practice/02. Describe your latest data project-wkWDrSBBtz0.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video-68EGMItJiNM.ar.vtt
1.4 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.ar.vtt
1.4 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.hr.vtt
1.4 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.ja.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-mZgPfxFOFRE.zh-CN.vtt
1.4 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.en.vtt
1.4 kB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.en.vtt
1.4 kB
Part 15-Module 01-Lesson 02_Practice Behavioral Questions/05. What Motivates You at the Workplace-Aa9SFwiRbho.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.ja.vtt
1.4 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.pt-BR.vtt
1.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.pt-BR.vtt
1.4 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.ja.vtt
1.4 kB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.pt-BR.vtt
1.4 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.pt-BR.vtt
1.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.pt-BR.vtt
1.4 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.en.vtt
1.4 kB
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.pt-BR.vtt
1.4 kB
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-E63RZli2F2o.zh-CN.vtt
1.4 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.en.vtt
1.4 kB
Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.en.vtt
1.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.en.vtt
1.4 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.ar.vtt
1.4 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.ar.vtt
1.4 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.es-ES.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.ja.vtt
1.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.en.vtt
1.4 kB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 02_R Basics/16. Advice for Data Scientists-FdkhUOtHIFg.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/18. Histograms Revisited-QII0tSAIex0.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.es-ES.vtt
1.4 kB
Part 04-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.en.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.ja.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.ja.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.ja.vtt
1.4 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.zh-CN.vtt
1.4 kB
Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt
1.4 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.pt-BR.vtt
1.4 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/23. Age with Months Means-CuMPjPESfY0.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/01. Choose Your own Algorithm-tpbHNLv-HT0.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ar.vtt
1.4 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.en.vtt
1.4 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.en.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/09. Be Skeptical Outliers and Anomalies-kAisC2wRGBU.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.ja.vtt
1.4 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.pt-BR.vtt
1.4 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.ar.vtt
1.4 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.en.vtt
1.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.ja.vtt
1.4 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.ar.vtt
1.4 kB
Part 03-Module 03-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/12. Plot Colors for Qualitative Factors-2ZVGl6LrOPw.zh-CN.vtt
1.4 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.zh-CN.vtt
1.4 kB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.ar.vtt
1.4 kB
Part 09-Module 01-Lesson 02_Design/01. Introduction-Q0lZkNF6O0g.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.ar.vtt
1.4 kB
Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.ar.vtt
1.4 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.en.vtt
1.4 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.en.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.en-US.vtt
1.4 kB
Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ja.vtt
1.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.ar.vtt
1.4 kB
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-iCTPBcowJRY.zh-CN.vtt
1.4 kB
Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.es-ES.vtt
1.4 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.en.vtt
1.4 kB
Part 16-Module 01-Lesson 12_Feature Selection/01. Why Feature Selection-S-xe0-XNo4I.zh-CN.vtt
1.4 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.en.vtt
1.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/08. Features != Information-GOrv8faKHV4.zh-CN.vtt
1.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/07. Types Of Statements-vLvJbIz94C4.zh-CN.vtt
1.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.zh-CN.vtt
1.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. Types Of Statements-vLvJbIz94C4.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.ar.vtt
1.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.ar.vtt
1.3 kB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.en.vtt
1.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.en-US.vtt
1.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.zh-CN.vtt
1.3 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.pt-BR.vtt
1.3 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.en.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.ar.vtt
1.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.en.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.ar.vtt
1.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.en.vtt
1.3 kB
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.ar.vtt
1.3 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.en.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/17. Tenure-095MTpItufM.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.en.vtt
1.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.ja.vtt
1.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.en.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.ja.vtt
1.3 kB
Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.ar.vtt
1.3 kB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-MXXTeWLXliY.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.en.vtt
1.3 kB
Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.en.vtt
1.3 kB
Part 04-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.zh-CN.vtt
1.3 kB
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt
1.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.en.vtt
1.3 kB
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.en.vtt
1.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/02. Ud1110 IntroPy L1 07 Arithmetic Expression In Python-Iq3ovQqBj1M.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.pt-BR.vtt
1.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/02. Introduction-Z8WNfx9Oq9s.zh-CN.vtt
1.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.pt-BR.vtt
1.3 kB
Part 12-Module 01-Lesson 01_GitHub Review/14. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt
1.3 kB
Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.en.vtt
1.3 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6-eqFgLu0eqBE.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.pt-BR.vtt
1.3 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/01. DAND 01 Congrats V1-QS1jKmZWdTk.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.pt-BR.vtt
1.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/35. IN Operator-_JPO7wwX3uA.zh-CN.vtt
1.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.ar.vtt
1.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.en.vtt
1.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.en.vtt
1.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.en.vtt
1.3 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.en.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/14. Correlation Methods-VQJCYk643po.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/22. Understanding Noise Age to Age Months-cUDZ1vkmdnk.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 03_Data Structures and Loops/08. Ud1110 IntroPy L3 37 Reading Existing Code-0Pg3HryU9Z4.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.en.vtt
1.3 kB
Part 16-Module 01-Lesson 08_Outliers/08. Outliers Mini-Project Video-GRN0Whyy4Lk.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.es-ES.vtt
1.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.ja.vtt
1.3 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 13_PCA/06. PCA for Data Transformation-nDuo5ECT1G4.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.en.vtt
1.3 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.en.vtt
1.3 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.it.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/09. Third Quantitative Variable-sS-lw3LxATY.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.en.vtt
1.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.en.vtt
1.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 03_SVM/13. Nonlinear SVMs-6UgInp_gf1w.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 14_Validation/01. Cross Validation for Fun and Profit-VkUpuABChT4.zh-CN.vtt
1.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.en.vtt
1.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.en.vtt
1.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.en.vtt
1.3 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-BR.vtt
1.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.en.vtt
1.3 kB
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.en.vtt
1.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.en.vtt
1.3 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.zh-CN.vtt
1.3 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.pt-BR.vtt
1.3 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.pt-BR.vtt
1.3 kB
Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.pt-BR.vtt
1.3 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.es-ES.vtt
1.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.ar.vtt
1.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.ar.vtt
1.3 kB
Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.ar.vtt
1.3 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ja.vtt
1.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.en.vtt
1.3 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Instructor Introduction Charlie And Phillip-8ar0mETDrZw.ar.vtt
1.3 kB
Part 04-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.en.vtt
1.3 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.en.vtt
1.3 kB
Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-b0oOWFDz9UQ.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.ar.vtt
1.3 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.en.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.ar.vtt
1.3 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.ar.vtt
1.3 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.ar.vtt
1.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/15. Source APIs (Application Programming Interfaces)-1y_qjUMDsCw.zh-CN.vtt
1.3 kB
Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.en.vtt
1.3 kB
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ar.vtt
1.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en-GB.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.pt-BR.vtt
1.3 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/11. Data Wrangling And EDA-EQXfxbUup0o.zh-CN.vtt
1.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.en-US.vtt
1.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.ar.vtt
1.3 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.ar.vtt
1.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-7HMAtB-342I.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.en.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-oZY94XjiCvM.zh-CN.vtt
1.3 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.en.vtt
1.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-DIrLvDqhjCg.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-rNR4_JqCEuk.zh-CN.vtt
1.3 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/09. Renaming Columns-3Oo4gUP2_Rw.zh-CN.vtt
1.3 kB
Part 11-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.ar.vtt
1.3 kB
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-w5XWkq_Y-rY.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.pt-BR.vtt
1.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.ar.vtt
1.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.en.vtt
1.3 kB
Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.pt-BR.vtt
1.3 kB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 01_What is EDA/08. Our Approach for This Course-dBsf-szQ00s.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/12. Correlation-L9-lBQbknp0.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.zh-CN.vtt
1.3 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.pt-BR.vtt
1.3 kB
Part 15-Module 02-Lesson 05_Trees/13. BST Complications-pcB0wV7myy4.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.ar.vtt
1.3 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.en.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.ar.vtt
1.3 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/02. Why Do We Use Data Visualizations-iiOP4PE46f4.zh-CN.vtt
1.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/23. Clean Test 2-CyeB16-eGSg.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 08_Outliers/07. Summary of Outlier Removal Strategy-b-oE175NJiQ.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.en.vtt
1.3 kB
Part 18-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.ja.vtt
1.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.en.vtt
1.3 kB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.ar.vtt
1.3 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.en.vtt
1.3 kB
Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.en.vtt
1.3 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.zh-CN.vtt
1.3 kB
Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.pt-BR.vtt
1.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.pt-BR.vtt
1.3 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.en.vtt
1.3 kB
Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.pt-BR.vtt
1.3 kB
Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.en.vtt
1.3 kB
Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/26. Even More Variables-P7BHYXxu4Jg.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.en.vtt
1.3 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.zh-CN.vtt
1.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.en.vtt
1.3 kB
Part 07-Module 01-Lesson 01_What is EDA/02. Data is Ubiquitous-ieiQqLicBjg.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/06. Wide and Long Format-zlaeISxRESQ.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 01_Welcome to Machine Learning/03. Introduction Pt. III-0ZuxGhiqo5U.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.ar.vtt
1.3 kB
Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.ar.vtt
1.3 kB
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.es-ES.vtt
1.3 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.en.vtt
1.3 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.ar.vtt
1.3 kB
Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.pt-BR.vtt
1.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/03. A New Enron Feature Quiz-Nmf80xB1DN0.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Ilu1JjjAbwA.zh-CN.vtt
1.3 kB
Part 16-Module 01-Lesson 14_Validation/11. Cross Validation for Parameter Tuning-Xcb9jjjAm60.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.pt-BR.vtt
1.3 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.en.vtt
1.3 kB
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.en.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-nqMT8qTmQPY.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ja.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.th.vtt
1.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.ja.vtt
1.2 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/36. Multi-Variate Regression Quiz 2-97v0kEWjcmg.zh-CN.vtt
1.2 kB
Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.pt-BR.vtt
1.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.en.vtt
1.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.en.vtt
1.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/14. Setting Levels of Ordered Factors-HSeIrqW-YGw.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.en.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.ar.vtt
1.2 kB
Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.es-MX.vtt
1.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/04. More Examples-gj-or8b8TmM.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/28. Evaluating Regression by Eye-hS7cpq-sOeQ.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-mTcuS5jUeUE.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.it.vtt
1.2 kB
Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.en.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.pt-BR.vtt
1.2 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.zh-CN.vtt
1.2 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.zh-CN.vtt
1.2 kB
Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.en-US.vtt
1.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/07. Intro To Stanley Terrain Classification-TwFhCeov85E.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.ar.vtt
1.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-Keh5GwaSWdk.zh-CN.vtt
1.2 kB
Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.en.vtt
1.2 kB
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.en.vtt
1.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/07. Integrity and Mindset-zCOr3O50gQM.zh-CN.vtt
1.2 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/08. Integrity and Mindset-zCOr3O50gQM.zh-CN.vtt
1.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/14. Text Files In Python 2-9YPOlROXNZM.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.zh-CN.vtt
1.2 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.en.vtt
1.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.en.vtt
1.2 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.zh-CN.vtt
1.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.en.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.en.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-z-cX1kYbC1w.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.ja.vtt
1.2 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.en.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.en.vtt
1.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/28. Show Me-Jpk99mgmwaA.zh-CN.vtt
1.2 kB
Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.en.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.th.vtt
1.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.ar.vtt
1.2 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.en.vtt
1.2 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.ar.vtt
1.2 kB
Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.en-US.vtt
1.2 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.en.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/11. SVM Decision Boundary-8hEjeR0qLnA.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.en.vtt
1.2 kB
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.ar.vtt
1.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/02. Perceived Audience Size by Age-GFKRNBnFGVU.zh-CN.vtt
1.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.en.vtt
1.2 kB
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.zh-CN.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.ja.vtt
1.2 kB
Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.en.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.pt-BR.vtt
1.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/06. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt
1.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt
1.2 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.en.vtt
1.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.en.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.ja.vtt
1.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/22. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.en.vtt
1.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.en.vtt
1.2 kB
Part 12-Module 01-Lesson 01_GitHub Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.es-ES.vtt
1.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ja.vtt
1.2 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.en.vtt
1.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.en.vtt
1.2 kB
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ar.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.es-ES.vtt
1.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.zh-CN.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.en.vtt
1.2 kB
Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.en.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.zh-CN.vtt
1.2 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.th.vtt
1.2 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.zh-CN.vtt
1.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.en.vtt
1.2 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.pt-BR.vtt
1.2 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/04. Ud1110 IntroPy L5 22 Continue Crawl Solution-tLhTfSZ6LRA.zh-CN.vtt
1.2 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/04. Test Cases-7CNatJ7PqZ4.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.en.vtt
1.2 kB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.it.vtt
1.2 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.es-ES.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ja.vtt
1.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.ar.vtt
1.2 kB
Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.es-MX.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.th.vtt
1.2 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.en-US.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.en.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.ar.vtt
1.2 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.en.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.en.vtt
1.2 kB
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.pt-BR.vtt
1.2 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.en.vtt
1.2 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.ar.vtt
1.2 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.es-MX.vtt
1.2 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.zh-CN.vtt
1.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/03. Parch Posey Database-JOMI560DgXg.zh-CN.vtt
1.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.th.vtt
1.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-FLpXmoHp7eE.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-cwjvMYPB1Fk.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-dkLEMSLTxvk.zh-CN.vtt
1.2 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.pt-BR.vtt
1.2 kB
Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ja.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.ar.vtt
1.2 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.ar.vtt
1.2 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.en.vtt
1.2 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.en.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.ja.vtt
1.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.en.vtt
1.2 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.en.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-bY2fuRkH3iw.zh-CN.vtt
1.2 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-PT.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/26. Which Plot to Choose-pBSQI8EmhvM.zh-CN.vtt
1.2 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.en.vtt
1.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/37. Regression Mini-Project Video-CrD9jN3rBM8.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.en.vtt
1.2 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.tr.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.es-ES.vtt
1.2 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.pt-BR.vtt
1.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.zh-CN.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.en.vtt
1.2 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ja.vtt
1.2 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.en.vtt
1.2 kB
Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 04_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ja.vtt
1.2 kB
Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.pt-BR.vtt
1.2 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.en.vtt
1.2 kB
Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.pt-BR.vtt
1.2 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ja.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.ja.vtt
1.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.ar.vtt
1.2 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.ja.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.ar.vtt
1.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.ar.vtt
1.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video-68EGMItJiNM.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.en.vtt
1.2 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.ja.vtt
1.2 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.zh-CN.vtt
1.2 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/22. Clean Code 2 Solution-ncqhpqt0Mik.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.hr.vtt
1.2 kB
Part 04-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.zh-CN.vtt
1.2 kB
Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.pt-BR.vtt
1.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.ja.vtt
1.2 kB
Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.en.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.en.vtt
1.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.en.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.en-US.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.ja.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.ja.vtt
1.1 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.pt-BR.vtt
1.1 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.en.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.pt-BR.vtt
1.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.it.vtt
1.1 kB
Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.en.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.en.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.pt-BR.vtt
1.1 kB
Part 08-Module 03-Lesson 01_Assessing Data/16. Quality Programatic Assessment 2 -Ngl_TsqhMsc.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.en.vtt
1.1 kB
Part 18-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.zh-CN.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.pt-BR.vtt
1.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.en.vtt
1.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.hr.vtt
1.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.en.vtt
1.1 kB
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-Su7kIUVPu6w.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.pt-BR.vtt
1.1 kB
Part 03-Module 03-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.it.vtt
1.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.es-ES.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.en.vtt
1.1 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/02. Data Overview-V-iPdJfrscQ.zh-CN.vtt
1.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.en.vtt
1.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.en.vtt
1.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion-nQFchD4XPPs.pt-BR.vtt
1.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.en.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.ja.vtt
1.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.es-ES.vtt
1.1 kB
Part 07-Module 01-Lesson 02_R Basics/11. R Markdown Documents-oBns-s2TDgI.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.en.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-ZywJPwlHuh8.zh-CN.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/12. Quiz on Algorithms Requiring Rescaling-ntRkOeSZutw.zh-CN.vtt
1.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.en.vtt
1.1 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.en.vtt
1.1 kB
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ja.vtt
1.1 kB
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ar.vtt
1.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.en.vtt
1.1 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Python Documentation-lBtG0DO_KqM.zh-CN.vtt
1.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ja.vtt
1.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.en.vtt
1.1 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Instructor Introduction Charlie And Phillip-8ar0mETDrZw.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.pt-BR.vtt
1.1 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.en.vtt
1.1 kB
Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.pt-BR.vtt
1.1 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.en.vtt
1.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.pt-BR.vtt
1.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/27. Conclusion-IanoSiET2nA.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.ja.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.ja.vtt
1.1 kB
Part 18-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.es-ES.vtt
1.1 kB
Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ar.vtt
1.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.pt-BR.vtt
1.1 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 07_Regressions/21. Linear Regression Errors-A4nPMEOcUd4.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.en.vtt
1.1 kB
Part 08-Module 03-Lesson 01_Assessing Data/22. Outro -lfWT0kLfe8c.zh-CN.vtt
1.1 kB
Part 15-Module 01-Lesson 04_Land a Job Offer/01. Land a Job Offer-ZQJoT8QL_hw.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.en.vtt
1.1 kB
Part 16-Module 01-Lesson 11_Text Learning/05. Properties of Bag of Words-3r8OR2yQ-KI.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.ar.vtt
1.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.en.vtt
1.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.en.vtt
1.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/02. What to Do First-TgAIx_NFaD8.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.th.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/27. Analysis and Visualization (Before Cleaning)-jJH3H8Rqv8s.zh-CN.vtt
1.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.en.vtt
1.1 kB
Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.en.vtt
1.1 kB
Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.ar.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots-AtmfksGs-0I.ja.vtt
1.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-ZO7y9tsSQ0A.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.ja.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-Hans.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.ja.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ja.vtt
1.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.it.vtt
1.1 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.en.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.en-US.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.en.vtt
1.1 kB
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.th.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.en.vtt
1.1 kB
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3--XfG5hXveiE.zh-CN.vtt
1.1 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.en.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ja.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/03. Supervised Classification Example-buxApBhZCO0.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/01. Welcome to Evaluation Metrics Lesson-IHuFWRM9f9Q.zh-CN.vtt
1.1 kB
Part 18-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-PqtW_Ux2_nY.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.en.vtt
1.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ja.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-TU63rBOwXQ8.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.ar.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/14. 141 Assess Intro V4-mdrAdtziXh4.en.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.pt-BR.vtt
1.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.ja.vtt
1.1 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.zh-CN.vtt
1.1 kB
Part 15-Module 02-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses-JkXTwS-5Daw.en.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.en.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.pt-BR.vtt
1.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.es-ES.vtt
1.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.ar.vtt
1.1 kB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.en.vtt
1.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.en.vtt
1.1 kB
Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.pt-BR.vtt
1.1 kB
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/08. Ud1110 IntroPy L5 37 Squashing Bugs-X-GqfxYpaw0.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.ja.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/29. Conclusion-SRXNBlvW-xw.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.ja.vtt
1.1 kB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.en-US.vtt
1.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion-nQFchD4XPPs.en.vtt
1.1 kB
Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.en.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.ja.vtt
1.1 kB
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.en.vtt
1.1 kB
Part 11-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ja.vtt
1.1 kB
Part 04-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.en.vtt
1.1 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.pt-BR.vtt
1.1 kB
Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.pt-BR.vtt
1.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.en-US.vtt
1.1 kB
Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.en.vtt
1.1 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.en.vtt
1.1 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.ja.vtt
1.1 kB
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.en.vtt
1.1 kB
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.zh-CN.vtt
1.1 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.en.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ar.vtt
1.1 kB
Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.en-US.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.en.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.ja.vtt
1.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.en.vtt
1.1 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.ar.vtt
1.1 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.hr.vtt
1.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/09. Combining Data-7KICenO-lKc.zh-CN.vtt
1.1 kB
Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.en.vtt
1.1 kB
Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.en.vtt
1.1 kB
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-gg7SAMMl4kM.zh-CN.vtt
1.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.en.vtt
1.1 kB
Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.en.vtt
1.1 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ar.vtt
1.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.pt-BR.vtt
1.1 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.pt-BR.vtt
1.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/06. Projects and Progress-Z9ZLMQWsbsk.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/07. Projects and Progress-Z9ZLMQWsbsk.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.ar.vtt
1.1 kB
Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.pt-BR.vtt
1.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/09. HTML File Structure -4ef_Dr_SXTw.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ja.vtt
1.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.en.vtt
1.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.ar.vtt
1.1 kB
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Download Tableau Public-2bXsg6SKHG8.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.ar.vtt
1.1 kB
Part 08-Module 04-Lesson 01_Cleaning Data/05. Data Cleaning Process -BS_p9kwMEMk.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.ar.vtt
1.1 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.en.vtt
1.1 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.pt-BR.vtt
1.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.zh-CN.vtt
1.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.en.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-ICUYxC-8d7o.en.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.en.vtt
1.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.en.vtt
1.1 kB
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.ar.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download II-T4iFJoHb_qU.zh-CN.vtt
1.1 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.th.vtt
1.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.ja.vtt
1.1 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.en.vtt
1.1 kB
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.en.vtt
1.1 kB
Part 07-Module 01-Lesson 02_R Basics/07. RStudio Layout-LcHWlS84sao.zh-CN.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.en.vtt
1.1 kB
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-jOxS1eJRsOk.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.pt-BR.vtt
1.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/08. How Does Project Submission Work-jCJa_VP6qgg.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 01_Welcome to Term 2!/09. How Does Project Submission Work-jCJa_VP6qgg.zh-CN.vtt
1.1 kB
Part 15-Module 02-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.pt-BR.vtt
1.1 kB
Part 08-Module 02-Lesson 01_Gathering Data/12. Source Downloading Files From The Internet II-M0qR7to1fl4.en.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.ja.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.ar.vtt
1.1 kB
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/03. Choose Your Own Adventure-Ka9nwD0QzTI.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 09_Clustering/17. Clustering Mini-Project Video-68EGMItJiNM.en.vtt
1.1 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.en.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.en.vtt
1.1 kB
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.ar.vtt
1.1 kB
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.zh-CN.vtt
1.1 kB
Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-Uf_KdjVT2Xg.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses-JkXTwS-5Daw.pt-BR.vtt
1.1 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.pt-BR.vtt
1.1 kB
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.pt-BR.vtt
1.1 kB
Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.en-US.vtt
1.1 kB
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.en-US.vtt
1.1 kB
Part 07-Module 01-Lesson 02_R Basics/13. Ordered Factors-Mbd1jfsbvik.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.ar.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.pt-BR.vtt
1.1 kB
Part 16-Module 01-Lesson 02_Naive Bayes/20. Calculating NB Accuracy-m989etSymQQ.zh-CN.vtt
1.1 kB
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.zh-CN.vtt
1.1 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.ja.vtt
1.0 kB
Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.en.vtt
1.0 kB
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.en.vtt
1.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.en.vtt
1.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.en.vtt
1.0 kB
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.en.vtt
1.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.en.vtt
1.0 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.ar.vtt
1.0 kB
Part 15-Module 02-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.zh-CN.vtt
1.0 kB
Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.ar.vtt
1.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.en.vtt
1.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.en.vtt
1.0 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.pt-BR.vtt
1.0 kB
Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.es-MX.vtt
1.0 kB
Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.en.vtt
1.0 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/21. What's Next-AwpX6HkhL0k.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-xU84TShi7I4.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-5j6VZr8sHo8.zh-CN.vtt
1.0 kB
Part 04-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.zh-CN.vtt
1.0 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.en.vtt
1.0 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.en.vtt
1.0 kB
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.ar.vtt
1.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/15. Assess Visual-PVbOzw5libM.en.vtt
1.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.pt-BR.vtt
1.0 kB
Part 15-Module 02-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.zh-CN.vtt
1.0 kB
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.ar.vtt
1.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.ar.vtt
1.0 kB
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.ja.vtt
1.0 kB
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.ar.vtt
1.0 kB
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.en.vtt
1.0 kB
Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.en.vtt
1.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.ar.vtt
1.0 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ar.vtt
1.0 kB
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.zh-CN.vtt
1.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.ja.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-Ur01espw7ko.zh-CN.vtt
1.0 kB
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.ar.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-7LGaeYfvRug.zh-CN.vtt
1.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.zh-CN.vtt
1.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.th.vtt
1.0 kB
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.pt-BR.vtt
1.0 kB
Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.en.vtt
1.0 kB
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/17. Why Data Dashboards-8ni2lCqAVvQ.zh-CN.vtt
1.0 kB
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.th.vtt
1.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.en.vtt
1.0 kB
Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.en.vtt
1.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.ar.vtt
1.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ja.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.pt-BR.vtt
1.0 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.zh-CN.vtt
1.0 kB
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.en.vtt
1.0 kB
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.ar.vtt
1.0 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.zh-CN.vtt
1.0 kB
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.th.vtt
1.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.en.vtt
1.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.pt-BR.vtt
1.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-0QiU3p8POHk.zh-CN.vtt
1.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.en.vtt
1.0 kB
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.pt-BR.vtt
1.0 kB
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.en.vtt
1.0 kB
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-5zoL8YdM6sI.zh-CN.vtt
1.0 kB
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-mzKPXz-Yhwk.zh-CN.vtt
1.0 kB
Part 16-Module 01-Lesson 14_Validation/08. K-Fold Cross Validation-ADNFKiAjmWA.zh-CN.vtt
1.0 kB
Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.en.vtt
1.0 kB
Part 15-Module 02-Lesson 08_Technical Interview - Python/10. Interview Wrap-Up-sz4Ekcu9a_Q.pt-BR.vtt
1.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.it.vtt
1.0 kB
Part 16-Module 01-Lesson 07_Regressions/33. What Data Is Good For Linear Regression-KFVdS328iC8.zh-CN.vtt
1.0 kB
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.ar.vtt
1.0 kB
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.ar.vtt
1.0 kB
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.en.vtt
1.0 kB
Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.en.vtt
1.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.en.vtt
1.0 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.en-US.vtt
1.0 kB
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-vjnKnaZa43M.pt-BR.vtt
1.0 kB
Part 18-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.ar.vtt
1.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.ja.vtt
1.0 kB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.en.vtt
1.0 kB
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/25. WHERE with Non-Numeric Data-_pLx7MHOyjo.zh-CN.vtt
1.0 kB
Part 02-Module 01-Lesson 01_Numbers and Strings/01. Instructor Introduction Charlie And Phillip-8ar0mETDrZw.en.vtt
1.0 kB
Part 03-Module 03-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.zh-CN.vtt
1.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-6BBUSWrSuFA.zh-CN.vtt
1.0 kB
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.en.vtt
1.0 kB
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.pt-BR.vtt
1.0 kB
Part 03-Module 03-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.zh-CN.vtt
1.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.es-ES.vtt
1.0 kB
Part 16-Module 01-Lesson 14_Validation/02. Benefits of Testing-N6hiygoT9FE.zh-CN.vtt
1.0 kB
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.pt-BR.vtt
1.0 kB
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ar.vtt
1.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.pt-BR.vtt
1.0 kB
Part 16-Module 01-Lesson 03_SVM/20. Playing Around with Kernel Choices-sy_jiSEy-Nw.zh-CN.vtt
1.0 kB
Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.ja.vtt
1.0 kB
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.en.vtt
1.0 kB
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ar.vtt
1.0 kB
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.ja.vtt
1.0 kB
Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.en.vtt
1.0 kB
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.ja.vtt
999 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.ar.vtt
999 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.zh-CN.vtt
999 Bytes
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.ar.vtt
999 Bytes
Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.en.vtt
998 Bytes
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.ar.vtt
998 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/04. Visualizing Your New Feature-Tp5WCAJiCRY.zh-CN.vtt
998 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.en.vtt
997 Bytes
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.pt-BR.vtt
996 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.zh-CN.vtt
996 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/16. Precision and Recall-3vT0kSBCLdU.zh-CN.vtt
996 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.it.vtt
994 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.zh-CN.vtt
994 Bytes
Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.pt-BR.vtt
993 Bytes
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.ja.vtt
993 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.en.vtt
993 Bytes
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.pt-BR.vtt
993 Bytes
Part 16-Module 01-Lesson 11_Text Learning/15. Text Learning Mini-Project Video-GJviz-sIq9w.zh-CN.vtt
993 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.pt-BR.vtt
991 Bytes
Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.ar.vtt
991 Bytes
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.en.vtt
991 Bytes
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.ja.vtt
989 Bytes
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.pt-BR.vtt
989 Bytes
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.pt-BR.vtt
989 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.en.vtt
988 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.pt-BR.vtt
988 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.pt-BR.vtt
987 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.zh-CN.vtt
987 Bytes
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.en.vtt
986 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ja.vtt
984 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.pt-BR.vtt
984 Bytes
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.en.vtt
984 Bytes
Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.pt-BR.vtt
983 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.ja.vtt
983 Bytes
Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.pt-BR.vtt
983 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ar.vtt
982 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.zh-CN.vtt
982 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.pt-BR.vtt
980 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-pxaXkCjukGM.zh-CN.vtt
980 Bytes
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/04. Entity Relationship Diagrams-YY2TAJLEINA.zh-CN.vtt
979 Bytes
Part 03-Module 03-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.zh-CN.vtt
979 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.en.vtt
979 Bytes
Part 08-Module 02-Lesson 01_Gathering Data/25. You Can Iterate-QsJqoJYhTiw.zh-CN.vtt
979 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.zh-CN.vtt
978 Bytes
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.pt-BR.vtt
977 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.en.vtt
976 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/21. Information Gain-KYieR9y-ue4.zh-CN.vtt
976 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.ar.vtt
976 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-QBaNltqVj_0.zh-CN.vtt
976 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.ar.vtt
975 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.es-ES.vtt
975 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/06. Estimating Your Audience Size-FfzVPWM5DZ8.zh-CN.vtt
975 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/15. Create Scatterplots--gIxCjLXCEs.zh-CN.vtt
975 Bytes
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.pt-BR.vtt
975 Bytes
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.es-MX.vtt
975 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.pt-BR.vtt
974 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ar.vtt
974 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.ja.vtt
973 Bytes
Part 11-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.zh-CN.vtt
973 Bytes
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.ar.vtt
973 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.en.vtt
973 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.pt-BR.vtt
972 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.es-ES.vtt
971 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.ja.vtt
971 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.th.vtt
970 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.pt-BR.vtt
970 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.it.vtt
969 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/19. Number of Purchases-rQT88sMuM_M.zh-CN.vtt
969 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.pt-BR.vtt
969 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.en.vtt
969 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.ar.vtt
969 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.it.vtt
967 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.es-ES.vtt
967 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.ar.vtt
967 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.ar.vtt
967 Bytes
Part 01-Module 02-Lesson 01_Project Prep SQL and Moving Averages/01. Intro Project Explore Weather Trends-xneztkf0TsY.zh-CN.vtt
966 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.zh-CN.vtt
966 Bytes
Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.pt-BR.vtt
966 Bytes
Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.en.vtt
966 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.ja.vtt
966 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.ja.vtt
966 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.pt-BR.vtt
965 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.en.vtt
965 Bytes
Part 15-Module 02-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.zh-CN.vtt
965 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.ar.vtt
965 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.zh-CN.vtt
964 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.en.vtt
964 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.zh-CN.vtt
964 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.ar.vtt
964 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.en.vtt
964 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.en.vtt
963 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ar.vtt
963 Bytes
Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.pt-BR.vtt
963 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.zh-CN.vtt
962 Bytes
Part 04-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.pt-BR.vtt
962 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/24. Cancer Test-uHIZl6MCiPY.zh-CN.vtt
962 Bytes
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.pt-BR.vtt
962 Bytes
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.en-US.vtt
960 Bytes
Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.pt-BR.vtt
960 Bytes
Part 04-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.en.vtt
959 Bytes
Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.ar.vtt
959 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/16. Outro-dps7Ti6Lado.pt-BR.vtt
959 Bytes
Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.ar.vtt
958 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.en.vtt
958 Bytes
Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.en.vtt
958 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.es-ES.vtt
957 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.hr.vtt
957 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ja.vtt
957 Bytes
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.en.vtt
957 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.pt-BR.vtt
957 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.hr.vtt
956 Bytes
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.pt-BR.vtt
956 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.en.vtt
956 Bytes
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.pt-BR.vtt
954 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.pt-BR.vtt
953 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.en.vtt
953 Bytes
Part 16-Module 01-Lesson 03_SVM/18. Practice Making a New Feature-ygveMIhCtDg.zh-CN.vtt
953 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.ja.vtt
953 Bytes
Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.ar.vtt
953 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ja.vtt
952 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.en.vtt
952 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.ja.vtt
952 Bytes
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.pt-BR.vtt
951 Bytes
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.en.vtt
951 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.en.vtt
951 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.pt-BR.vtt
950 Bytes
Part 15-Module 02-Lesson 08_Technical Interview - Python/03. Confirming Inputs-8lPTOG1yLsg.pt-BR.vtt
950 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.ja.vtt
950 Bytes
Part 04-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.zh-CN.vtt
949 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ja.vtt
949 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.es-ES.vtt
948 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.es-ES.vtt
948 Bytes
Part 11-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.zh-CN.vtt
948 Bytes
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.ar.vtt
948 Bytes
Part 07-Module 01-Lesson 02_R Basics/01. The Power of R-Ca0MWoH_ZMY.zh-CN.vtt
947 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.ja.vtt
947 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.ar.vtt
946 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.it.vtt
945 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.ar.vtt
945 Bytes
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.en.vtt
945 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.zh-CN.vtt
944 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.pt-BR.vtt
944 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.pt-BR.vtt
944 Bytes
Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.en.vtt
944 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/18. More Caution with Correlation-sefN2vaxjSA.zh-CN.vtt
943 Bytes
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.en.vtt
943 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.ar.vtt
942 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.hr.vtt
942 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.en.vtt
942 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.zh-CN.vtt
942 Bytes
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.en-US.vtt
942 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.ar.vtt
941 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.en.vtt
940 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.en.vtt
940 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.en.vtt
940 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/12. Plot the Grand Mean-tmdzYKNqDSs.zh-CN.vtt
940 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.ja.vtt
940 Bytes
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.en.vtt
939 Bytes
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.en.vtt
939 Bytes
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.ar.vtt
938 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.pt-BR.vtt
937 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.pt-BR.vtt
937 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.en.vtt
937 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.pt-BR.vtt
937 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.pt-BR.vtt
937 Bytes
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.en.vtt
936 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.pt-BR.vtt
935 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.zh-CN.vtt
935 Bytes
Part 04-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.pt-BR.vtt
935 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.en.vtt
935 Bytes
Part 08-Module 04-Lesson 01_Cleaning Data/04. Manual Vs Programmatic Cleaning -AQFBVQy_HyY.zh-CN.vtt
935 Bytes
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-w-czJptEyBk.zh-CN.vtt
935 Bytes
Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.ja.vtt
935 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.zh-CN.vtt
935 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.ar.vtt
934 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.pt-BR.vtt
933 Bytes
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.en.vtt
933 Bytes
Part 11-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.zh-CN.vtt
933 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.ja.vtt
933 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.pt-BR.vtt
932 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.en.vtt
931 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.en.vtt
931 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.zh-CN.vtt
931 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.zh-CN.vtt
930 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.pt-BR.vtt
930 Bytes
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.ar.vtt
930 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.pt-BR.vtt
930 Bytes
Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.zh-CN.vtt
928 Bytes
Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.pt-BR.vtt
928 Bytes
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.en.vtt
928 Bytes
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.pt-BR.vtt
928 Bytes
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.ar.vtt
928 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.zh-CN.vtt
927 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.en.vtt
927 Bytes
Part 15-Module 01-Lesson 03_Interview Fails/01. Interview Fails-FD6UNqMa0xc.zh-CN.vtt
927 Bytes
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.ja.vtt
927 Bytes
Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.ar.vtt
926 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.ar.vtt
926 Bytes
Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.pt-BR.vtt
926 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.hr.vtt
925 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.pt-BR.vtt
925 Bytes
Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.zh-CN.vtt
925 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.en.vtt
924 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.ar.vtt
924 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.en.vtt
924 Bytes
Part 16-Module 01-Lesson 07_Regressions/18. AgeNet Worth Regression in sklearn-5aghWw9eIAM.zh-CN.vtt
924 Bytes
Part 16-Module 01-Lesson 09_Clustering/15. Counterintuitive Clusters-aveIz1JYeAg.zh-CN.vtt
924 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ja.vtt
923 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.en.vtt
923 Bytes
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.ja.vtt
921 Bytes
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.pt-BR.vtt
921 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.ar.vtt
920 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.en.vtt
920 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.pt-BR.vtt
919 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.ja.vtt
919 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.en.vtt
919 Bytes
Part 02-Module 01-Lesson 04_Files and Modules/10. Ud1110 IntroPy L4 99 Lesson Outro-8AOietAcOLk.zh-CN.vtt
918 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.pt-BR.vtt
917 Bytes
Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.ja.vtt
917 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.ar.vtt
916 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.pt-BR.vtt
916 Bytes
Part 16-Module 01-Lesson 13_PCA/32. PCA Mini-Project Intro-rR68JXwKBxE.zh-CN.vtt
916 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.ar.vtt
916 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.it.vtt
915 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.pt-BR.vtt
914 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.zh-CN.vtt
914 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.en.vtt
914 Bytes
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.pt-BR.vtt
914 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.zh-CN.vtt
913 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.zh-CN.vtt
913 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.ja.vtt
913 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.pt-BR.vtt
913 Bytes
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.en-US.vtt
913 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.zh-CN.vtt
912 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.ja.vtt
912 Bytes
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.ar.vtt
912 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ja.vtt
911 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.th.vtt
910 Bytes
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.en.vtt
909 Bytes
Part 04-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.zh-CN.vtt
908 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.en.vtt
908 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.ja.vtt
908 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.en.vtt
906 Bytes
Part 04-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.en.vtt
906 Bytes
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/13. Line Plots-GsaBT47pjgQ.zh-CN.vtt
906 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.zh-CN.vtt
905 Bytes
Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.ar.vtt
904 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/16. NB Decision Boundary in Python-pauohSxuCVs.zh-CN.vtt
904 Bytes
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.pt-BR.vtt
904 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ar.vtt
903 Bytes
Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.pt-BR.vtt
903 Bytes
Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.pt-BR.vtt
903 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.ar.vtt
902 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ja.vtt
902 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.pt-BR.vtt
902 Bytes
Part 16-Module 01-Lesson 03_SVM/22. SVM C Parameter-WVg5-vxQDm8.zh-CN.vtt
902 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.pt-BR.vtt
901 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.ja.vtt
901 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ar.vtt
900 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.es-ES.vtt
900 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.en.vtt
900 Bytes
Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.en-US.vtt
900 Bytes
Part 15-Module 02-Lesson 08_Technical Interview - Python/06. Runtime Analysis-8bI9OgOB2qI.zh-CN.vtt
900 Bytes
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.pt-BR.vtt
900 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.ar.vtt
900 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.en.vtt
900 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ar.vtt
899 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.pt-BR.vtt
899 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.ja.vtt
899 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/25. Welcome to the End of Evaluation Lesson-sgFfl-j_oCs.zh-CN.vtt
899 Bytes
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.en.vtt
898 Bytes
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.en.vtt
898 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/07. Alpha and Jitter-0OkHWvkwCus.zh-CN.vtt
898 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/09. Extra Practice With Dashboards-Va2zNfnUC6o.zh-CN.vtt
898 Bytes
Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.en.vtt
897 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.en.vtt
897 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.pt-BR.vtt
897 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ar.vtt
896 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.zh-CN.vtt
896 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.pt-BR.vtt
896 Bytes
Part 11-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.pt-BR.vtt
896 Bytes
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.en.vtt
896 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.en-US.vtt
895 Bytes
Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.pt-BR.vtt
895 Bytes
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.pt-BR.vtt
895 Bytes
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.en.vtt
895 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.ar.vtt
894 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.zh-CN.vtt
893 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.ar.vtt
893 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.en.vtt
893 Bytes
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.pt-BR.vtt
893 Bytes
Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.en.vtt
893 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.pt-BR.vtt
893 Bytes
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.en.vtt
892 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.zh-CN.vtt
892 Bytes
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.pt-BR.vtt
892 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.en.vtt
891 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/24. Final Thoughts-CNGDocH1k3k.zh-CN.vtt
891 Bytes
Part 08-Module 04-Lesson 01_Cleaning Data/14. Cleaning For Quallity -qyixEwMRtWA.en.vtt
891 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.pt-BR.vtt
891 Bytes
Part 04-Module 01-Lesson 12_Hypothesis Testing/29. Hypothesis Testing Conclusion-nQFchD4XPPs.zh-CN.vtt
890 Bytes
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.pt-BR.vtt
890 Bytes
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.pt-BR.vtt
889 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.zh-CN.vtt
888 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/10. Moira's Outlier-vxS-Kh4eI0U.zh-CN.vtt
888 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.ar.vtt
888 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-8QEAYYIyopY.zh-CN.vtt
888 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ja.vtt
887 Bytes
Part 04-Module 01-Lesson 12_Hypothesis Testing/13. How Do We Choose Between Hypotheses-JkXTwS-5Daw.zh-CN.vtt
887 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.zh-CN.vtt
886 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.es-ES.vtt
886 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ar.vtt
886 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.es-ES.vtt
885 Bytes
Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.ar.vtt
885 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.pt-BR.vtt
884 Bytes
Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.en.vtt
884 Bytes
Part 16-Module 01-Lesson 03_SVM/24. Overfitting-plx_F2BkwNQ.zh-CN.vtt
884 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.en.vtt
883 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.zh-CN.vtt
883 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.en.vtt
883 Bytes
Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.ar.vtt
882 Bytes
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-FOwEL4S-SVo.zh-CN.vtt
881 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.es-ES.vtt
880 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/35. Decision Tree Mini-Project Video-eFjeXiC0KHA.zh-CN.vtt
880 Bytes
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.pt-BR.vtt
880 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.pt-BR.vtt
879 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.en.vtt
879 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.en.vtt
879 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.en.vtt
879 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.pt-BR.vtt
879 Bytes
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.en.vtt
879 Bytes
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-5Uon6hUTl8Y.zh-CN.vtt
879 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.en.vtt
878 Bytes
Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.zh-CN.vtt
878 Bytes
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/17. Conclusion-D_ioSXAre1A.zh-CN.vtt
876 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.en.vtt
876 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.ja.vtt
876 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/10. Cut a Variable-PHJiH5WCBwg.zh-CN.vtt
876 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.pt-BR.vtt
876 Bytes
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/02. Download Tableau Public-2bXsg6SKHG8.en.vtt
875 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.en.vtt
874 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.ja.vtt
874 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.ja.vtt
874 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.en.vtt
874 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.ja.vtt
874 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.ar.vtt
874 Bytes
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.pt-BR.vtt
873 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ja.vtt
872 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.pt-BR.vtt
872 Bytes
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.ar.vtt
872 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.ja.vtt
871 Bytes
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.en.vtt
871 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.es-ES.vtt
870 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/11. Enron Dataset Mini-Project Video-0zGp5er3fy4.zh-CN.vtt
870 Bytes
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-tEU11PXloLU.zh-CN.vtt
870 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 3-oVGmi4zBOT8.zh-CN.vtt
869 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.pt-BR.vtt
869 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.ar.vtt
869 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en-GB.vtt
868 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.ar.vtt
868 Bytes
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.en.vtt
868 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.pt-BR.vtt
867 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.pt-BR.vtt
867 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.pt-BR.vtt
867 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.pt-BR.vtt
866 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.it.vtt
866 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.en.vtt
865 Bytes
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.ar.vtt
865 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.pt-BR.vtt
864 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.ar.vtt
864 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.pt-BR.vtt
863 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/05. Thinking in Ratios-r4ZOwz3_oXs.zh-CN.vtt
863 Bytes
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.ar.vtt
863 Bytes
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.pt-BR.vtt
862 Bytes
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.zh-CN.vtt
862 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/07. Getting Rid of Features-JZx1Pyzuo_s.zh-CN.vtt
862 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/12. Bias, Variance Number of Features Pt 2-1lNAvDubBfI.zh-CN.vtt
862 Bytes
Part 18-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.zh-CN.vtt
862 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.ar.vtt
861 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.pt-BR.vtt
861 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.pt-BR.vtt
861 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.ar.vtt
861 Bytes
Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.en.vtt
861 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/05. Overplotting-qX2W99WrP0k.zh-CN.vtt
860 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/19. Lasso Coefficients with sklearn Quiz-nu2OKJwDvvE.zh-CN.vtt
859 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.zh-CN.vtt
858 Bytes
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.en.vtt
857 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/13. Exploring with Bin Width-TYN_LGAV3m8.zh-CN.vtt
857 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.pt-BR.vtt
857 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.en.vtt
857 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.en.vtt
856 Bytes
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.pt-BR.vtt
856 Bytes
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.pt-BR.vtt
856 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/15. Bias Variance Trade off Revisited-GGCzMmOpQqQ.zh-CN.vtt
855 Bytes
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.en.vtt
855 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.pt-BR.vtt
855 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/28. Conclusion-xYqxZQmXCdI.zh-CN.vtt
854 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.hr.vtt
854 Bytes
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.ar.vtt
854 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.ja.vtt
853 Bytes
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.pt-BR.vtt
853 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.zh-CN.vtt
852 Bytes
Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.ar.vtt
851 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.ja.vtt
851 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.es-ES.vtt
850 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.ar.vtt
850 Bytes
Part 16-Module 01-Lesson 07_Regressions/23. Errors and Fit Quality-PRQDaHphZhw.zh-CN.vtt
850 Bytes
Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.pt-BR.vtt
850 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.ar.vtt
850 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.pt-BR.vtt
849 Bytes
Part 08-Module 04-Lesson 01_Cleaning Data/18. You Can Iterate -CDRmFJHywp8.en.vtt
849 Bytes
Part 15-Module 02-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.zh-CN.vtt
849 Bytes
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.zh-CN.vtt
848 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.pt-BR.vtt
848 Bytes
Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.pt-BR.vtt
847 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ar.vtt
847 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.ja.vtt
847 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-wIXO77zyVxs.zh-CN.vtt
847 Bytes
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.en.vtt
847 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ja.vtt
846 Bytes
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.en.vtt
846 Bytes
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.ar.vtt
846 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ar.vtt
845 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.es-ES.vtt
845 Bytes
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.pt-BR.vtt
845 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.ja.vtt
845 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.zh-CN.vtt
845 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ar.vtt
844 Bytes
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.en.vtt
843 Bytes
Part 16-Module 01-Lesson 03_SVM/04. What Makes A Good Separating Line-yH2wQQt-Rjo.zh-CN.vtt
842 Bytes
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.ja.vtt
842 Bytes
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-tUeaXXT2oDI.zh-CN.vtt
842 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.ar.vtt
842 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ja.vtt
841 Bytes
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.ar.vtt
841 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.en.vtt
840 Bytes
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.pt-BR.vtt
840 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.en.vtt
839 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.zh-CN.vtt
839 Bytes
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.pt-BR.vtt
839 Bytes
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ar.vtt
838 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.ar.vtt
838 Bytes
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.pt-BR.vtt
837 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.es-ES.vtt
837 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.it.vtt
837 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.en.vtt
837 Bytes
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.ar.vtt
837 Bytes
Part 16-Module 01-Lesson 03_SVM/26. SVM Mini-Project Video-mENzEtsiOmI.zh-CN.vtt
837 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.en.vtt
837 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.en.vtt
836 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.en.vtt
836 Bytes
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.ar.vtt
836 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ja.vtt
835 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.ar.vtt
835 Bytes
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.pt-BR.vtt
834 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/24. Noise in Conditional Means-GKXB5Qjlxo0.zh-CN.vtt
834 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.ja.vtt
834 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.it.vtt
832 Bytes
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.es-MX.vtt
832 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.pt-BR.vtt
832 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/20. Making Sense of Data-z2rZndd-cdc.zh-CN.vtt
831 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/08. Faceting-x4V3IyECIN4.zh-CN.vtt
830 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.ja.vtt
830 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.pt-BR.vtt
830 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/21. Clean Code 1 Solution -Noykh9Zt6aI.zh-CN.vtt
830 Bytes
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.ar.vtt
830 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.pt-BR.vtt
830 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.pt-BR.vtt
829 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ar.vtt
829 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/06. coord_trans()-sQe7vTeO0yU.zh-CN.vtt
829 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.en.vtt
828 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.zh-CN.vtt
828 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ja.vtt
828 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.ar.vtt
828 Bytes
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.pt-BR.vtt
828 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.en.vtt
828 Bytes
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/11. Ud1110 IntroPy L5 44 Bye Bye!-lRYvuMf33eY.zh-CN.vtt
827 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/14. Adjusting the Bin Width-VyYQPDw7w3Y.ja.vtt
827 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.en.vtt
826 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.en.vtt
826 Bytes
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.pt-BR.vtt
826 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.pt-BR.vtt
825 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.en-US.vtt
825 Bytes
Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.en.vtt
824 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.es-ES.vtt
823 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.ar.vtt
822 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.en.vtt
821 Bytes
Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.en.vtt
821 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.ja.vtt
820 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.en.vtt
820 Bytes
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.ar.vtt
820 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ar.vtt
819 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ja.vtt
819 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.en.vtt
818 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.ja.vtt
818 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.en-US.vtt
818 Bytes
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-K4gGK4ScT7M.zh-CN.vtt
818 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/26. Evaluation Mini-Project Video-s13K9G1VaWM.zh-CN.vtt
818 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.zh-CN.vtt
817 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.es-ES.vtt
817 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/13. Correlation on Subsets-BbBaLbDoPBY.zh-CN.vtt
817 Bytes
Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.pt-BR.vtt
817 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.zh-CN.vtt
817 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.en.vtt
817 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.ar.vtt
816 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.en.vtt
816 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.ja.vtt
816 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.ar.vtt
816 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.ar.vtt
816 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.en.vtt
815 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/37. Congrats on Learning Naive Bayes-nQsYfzO7-00.zh-CN.vtt
814 Bytes
Part 16-Module 01-Lesson 13_PCA/16. Compression While Preserving Information-_TJeoCTDykE.zh-CN.vtt
814 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.th.vtt
813 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ja.vtt
813 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.ja.vtt
813 Bytes
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.en.vtt
813 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.zh-CN.vtt
812 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt
812 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.zh-CN.vtt
812 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.pt-BR.vtt
812 Bytes
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.ja.vtt
812 Bytes
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-4Fkfu37el_k.zh-CN.vtt
812 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-bgT8sWuV2lc.zh-CN.vtt
812 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/01. Lesson Overview-DkjRzNwjSfo.zh-CN.vtt
811 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.pt-BR.vtt
811 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-_kmNXcYlrco.en.vtt
811 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.en.vtt
810 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.pt-BR.vtt
810 Bytes
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.ar.vtt
810 Bytes
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.en.vtt
810 Bytes
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-yhzQ_HJcwn8.zh-CN.vtt
810 Bytes
Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.pt-BR.vtt
810 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.pt-BR.vtt
809 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.en.vtt
808 Bytes
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.zh-CN.vtt
808 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.en.vtt
808 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.ar.vtt
807 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.ja.vtt
806 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.pt-BR.vtt
806 Bytes
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-Kst3mlrqJnQ.zh-CN.vtt
806 Bytes
Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.en.vtt
806 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ja.vtt
805 Bytes
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.ar.vtt
805 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en-GB.vtt
804 Bytes
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.en.vtt
804 Bytes
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.en.vtt
803 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.en.vtt
803 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.pt-BR.vtt
802 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ar.vtt
802 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/23. Predictions-hW_1ASU-j8A.zh-CN.vtt
802 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.pt-BR.vtt
802 Bytes
Part 16-Module 01-Lesson 13_PCA/15. From Four Features to Two-xJtmPbEfpFo.zh-CN.vtt
801 Bytes
Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.pt-BR.vtt
800 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.en.vtt
799 Bytes
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ar.vtt
799 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.ar.vtt
799 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-c-pfYggUsdQ.zh-CN.vtt
799 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.en.vtt
798 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.en.vtt
798 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.pt-BR.vtt
798 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.it.vtt
797 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.pt-BR.vtt
797 Bytes
Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.pt-BR.vtt
797 Bytes
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-EllzeBecnkU.zh-CN.vtt
797 Bytes
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.en.vtt
797 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.pt-BR.vtt
794 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.pt-BR.vtt
794 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.ar.vtt
794 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.ar.vtt
793 Bytes
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-FY9_6rOPk6c.zh-CN.vtt
793 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.en.vtt
793 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.pt-BR.vtt
792 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.hr.vtt
792 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.en.vtt
792 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.ja.vtt
792 Bytes
Part 14-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.en.vtt
791 Bytes
Part 16-Module 01-Lesson 16_Tying It All Together/03. End of Content-MFRkl-aXL8I.zh-CN.vtt
791 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.en.vtt
790 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.en.vtt
790 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.ar.vtt
790 Bytes
Part 16-Module 01-Lesson 08_Outliers/03. Outlier Selection-zTI5Ci5WWzM.pt-BR.vtt
790 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.en.vtt
789 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.pt-BR.vtt
788 Bytes
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.en.vtt
787 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.zh-CN.vtt
787 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.ar.vtt
787 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.zh-CN.vtt
787 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.en.vtt
787 Bytes
Part 03-Module 02-Lesson 03_Data Analysis Process - Case Study 2/01. Lesson Overview-2X8GJyZUlDo.zh-CN.vtt
785 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.zh-CN.vtt
785 Bytes
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/12. What Can You Create In Tableau-gNqIvf5iJA8.zh-CN.vtt
784 Bytes
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.ar.vtt
784 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.pt-BR.vtt
783 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ar.vtt
783 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/20. Prices Over Time-aj_QpA9GygI.zh-CN.vtt
783 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.ja.vtt
783 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.ar.vtt
783 Bytes
Part 16-Module 01-Lesson 08_Outliers/01. Outliers in Regression-_IetITlJpIs.zh-CN.vtt
783 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.en.vtt
782 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.en.vtt
781 Bytes
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.zh-CN.vtt
781 Bytes
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.pt-BR.vtt
781 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.zh-CN.vtt
780 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.pt-BR.vtt
780 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-4qJwfAWG_wQ.zh-CN.vtt
780 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.th.vtt
779 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-dGS0SKu1ox0.zh-CN.vtt
779 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/14. Friendships Initiated-tNKpdmXj6gg.zh-CN.vtt
778 Bytes
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-osn2fVnCVgQ.zh-CN.vtt
778 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.zh-CN.vtt
778 Bytes
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.en.vtt
778 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.th.vtt
777 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.es-ES.vtt
777 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/16. Outro-dps7Ti6Lado.en.vtt
777 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.ar.vtt
777 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.zh-CN.vtt
775 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.es-ES.vtt
775 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.pt-BR.vtt
775 Bytes
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.en.vtt
775 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.pt-BR.vtt
774 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.ar.vtt
774 Bytes
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.ar.vtt
774 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.pt-BR.vtt
773 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.en.vtt
773 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/06. Classification By Eye-xeMDpSRTLWc.zh-CN.vtt
773 Bytes
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.pt-BR.vtt
773 Bytes
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.ar.vtt
773 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.th.vtt
772 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en.vtt
772 Bytes
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.pt-BR.vtt
772 Bytes
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.en.vtt
772 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.ar.vtt
770 Bytes
Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.en-US.vtt
770 Bytes
Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.en.vtt
770 Bytes
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.en.vtt
770 Bytes
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete--uRSI_oybJQ.pt-BR.vtt
770 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.en.vtt
770 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.pt-BR.vtt
769 Bytes
Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.pt-BR.vtt
769 Bytes
Part 16-Module 01-Lesson 07_Regressions/24. Minimizing Sum of Squared Errors-E1XzT619Eug.zh-CN.vtt
769 Bytes
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.ar.vtt
769 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.th.vtt
768 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.ar.vtt
768 Bytes
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.en.vtt
768 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.it.vtt
767 Bytes
Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.en.vtt
767 Bytes
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.en.vtt
766 Bytes
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.en.vtt
766 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.pt-BR.vtt
766 Bytes
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ar.vtt
765 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-PT.vtt
765 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.ja.vtt
765 Bytes
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.pt-BR.vtt
765 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.it.vtt
764 Bytes
Part 16-Module 01-Lesson 07_Regressions/25. Algorithms for Minimizing Squared Errors-Dw_9Dp6wcJ8.zh-CN.vtt
764 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.zh-CN.vtt
763 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.en.vtt
763 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.ja.vtt
763 Bytes
Part 16-Module 01-Lesson 07_Regressions/08. Continuous Feature Quiz-TIs9j-QITxw.zh-CN.vtt
763 Bytes
Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.en.vtt
763 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ja.vtt
762 Bytes
Part 03-Module 03-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.zh-CN.vtt
761 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.pt-BR.vtt
761 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.en-US.vtt
761 Bytes
Part 16-Module 01-Lesson 07_Regressions/11. Slope and Intercept-Ksn1g5fCe1I.zh-CN.vtt
761 Bytes
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.ar.vtt
761 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ja.vtt
760 Bytes
Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.pt-BR.vtt
760 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.zh-CN.vtt
759 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.en.vtt
759 Bytes
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.en-US.vtt
759 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.ja.vtt
758 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.pt-BR.vtt
758 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.es-ES.vtt
757 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.en.vtt
757 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.en.vtt
757 Bytes
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.en.vtt
757 Bytes
Part 04-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.en.vtt
756 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.en.vtt
756 Bytes
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.en.vtt
756 Bytes
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.ar.vtt
755 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.en.vtt
754 Bytes
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-VERLCqDewrM.zh-CN.vtt
754 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.pt-BR.vtt
753 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.pt-BR.vtt
753 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.zh-CN.vtt
752 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.en.vtt
752 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ar.vtt
752 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-gbkORDbJM50.zh-CN.vtt
752 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.ar.vtt
751 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.zh-CN.vtt
751 Bytes
Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.ar.vtt
751 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.ar.vtt
751 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.en.vtt
751 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.zh-CN.vtt
750 Bytes
Part 04-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.zh-CN.vtt
750 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/13. Friending Rate-J0IqMgkl1Ws.zh-CN.vtt
750 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.pt-BR.vtt
749 Bytes
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature--_jNi_5zEEQ.zh-CN.vtt
749 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.hr.vtt
748 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.es-ES.vtt
748 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ja.vtt
748 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-_HWtxJRaawA.zh-CN.vtt
748 Bytes
Part 16-Module 01-Lesson 03_SVM/07. SVM Response to Outliers-TEAGqUkQVdM.zh-CN.vtt
748 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.ar.vtt
747 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.pt-BR.vtt
747 Bytes
Part 07-Module 01-Lesson 01_What is EDA/07. The Growth of Televisions-r5qca6q4Fn4.zh-CN.vtt
747 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.zh-CN.vtt
747 Bytes
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.en.vtt
747 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.ar.vtt
747 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.pt-BR.vtt
747 Bytes
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/18. Ud1110 IntroPy L250 End Of Lesson 2-UhvyD_60esQ.zh-CN.vtt
746 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.es-ES.vtt
746 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.es-ES.vtt
746 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.pt-BR.vtt
746 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.pt-BR.vtt
746 Bytes
Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.pt-BR.vtt
746 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.zh-CN.vtt
745 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.pt-BR.vtt
745 Bytes
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.ar.vtt
745 Bytes
Part 18-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.zh-CN.vtt
745 Bytes
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-R6oIvdBtsZw.zh-CN.vtt
744 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/11. Plotting It All Together-Y4rUkaYQQKI.zh-CN.vtt
743 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.pt-BR.vtt
743 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.it.vtt
742 Bytes
Part 04-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.zh-CN.vtt
742 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/03. Scatterplots-ZcavaOLXPSs.zh-CN.vtt
742 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.en.vtt
742 Bytes
Part 15-Module 02-Lesson 05_Trees/01. Trees-PXie7f22v2Q.zh-CN.vtt
742 Bytes
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.ar.vtt
741 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.zh-CN.vtt
741 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.pt-BR.vtt
741 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.es-ES.vtt
741 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.pt-BR.vtt
739 Bytes
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.ar.vtt
739 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ar.vtt
738 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.en.vtt
738 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.pt-BR.vtt
737 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.pt-BR.vtt
737 Bytes
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.pt-BR.vtt
737 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/01. Introduction-2Y279421n3A.zh-CN.vtt
736 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.pt-BR.vtt
736 Bytes
Part 04-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.zh-CN.vtt
736 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.en.vtt
736 Bytes
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.pt-BR.vtt
736 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.en.vtt
736 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.pt-BR.vtt
735 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.pt-BR.vtt
735 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.ja.vtt
735 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.en.vtt
734 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-O0bvLU4l0is.zh-CN.vtt
733 Bytes
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.pt-BR.vtt
733 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.en.vtt
732 Bytes
Part 16-Module 01-Lesson 14_Validation/14. On to the Validation Mini-Project-JEK7-ocWu0M.zh-CN.vtt
732 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.ar.vtt
731 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.ar.vtt
731 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ja.vtt
730 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.th.vtt
729 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.es-ES.vtt
729 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.en.vtt
729 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.pt-BR.vtt
728 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.es-ES.vtt
728 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.en.vtt
728 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.pt-BR.vtt
728 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.en.vtt
728 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.ar.vtt
727 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.ja.vtt
727 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.ar.vtt
726 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.ar.vtt
726 Bytes
Part 18-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.zh-CN.vtt
724 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.th.vtt
723 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/25. Scatterplot Matrices-ov--BE6XTZU.zh-CN.vtt
723 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/16. Outro-dps7Ti6Lado.zh-CN.vtt
723 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.ar.vtt
722 Bytes
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.en.vtt
722 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/10. Decision Tree Confusion Matrix-cUlEryXX9BM.zh-CN.vtt
722 Bytes
Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.en.vtt
720 Bytes
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-WxAWorS2SLg.zh-CN.vtt
720 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.en.vtt
719 Bytes
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.ar.vtt
719 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.en.vtt
717 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ar.vtt
717 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ja.vtt
717 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.th.vtt
717 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.pt-BR.vtt
717 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.en.vtt
717 Bytes
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.pt-BR.vtt
717 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ja.vtt
716 Bytes
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.pt-BR.vtt
716 Bytes
Part 03-Module 03-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.zh-CN.vtt
715 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.en.vtt
715 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.en.vtt
715 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pl.vtt
715 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.en.vtt
714 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.zh-CN.vtt
713 Bytes
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.ar.vtt
713 Bytes
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.ar.vtt
713 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.it.vtt
712 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.pt-BR.vtt
711 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/13. Feature Scaling Mini-Project Video-e6zbTFctnJU.zh-CN.vtt
711 Bytes
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.ar.vtt
711 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ja.vtt
710 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.en.vtt
709 Bytes
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.en.vtt
709 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ja.vtt
708 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.zh-CN.vtt
708 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.ja.vtt
708 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.ja.vtt
708 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.zh-CN.vtt
707 Bytes
Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.es-MX.vtt
707 Bytes
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.pt-BR.vtt
707 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ar.vtt
706 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.pt-BR.vtt
705 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt
705 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.en.vtt
705 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.en.vtt
704 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.zh-CN.vtt
704 Bytes
Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.ar.vtt
704 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/35. Why Is Naive Bayes Naive-Bw6sYY84cYg.zh-CN.vtt
704 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.ar.vtt
703 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.zh-CN.vtt
703 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-EPrrQaYp7H0.zh-CN.vtt
703 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.it.vtt
702 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.pt-BR.vtt
702 Bytes
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.en.vtt
702 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.zh-CN.vtt
701 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.ja.vtt
701 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.zh-CN.vtt
701 Bytes
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.pt-BR.vtt
701 Bytes
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-PRjmvj6Vubs.zh-CN.vtt
701 Bytes
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.pt-BR.vtt
701 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.th.vtt
700 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.pt-BR.vtt
700 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.pt-BR.vtt
699 Bytes
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.en.vtt
699 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.zh-CN.vtt
698 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.pt-BR.vtt
698 Bytes
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ujpjeaxE6GU.zh-CN.vtt
698 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-q_zfkCwRg1w.zh-CN.vtt
698 Bytes
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.it.vtt
697 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.pt-BR.vtt
697 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.ar.vtt
697 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.pt-BR.vtt
696 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.pt-BR.vtt
696 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.pt-BR.vtt
696 Bytes
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.it.vtt
695 Bytes
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.pt-BR.vtt
695 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.pt-BR.vtt
695 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.pt-BR.vtt
694 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-IC47yHGmgMk.zh-CN.vtt
694 Bytes
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.ar.vtt
694 Bytes
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.pt-BR.vtt
693 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/20. You Can Iterate-ZU8EnPbR-pk.pt-BR.vtt
693 Bytes
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.ar.vtt
693 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.pt-BR.vtt
692 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.pt-BR.vtt
692 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/19. User Ages-BmGqdHagFQk.zh-CN.vtt
692 Bytes
Part 15-Module 02-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.zh-CN.vtt
692 Bytes
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.en.vtt
692 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.pt-BR.vtt
691 Bytes
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.pt-BR.vtt
691 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.hr.vtt
690 Bytes
Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.en.vtt
690 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.pt-BR.vtt
690 Bytes
Part 02-Module 01-Lesson 01_Numbers and Strings/12. Ud1110 IntroPy L1 53 Lesson 1 Done!-y3dstGZWPgc.zh-CN.vtt
688 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.pt-BR.vtt
688 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/20. Using Lasso in sklearn Quiz-xYxD4GD1woo.zh-CN.vtt
688 Bytes
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.pt-BR.vtt
688 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.pt-BR.vtt
687 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.pt-BR.vtt
686 Bytes
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.es-ES.vtt
686 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.en.vtt
685 Bytes
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.ar.vtt
685 Bytes
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.en.vtt
685 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ar.vtt
684 Bytes
Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.ar.vtt
684 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ar.vtt
684 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-BR.vtt
684 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.ar.vtt
683 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/22. A Bigger, Better Data Set-uj6bLK91ZQI.zh-CN.vtt
683 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.pt-BR.vtt
683 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.ar.vtt
683 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.en.vtt
682 Bytes
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.en.vtt
682 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.es-ES.vtt
682 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.en.vtt
682 Bytes
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.ar.vtt
682 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.es-ES.vtt
681 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.pt-BR.vtt
680 Bytes
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-lS5DfbsWH34.zh-CN.vtt
680 Bytes
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.ar.vtt
679 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.es-ES.vtt
679 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.es-ES.vtt
679 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.en.vtt
679 Bytes
Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.pt-BR.vtt
678 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt
678 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.th.vtt
677 Bytes
Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.en.vtt
677 Bytes
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.pt-BR.vtt
677 Bytes
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-c1gvsNx_ypg.zh-CN.vtt
677 Bytes
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.ar.vtt
677 Bytes
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-9O7cJSP4C8w.zh-CN.vtt
677 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.zh-CN.vtt
676 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.en.vtt
675 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.zh-CN.vtt
675 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.ar.vtt
675 Bytes
Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.zh-CN.vtt
675 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.en.vtt
675 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.ar.vtt
675 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.ar.vtt
673 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.zh-CN.vtt
673 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.pt-BR.vtt
673 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.pt-BR.vtt
673 Bytes
Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.ar.vtt
673 Bytes
Part 16-Module 01-Lesson 07_Regressions/01. Continuous Output Quiz-udJvijJvs1M.zh-CN.vtt
672 Bytes
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.pt-BR.vtt
672 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.es-ES.vtt
671 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.it.vtt
671 Bytes
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.es-ES.vtt
671 Bytes
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.pt-BR.vtt
671 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ar.vtt
670 Bytes
Part 04-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.zh-CN.vtt
670 Bytes
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ja.vtt
669 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.ar.vtt
669 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.ar.vtt
669 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.en.vtt
668 Bytes
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.en.vtt
668 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-ePXAzoGVviM.zh-CN.vtt
668 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.th.vtt
667 Bytes
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.en.vtt
666 Bytes
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.en.vtt
666 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.es-ES.vtt
665 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.ar.vtt
665 Bytes
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.en.vtt
665 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/11. Bias, Variance, and Number of Features-mpYpT6nZVEo.zh-CN.vtt
665 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.ar.vtt
665 Bytes
Part 11-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.zh-CN.vtt
664 Bytes
Part 16-Module 01-Lesson 03_SVM/21. Kernel and Gamma-znlTyocTgSc.zh-CN.vtt
664 Bytes
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.en.vtt
664 Bytes
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ar.vtt
663 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.en.vtt
663 Bytes
Part 14-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.en.vtt
663 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.hr.vtt
662 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.ar.vtt
662 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.ar.vtt
662 Bytes
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-i6zv8vyZBk0.zh-CN.vtt
662 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.ar.vtt
662 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.ar.vtt
662 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ja.vtt
661 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/13. Date Quality Dimensions 2 -aEGtqoWIJIc.zh-CN.vtt
661 Bytes
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.pt-BR.vtt
661 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download Solution-SDqdLhgsBNc.zh-CN.vtt
660 Bytes
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.en.vtt
660 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.en.vtt
660 Bytes
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.en.vtt
660 Bytes
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.pt-BR.vtt
660 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.pt-BR.vtt
660 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.zh-CN.vtt
658 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.en.vtt
658 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.en.vtt
658 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.en.vtt
658 Bytes
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.ar.vtt
658 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.en.vtt
658 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.th.vtt
657 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ja.vtt
657 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.en.vtt
656 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.es-ES.vtt
656 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.it.vtt
656 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ar.vtt
656 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/21. Model Problems-Och80L_uNjU.zh-CN.vtt
656 Bytes
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line---Pc1ASVjmM.zh-CN.vtt
656 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.en.vtt
655 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.en.vtt
655 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.ja.vtt
655 Bytes
Part 16-Module 01-Lesson 11_Text Learning/12. Order of Operations in Text Processing-Fi3uuGj8bhs.zh-CN.vtt
655 Bytes
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.pt-BR.vtt
655 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.th.vtt
654 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ar.vtt
654 Bytes
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.pt-BR.vtt
654 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.pt-BR.vtt
653 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.en.vtt
653 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.th.vtt
653 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.ja.vtt
653 Bytes
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.pt-BR.vtt
652 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.ar.vtt
652 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.en.vtt
652 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.ar.vtt
652 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.pt-BR.vtt
652 Bytes
Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.ar.vtt
652 Bytes
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.en.vtt
651 Bytes
Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.en.vtt
651 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.en.vtt
650 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ar.vtt
650 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ar.vtt
650 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.zh-CN.vtt
650 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/07. Perceived Audience Size-zHnhKtVMhuc.zh-CN.vtt
649 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/05. Beware of Feature Bugs!-UjaFiRdHPZg.zh-CN.vtt
649 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.ja.vtt
647 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.en.vtt
646 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.pt-BR.vtt
646 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.ja.vtt
646 Bytes
Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.pt-BR.vtt
646 Bytes
Part 16-Module 01-Lesson 08_Outliers/02. What Causes Outliers-W74CdB_pl5M.zh-CN.vtt
645 Bytes
Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.en.vtt
645 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.zh-CN.vtt
644 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.ja.vtt
644 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.pt-BR.vtt
644 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/08. Gather Download-a5o3ck1bxEs.zh-CN.vtt
644 Bytes
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.pt-BR.vtt
644 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.ar.vtt
644 Bytes
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.en.vtt
644 Bytes
Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.pt-BR.vtt
643 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION 2-so5zydnbYEg.zh-CN.vtt
643 Bytes
Part 04-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.zh-CN.vtt
643 Bytes
Part 16-Module 01-Lesson 03_SVM/01. Welcome to SVM-gnAmmyQ_ZcQ.zh-CN.vtt
643 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.pt-BR.vtt
642 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.pt-BR.vtt
641 Bytes
Part 08-Module 02-Lesson 01_Gathering Data/07. Flat Files in Python -cUmcLjWgxwM.zh-CN.vtt
641 Bytes
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.hr.vtt
640 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ar.vtt
640 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.en.vtt
640 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.en.vtt
639 Bytes
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.zh-CN.vtt
639 Bytes
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.pt-BR.vtt
639 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.zh-CN.vtt
638 Bytes
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.en.vtt
638 Bytes
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.pt-BR.vtt
638 Bytes
Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.en.vtt
637 Bytes
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.hr.vtt
637 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.ja.vtt
637 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.pt-BR.vtt
637 Bytes
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.pt-BR.vtt
636 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.pt-BR.vtt
636 Bytes
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.pt-BR.vtt
636 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.en.vtt
636 Bytes
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.en.vtt
635 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.en.vtt
635 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.ar.vtt
635 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.th.vtt
634 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.en.vtt
634 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt
634 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.zh-CN.vtt
633 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.en.vtt
633 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/16. Strong Correlations-QsWzjYigYB4.zh-CN.vtt
633 Bytes
Part 16-Module 01-Lesson 09_Clustering/16. Counterintuitive Clusters 2-xSQTzAeeoEc.zh-CN.vtt
633 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/19. Exploring Data With Visuals-0i_9t4Wi0Og.zh-CN.vtt
632 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.ja.vtt
632 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.ja.vtt
632 Bytes
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.en-US.vtt
632 Bytes
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.ar.vtt
632 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.ar.vtt
631 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.ar.vtt
631 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.en.vtt
630 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-HNo0KSYM2b4.zh-CN.vtt
630 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.pt-BR.vtt
630 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.pt-BR.vtt
629 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.zh-CN.vtt
629 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.es-ES.vtt
629 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.pt-BR.vtt
629 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.pt-BR.vtt
629 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.en.vtt
628 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.pt-BR.vtt
628 Bytes
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.ja.vtt
628 Bytes
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.pt-BR.vtt
628 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ja.vtt
627 Bytes
Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.zh-CN.vtt
627 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.pt-BR.vtt
627 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ar.vtt
626 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.zh-CN.vtt
626 Bytes
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.pt-BR.vtt
626 Bytes
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.en.vtt
626 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ja.vtt
625 Bytes
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.it.vtt
625 Bytes
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.ar.vtt
624 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.ar.vtt
624 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ja.vtt
623 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ar.vtt
623 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.zh-CN.vtt
623 Bytes
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.en.vtt
623 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.en.vtt
622 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.zh-CN.vtt
622 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.ar.vtt
622 Bytes
Part 16-Module 01-Lesson 07_Regressions/06. Phone Number Continuous or Discrete-5dt0N4XN-y4.zh-CN.vtt
622 Bytes
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.en.vtt
622 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ja.vtt
621 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/21. Conclusion-UFwgr6tLcuI.zh-CN.vtt
620 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/19. Congratulations!-_FPpbuuW-1o.pt-BR.vtt
620 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.pt-BR.vtt
620 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.ar.vtt
620 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/28. Analyzing Three or More Variables-hcGeA_0nru8.ja.vtt
620 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.en.vtt
619 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.it.vtt
618 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ja.vtt
618 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.pt-BR.vtt
618 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/12. Congratulations!-sCQ7ZViODaw.zh-CN.vtt
618 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.pt-BR.vtt
618 Bytes
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ja.vtt
617 Bytes
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ru.vtt
617 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.en.vtt
617 Bytes
Part 04-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.zh-CN.vtt
617 Bytes
Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.en.vtt
617 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.en-US.vtt
617 Bytes
Part 11-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.pt-BR.vtt
617 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.en-US.vtt
617 Bytes
Part 03-Module 03-Lesson 07_[Advanced] SQL Advanced JOINs & Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.zh-CN.vtt
616 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.zh-CN.vtt
616 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.zh-CN.vtt
616 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.ar.vtt
616 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ar.vtt
615 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.ja.vtt
614 Bytes
Part 04-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.zh-CN.vtt
613 Bytes
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.en.vtt
613 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.en.vtt
613 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.pt-BR.vtt
612 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.es-ES.vtt
611 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.zh-CN.vtt
611 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.en.vtt
611 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.ja.vtt
611 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.en.vtt
610 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.zh-CN.vtt
610 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.en.vtt
610 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.zh-CN.vtt
609 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.en.vtt
609 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.pt-BR.vtt
608 Bytes
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.es-ES.vtt
608 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ja.vtt
608 Bytes
Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.pt-BR.vtt
608 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.ar.vtt
608 Bytes
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.pt-BR.vtt
608 Bytes
Part 02-Module 01-Lesson 03_Data Structures and Loops/01. Ud1110 IntroPy L301 Welcome To Lesson 3-ikOWhrOUgLc.zh-CN.vtt
607 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ar.vtt
607 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/12. Gather Import Solution-QnTPEAGXJaE.zh-CN.vtt
606 Bytes
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.pt-BR.vtt
606 Bytes
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.en.vtt
605 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.th.vtt
604 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.ar.vtt
604 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.th.vtt
603 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.pt-BR.vtt
602 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.ar.vtt
602 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.en.vtt
601 Bytes
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.pt-BR.vtt
601 Bytes
Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.en.vtt
601 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/25. Likes on the Web-stpXFmv_XrA.zh-CN.vtt
600 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.pt-BR.vtt
600 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.en.vtt
600 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.hr.vtt
599 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.pt-BR.vtt
599 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ar.vtt
599 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.en.vtt
599 Bytes
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.pt-BR.vtt
599 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.it.vtt
598 Bytes
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.pt-BR.vtt
598 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.en.vtt
598 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.en.vtt
598 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ja.vtt
597 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.pt-BR.vtt
597 Bytes
Part 11-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.zh-CN.vtt
597 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.ar.vtt
597 Bytes
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.ar.vtt
597 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ja.vtt
596 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.zh-CN.vtt
596 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.en.vtt
596 Bytes
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.en.vtt
596 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.es-ES.vtt
595 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.ar.vtt
595 Bytes
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.en.vtt
595 Bytes
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ja.vtt
594 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/01. Welcome!-rkWU07ZDYzA.ja.vtt
594 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/27. Analyzing Two Variables-NRMKNuox9z0.zh-CN.vtt
594 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.pt-BR.vtt
593 Bytes
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-UeSD19oit_w.zh-CN.vtt
593 Bytes
Part 16-Module 01-Lesson 14_Validation/06. Where to use training vs. testing data 3-o7LnSu0CEb4.zh-CN.vtt
593 Bytes
Part 07-Module 01-Lesson 02_R Basics/17. Congratulations-GxhPaVbDHnw.ja.vtt
592 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ar.vtt
591 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.en.vtt
591 Bytes
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.en.vtt
591 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.en.vtt
589 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.pt-BR.vtt
589 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ja.vtt
589 Bytes
Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.en.vtt
589 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.pt-BR.vtt
589 Bytes
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-3FO2y4tlZ3A.zh-CN.vtt
589 Bytes
Part 16-Module 01-Lesson 09_Clustering/04. Match Points with Clusters-wJV1cRjmIYY.zh-CN.vtt
589 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/04. Histogram of Users' Birthdays-mdCk7Gwkd4g.ja.vtt
588 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.ar.vtt
588 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ja.vtt
587 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.en.vtt
587 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-sCZI5gWS6mg.zh-CN.vtt
587 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.en.vtt
586 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ja.vtt
584 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ar.vtt
584 Bytes
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.pt-BR.vtt
584 Bytes
Part 16-Module 01-Lesson 13_PCA/19. Advantages of Maximal Variance-TbT6a6qaj08.zh-CN.vtt
584 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.ar.vtt
583 Bytes
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.ar.vtt
583 Bytes
Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.pt-BR.vtt
583 Bytes
Part 04-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.zh-CN.vtt
582 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.zh-CN.vtt
582 Bytes
Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.pt-BR.vtt
582 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.ar.vtt
582 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/11. Friend Count-gydx9-h1liU.ja.vtt
582 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/22. Unpacking NB Using Bayes Rule-lGREq530kfU.zh-CN.vtt
582 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.ar.vtt
582 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.en.vtt
581 Bytes
Part 16-Module 01-Lesson 13_PCA/22. Neighborhood Composite Feature-adXoa85rnPM.zh-CN.vtt
580 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-Hans.vtt
579 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.th.vtt
579 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.pt-BR.vtt
579 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.zh-CN.vtt
579 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/23. Bayes Rule-1biLtViOQDc.zh-CN.vtt
579 Bytes
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.en.vtt
579 Bytes
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.pt-BR.vtt
579 Bytes
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.en.vtt
579 Bytes
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-I_v6ueT0k3M.zh-CN.vtt
579 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.th.vtt
578 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.ja.vtt
578 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/10. Types of Data Quiz 6--LtbhZvwwM8.zh-CN.vtt
578 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.zh-CN.vtt
577 Bytes
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.pt-BR.vtt
577 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.pt-BR.vtt
576 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.pt-BR.vtt
576 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.hr.vtt
575 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.es-ES.vtt
575 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.en.vtt
575 Bytes
Part 16-Module 01-Lesson 14_Validation/04. Where to use training vs. testing data 1-z2R5CqjXrkA.zh-CN.vtt
575 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.en.vtt
575 Bytes
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.en.vtt
574 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.en-US.vtt
574 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.ja.vtt
573 Bytes
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.en.vtt
573 Bytes
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.pt-BR.vtt
573 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ja.vtt
572 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.zh-CN.vtt
572 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.en.vtt
572 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.it.vtt
571 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.en.vtt
571 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.pt-BR.vtt
571 Bytes
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.pt-BR.vtt
570 Bytes
Part 16-Module 01-Lesson 07_Regressions/09. Supervised Learning w Continuous Output-F7PIJM0q524.zh-CN.vtt
570 Bytes
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.ar.vtt
570 Bytes
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.en.vtt
569 Bytes
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.en.vtt
569 Bytes
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.en-US.vtt
569 Bytes
Part 18-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.zh-CN.vtt
569 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.pt-BR.vtt
568 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.pt-BR.vtt
568 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.pt-BR.vtt
567 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.pt-BR.vtt
567 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.pt-BR.vtt
567 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.zh-CN.vtt
566 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.es-ES.vtt
566 Bytes
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.ar.vtt
566 Bytes
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.en.vtt
566 Bytes
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.en.vtt
566 Bytes
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.hr.vtt
565 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.es-ES.vtt
565 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.en.vtt
565 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.en.vtt
564 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.pt-BR.vtt
563 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.zh-CN.vtt
563 Bytes
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.ar.vtt
563 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.pt-BR.vtt
563 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ar.vtt
562 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/08. Ratio Plot-gfZ7C-QBF0k.zh-CN.vtt
562 Bytes
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.en.vtt
561 Bytes
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.pt-BR.vtt
561 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.ar.vtt
561 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.es-ES.vtt
560 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.pt-BR.vtt
560 Bytes
Part 16-Module 01-Lesson 13_PCA/12. Which Data is Ready for PCA-JSVsHbGUuIE.zh-CN.vtt
560 Bytes
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.ar.vtt
559 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.zh-CN.vtt
558 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.en.vtt
558 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ar.vtt
558 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ja.vtt
557 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-CN.vtt
556 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt
556 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.en.vtt
555 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.zh-CN.vtt
554 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.th.vtt
554 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.en.vtt
553 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.zh-CN.vtt
553 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.ar.vtt
553 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.zh-CN.vtt
553 Bytes
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.it.vtt
552 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.pt-BR.vtt
552 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.zh-CN.vtt
552 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.zh-CN.vtt
552 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-j2SP83afRS0.zh-CN.vtt
552 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt
551 Bytes
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.en.vtt
550 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.zh-CN.vtt
549 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ar.vtt
549 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.en.vtt
549 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-swoZxkrxIB0.en.vtt
549 Bytes
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.pt-BR.vtt
549 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.th.vtt
548 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.ar.vtt
548 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.zh-CN.vtt
547 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ar.vtt
547 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.pt-BR.vtt
547 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.pt-BR.vtt
547 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.pt-BR.vtt
547 Bytes
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-OrPlWwv19Jc.zh-CN.vtt
547 Bytes
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-PYNWtLgtRfU.zh-CN.vtt
547 Bytes
Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.en.vtt
546 Bytes
Part 02-Module 01-Lesson 02_Functions, Installation and Conditionals/01. Ud1110 IntroPy L201 Welcome Back!-oCCMSsCc4Iw.zh-CN.vtt
544 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ar.vtt
544 Bytes
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.en.vtt
543 Bytes
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.ar.vtt
543 Bytes
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.ar.vtt
543 Bytes
Part 16-Module 01-Lesson 11_Text Learning/01. Dimensions when Learning From Text-Njbmexuo7fo.zh-CN.vtt
543 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.ar.vtt
542 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.th.vtt
541 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ja.vtt
541 Bytes
Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.pt-BR.vtt
541 Bytes
Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.pt-BR.vtt
541 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.en.vtt
540 Bytes
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.pt-BR.vtt
540 Bytes
Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.pt-BR.vtt
540 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.hr.vtt
539 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.ar.vtt
539 Bytes
Part 16-Module 01-Lesson 03_SVM/08. SVM Outlier Practice-WxAO6ByCvew.zh-CN.vtt
539 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/17. Lasso Code Quiz-PlFG87qPSB4.zh-CN.vtt
539 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/02. Accuracy Review-g3sxDtlGlAM.zh-CN.vtt
539 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.zh-CN.vtt
538 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.es-ES.vtt
538 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt
538 Bytes
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.ar.vtt
538 Bytes
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.pt-BR.vtt
538 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.en.vtt
537 Bytes
Part 16-Module 01-Lesson 07_Regressions/26. Why Minimize SSE-rexAHoCGFMs.zh-CN.vtt
537 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.zh-CN.vtt
536 Bytes
Part 04-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.zh-CN.vtt
536 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.en.vtt
536 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.ar.vtt
536 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.en.vtt
536 Bytes
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.es-ES.vtt
535 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.ar.vtt
535 Bytes
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.ja.vtt
535 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.ar.vtt
535 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.en.vtt
534 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-bRhdim9PTFI.zh-CN.vtt
534 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.en.vtt
534 Bytes
Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.ar.vtt
534 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ar.vtt
533 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.es-ES.vtt
533 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.pt-BR.vtt
533 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.ar.vtt
533 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.pt-BR.vtt
533 Bytes
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ja.vtt
532 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ar.vtt
532 Bytes
Part 04-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.zh-CN.vtt
532 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.zh-CN.vtt
532 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.ar.vtt
532 Bytes
Part 04-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.zh-CN.vtt
531 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ja.vtt
531 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.es-ES.vtt
531 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.zh-CN.vtt
531 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.ar.vtt
531 Bytes
Part 02-Module 01-Lesson 05_Wikipedia Web Crawl Case Study/05. Coding inside the skeleton loop-MRPdqOwnqag.zh-CN.vtt
530 Bytes
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.hr.vtt
530 Bytes
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.pt-BR.vtt
530 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.en.vtt
530 Bytes
Part 16-Module 01-Lesson 09_Clustering/13. Some challenges of k-means-e2CdlG5P4WA.zh-CN.vtt
530 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.es-ES.vtt
529 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.pt-BR.vtt
529 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ziYBjY1kTC8.zh-CN.vtt
529 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.pt-BR.vtt
529 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.en.vtt
528 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-a2GCyz_N0oY.zh-CN.vtt
528 Bytes
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/07. How Does Your Algorithm Compare-B2KnUg5iz0Y.zh-CN.vtt
528 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.en.vtt
527 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ja.vtt
527 Bytes
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Projects-1-E_ZYovKeI.en.vtt
527 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.ja.vtt
527 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.ar.vtt
526 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.pt-BR.vtt
526 Bytes
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-TpVxnYcI_uw.zh-CN.vtt
526 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.pt-BR.vtt
526 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ja.vtt
525 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ar.vtt
524 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en.vtt
524 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.en.vtt
524 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.pt-BR.vtt
523 Bytes
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.en.vtt
523 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.pt-BR.vtt
523 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.pt-BR.vtt
523 Bytes
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.en.vtt
523 Bytes
Part 03-Module 03-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.pt-BR.vtt
522 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.zh-CN.vtt
522 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.zh-CN.vtt
522 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.zh-CN.vtt
521 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.ar.vtt
521 Bytes
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.ar.vtt
521 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.pt-BR.vtt
520 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.en.vtt
518 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ar.vtt
518 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ar.vtt
518 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.pt-BR.vtt
518 Bytes
Part 04-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.hr.vtt
517 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.pt-BR.vtt
517 Bytes
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.zh-CN.vtt
516 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.pt-BR.vtt
516 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ar.vtt
516 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.es-ES.vtt
516 Bytes
Part 10-Module 01-Lesson 01_Congratulations & Next Steps/03. Projects-1-E_ZYovKeI.pt-BR.vtt
516 Bytes
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.ar.vtt
515 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program!/05. Introduction-fxNSn63xFvA.zh-CN.vtt
513 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.en.vtt
513 Bytes
Part 06-Module 01-Lesson 01_Welcome to Term 2!/06. Introduction-fxNSn63xFvA.zh-CN.vtt
513 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.en.vtt
513 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.ar.vtt
512 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.en.vtt
512 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.ar.vtt
511 Bytes
Part 16-Module 01-Lesson 07_Regressions/05. Email Author Continuous or Discrete-GD9Bpjm31co.zh-CN.vtt
510 Bytes
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.ar.vtt
510 Bytes
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.en.vtt
510 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ar.vtt
509 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.en.vtt
508 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/25. Congratulations and Next Steps-ph4p8n-I7vw.zh-CN.vtt
508 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.zh-CN.vtt
508 Bytes
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.ar.vtt
508 Bytes
Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.pt-BR.vtt
508 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/15. Transition to Using Naive Bayes-2_dJXh1qqe0.en.vtt
507 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/09. Feature Scaling Formula Quiz 3-iY_sO4d23gY.zh-CN.vtt
507 Bytes
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.pt-BR.vtt
507 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.zh-CN.vtt
505 Bytes
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.ar.vtt
505 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/09. Confusion Matrix False Alarms-611qWzIxGmU.zh-CN.vtt
505 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.it.vtt
504 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.zh-CN.vtt
504 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-OIxLJeZ_jNI.zh-CN.vtt
504 Bytes
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.pt-BR.vtt
503 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.zh-CN.vtt
503 Bytes
Part 09-Module 01-Lesson 01_Introduction to Data Visualization/05. Data Types Review-xzZZZCZk5YM.zh-CN.vtt
503 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/23. Equation for Precision-CStZqZRe6Mk.zh-CN.vtt
503 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.es-ES.vtt
502 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.en.vtt
502 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-Xrl2Hd--NWs.zh-CN.vtt
502 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.pt-BR.vtt
501 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/19. Noisy Scatterplots-k_mm11ePWpg.ja.vtt
501 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.ar.vtt
501 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.en.vtt
501 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.pt-BR.vtt
500 Bytes
Part 04-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.zh-CN.vtt
499 Bytes
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-Kn9v0KGDsvc.zh-CN.vtt
499 Bytes
Part 16-Module 01-Lesson 13_PCA/14. Measurable vs. Latent Features Quiz-20QVVrTcp2A.zh-CN.vtt
499 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.pt-BR.vtt
498 Bytes
Part 16-Module 01-Lesson 13_PCA/17. Composite Features-0ZBp8oWySAc.zh-CN.vtt
498 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.en.vtt
497 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.pt-BR.vtt
497 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ar.vtt
497 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.pt-BR.vtt
497 Bytes
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-cUhgZ2BnWq0.zh-CN.vtt
497 Bytes
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.pt-BR.vtt
497 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.pt-BR.vtt
496 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.en.vtt
496 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.ar.vtt
496 Bytes
Part 04-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.en.vtt
495 Bytes
Part 04-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.zh-CN.vtt
495 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.pt-BR.vtt
495 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.en.vtt
495 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.ja.vtt
494 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.ar.vtt
494 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.pt-BR.vtt
494 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ar.vtt
493 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.es-ES.vtt
493 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.zh-CN.vtt
492 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ja.vtt
492 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.pt-BR.vtt
492 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ar.vtt
491 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ja.vtt
491 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.en.vtt
491 Bytes
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.pt-BR.vtt
491 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.en.vtt
491 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.zh-CN.vtt
490 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt
490 Bytes
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.ar.vtt
490 Bytes
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.en.vtt
490 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-n7gp8USw0Jw.zh-CN.vtt
490 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.pt-BR.vtt
489 Bytes
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.en.vtt
489 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.pt-BR.vtt
488 Bytes
Part 16-Module 01-Lesson 09_Clustering/05. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.zh-CN.vtt
488 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.pt-BR.vtt
488 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.ja.vtt
487 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.pt-BR.vtt
486 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.en.vtt
486 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.en.vtt
486 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/13. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.zh-CN.vtt
485 Bytes
Part 16-Module 01-Lesson 05_Choose Your Own Algorithm/09. L4_Mini Project-CGPO68cOCgc.zh-CN.vtt
485 Bytes
Part 16-Module 01-Lesson 13_PCA/27. PCA on the Enron Finance Data-6ufIq2nrTwg.zh-CN.vtt
485 Bytes
Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.en.vtt
484 Bytes
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.pt-BR.vtt
484 Bytes
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.zh-CN.vtt
484 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ja.vtt
483 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.pt-BR.vtt
483 Bytes
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.pt-BR.vtt
483 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.en.vtt
483 Bytes
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.ar.vtt
483 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en-US.vtt
482 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.pt-BR.vtt
482 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.ar.vtt
482 Bytes
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.en.vtt
482 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.en-US.vtt
482 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.pt-BR.vtt
482 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ar.vtt
481 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.pt-BR.vtt
481 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.es-ES.vtt
480 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.th.vtt
480 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.ar.vtt
480 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.en.vtt
479 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.ar.vtt
479 Bytes
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.ar.vtt
479 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.es-ES.vtt
478 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.pt-BR.vtt
478 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.en.vtt
478 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.ja.vtt
478 Bytes
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.pt-BR.vtt
478 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.pt-BR.vtt
478 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.it.vtt
476 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.ja.vtt
476 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.en.vtt
476 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.pt-BR.vtt
474 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.ar.vtt
474 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.ar.vtt
474 Bytes
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.pt-BR.vtt
474 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.es-ES.vtt
473 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ja.vtt
473 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.pt-BR.vtt
473 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ar.vtt
473 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ar.vtt
473 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.pt-BR.vtt
473 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.zh-CN.vtt
473 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/11. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt
473 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.en.vtt
473 Bytes
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.ar.vtt
473 Bytes
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.en.vtt
473 Bytes
Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.en.vtt
473 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/16. Cleaning Data-AJF5smH1TJU.zh-CN.vtt
472 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ar.vtt
472 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.en-US.vtt
472 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.ja.vtt
472 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.ja.vtt
472 Bytes
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.en.vtt
472 Bytes
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.en.vtt
472 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.en-US.vtt
472 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.es-ES.vtt
471 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.es-ES.vtt
471 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.ar.vtt
471 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.ar.vtt
471 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.en.vtt
470 Bytes
Part 16-Module 01-Lesson 03_SVM/14. Nonlinear Data-PxE2bbG2Hkw.en.vtt
470 Bytes
Part 16-Module 01-Lesson 11_Text Learning/09. Getting Stopwords from NLTK-R0RqC-yerD4.zh-CN.vtt
470 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.hr.vtt
469 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.en.vtt
469 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.ja.vtt
469 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.en.vtt
469 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.en.vtt
468 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en.vtt
468 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.en.vtt
468 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.en.vtt
468 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.zh-CN.vtt
467 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-Jbqf8OBORDg.zh-CN.vtt
467 Bytes
Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.en.vtt
467 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.es-ES.vtt
466 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.ja.vtt
466 Bytes
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.ja.vtt
466 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.ar.vtt
466 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.pt-BR.vtt
465 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.en.vtt
464 Bytes
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.ar.vtt
464 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ar.vtt
463 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.ar.vtt
462 Bytes
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.en.vtt
462 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.ar.vtt
462 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.en.vtt
461 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.ja.vtt
461 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.pt-BR.vtt
461 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.zh-CN.vtt
460 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.zh-CN.vtt
460 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt
460 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.ar.vtt
459 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ar.vtt
459 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.es-ES.vtt
459 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.en.vtt
458 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ja.vtt
458 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.zh-CN.vtt
458 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/01. Welcome!-cCOHhYXU6G0.zh-CN.vtt
458 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.en.vtt
458 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.ar.vtt
458 Bytes
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.en.vtt
458 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt
457 Bytes
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.pt-BR.vtt
457 Bytes
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.en.vtt
457 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.it.vtt
456 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ar.vtt
456 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.zh-CN.vtt
456 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.pt-BR.vtt
456 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.ar.vtt
456 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.zh-CN.vtt
456 Bytes
Part 18-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.zh-CN.vtt
456 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.es-ES.vtt
455 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en.vtt
455 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.ar.vtt
455 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.ar.vtt
455 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.pt-BR.vtt
454 Bytes
Part 16-Module 01-Lesson 07_Regressions/22. Error Quiz-O5B-Z5SUoc8.zh-CN.vtt
454 Bytes
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.pt-BR.vtt
454 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.pt-BR.vtt
454 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.hr.vtt
453 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.en.vtt
453 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.en.vtt
453 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt
453 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.it.vtt
452 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.pt-BR.vtt
452 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.es-ES.vtt
451 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.zh-CN.vtt
451 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.ja.vtt
451 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.pt-BR.vtt
451 Bytes
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.en.vtt
451 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/14. Classifying Chavez Correctly 1-0PFq8zoaNWU.zh-CN.vtt
451 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.ja.vtt
450 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ja.vtt
449 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.en.vtt
449 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.en-US.vtt
449 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.en.vtt
449 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.en.vtt
449 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.pt-BR.vtt
447 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.th.vtt
447 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.pt-BR.vtt
447 Bytes
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.ar.vtt
447 Bytes
Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.ar.vtt
447 Bytes
Part 03-Module 03-Lesson 04_SQL Subqueries & Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.zh-CN.vtt
446 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.ar.vtt
446 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ar.vtt
445 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.en.vtt
445 Bytes
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.pt-BR.vtt
445 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.it.vtt
444 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ja.vtt
444 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.pt-BR.vtt
444 Bytes
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.ar.vtt
444 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.ja.vtt
443 Bytes
Part 04-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.zh-CN.vtt
442 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.pt-BR.vtt
442 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.en.vtt
442 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.th.vtt
441 Bytes
Part 04-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.zh-CN.vtt
441 Bytes
Part 03-Module 03-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.zh-CN.vtt
440 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.pt-BR.vtt
440 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.en.vtt
440 Bytes
Part 16-Module 01-Lesson 13_PCA/09. Second Principal Component Of New System-cTjBlM2ATLQ.zh-CN.vtt
440 Bytes
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.pt-BR.vtt
439 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/12. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt
438 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.ar.vtt
438 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ar.vtt
437 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.en.vtt
437 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ar.vtt
436 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.en.vtt
436 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.pt-BR.vtt
436 Bytes
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.ar.vtt
436 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.it.vtt
435 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.en.vtt
435 Bytes
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.en.vtt
435 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.pt-BR.vtt
435 Bytes
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.zh-CN.vtt
434 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/33. Posterior Probabilities-lJlS-Xdlu5o.ja.vtt
434 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.en.vtt
433 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.it.vtt
433 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.pt-BR.vtt
433 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.ja.vtt
433 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.pt-BR.vtt
433 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.en.vtt
432 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.ja.vtt
432 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.pt-BR.vtt
432 Bytes
Part 09-Module 01-Lesson 04_Making Dashboards & Stories in Tableau/01. Communicating With Your Data-KDnca1zszIo.zh-CN.vtt
432 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.zh-CN.vtt
431 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.ja.vtt
431 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.en.vtt
430 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.pt-BR.vtt
429 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.en.vtt
428 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ja.vtt
428 Bytes
Part 09-Module 01-Lesson 03_Data Visualizations in Tableau/47. What's Next-y46uDftUXHo.en.vtt
428 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.en.vtt
428 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.pt-BR.vtt
427 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.en.vtt
427 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.pt-BR.vtt
427 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.es-ES.vtt
426 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.zh-CN.vtt
426 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/01. Multivariate Data-jsg6lhrJN1g.zh-CN.vtt
426 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price-Ck4i1Yk4pT0.zh-CN.vtt
426 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.pt-BR.vtt
426 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-bxDutNyYKjE.zh-CN.vtt
426 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.hr.vtt
425 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.en.vtt
425 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.es-ES.vtt
425 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.zh-CN.vtt
425 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.ja.vtt
425 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-oWyt6md7P44.zh-CN.vtt
425 Bytes
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.ar.vtt
425 Bytes
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.ar.vtt
425 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-Lb_v4vj3TNs.zh-CN.vtt
425 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.es-ES.vtt
424 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.en.vtt
424 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.ja.vtt
424 Bytes
Part 16-Module 01-Lesson 09_Clustering/09. K-Means Cluster Visualization-ZMfwPUrOFsE.zh-CN.vtt
424 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.th.vtt
423 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.ar.vtt
423 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.ar.vtt
423 Bytes
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.pt-BR.vtt
423 Bytes
Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.en.vtt
423 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.zh-CN.vtt
422 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.it.vtt
422 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.pt-BR.vtt
422 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.ar.vtt
422 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.ar.vtt
422 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.en.vtt
422 Bytes
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-q4c5n5W2aUc.zh-CN.vtt
422 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.ar.vtt
422 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.ar.vtt
421 Bytes
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.en.vtt
421 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.pt-BR.vtt
421 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ar.vtt
420 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ja.vtt
420 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.zh-CN.vtt
420 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.zh-CN.vtt
420 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ja.vtt
419 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.en.vtt
419 Bytes
Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.ar.vtt
419 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.en.vtt
419 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.pt-BR.vtt
418 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.en.vtt
418 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.es-ES.vtt
417 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ja.vtt
417 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.pt-BR.vtt
417 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.pt-BR.vtt
417 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.en.vtt
416 Bytes
Part 07-Module 01-Lesson 07_Explore Many Variables/04. Plotting Conditional Summaries-8SqL0v_FSsc.zh-CN.vtt
416 Bytes
Part 09-Module 01-Lesson 02_Design/22. Onwards!-i-ulsdVHhCc.zh-CN.vtt
416 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/19. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.zh-CN.vtt
416 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.ja.vtt
416 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ja.vtt
415 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.th.vtt
415 Bytes
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.en.vtt
415 Bytes
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.pt-BR.vtt
415 Bytes
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-f_SBhjbfmPw.zh-CN.vtt
415 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.it.vtt
414 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.en.vtt
414 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-e_8DmUBHAao.zh-CN.vtt
414 Bytes
Part 16-Module 01-Lesson 08_Outliers/05. Outlier Detection Using Residual Errors-ZlDdxWYv6jw.zh-CN.vtt
414 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.ar.vtt
413 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.es-ES.vtt
412 Bytes
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.en.vtt
412 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ar.vtt
411 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.zh-CN.vtt
411 Bytes
Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.pt-BR.vtt
411 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.pt-BR.vtt
410 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.pt-BR.vtt
410 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/07. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt
410 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.ja.vtt
410 Bytes
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.pt-BR.vtt
410 Bytes
Part 18-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.zh-CN.vtt
410 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/25. Communicating Results-tmAlVZCbgFA.zh-CN.vtt
409 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.it.vtt
409 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.en.vtt
409 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.zh-CN.vtt
409 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.zh-CN.vtt
409 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.zh-CN.vtt
408 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.zh-CN.vtt
408 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.ar.vtt
408 Bytes
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-WDADret_QqE.zh-CN.vtt
408 Bytes
Part 16-Module 01-Lesson 13_PCA/13. When Does an Axis Dominate-4hJlaYRHdpA.zh-CN.vtt
408 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.ar.vtt
408 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-b7oUjvNJWCc.zh-CN.vtt
407 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.en.vtt
407 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.es-ES.vtt
406 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.pt-BR.vtt
406 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.ar.vtt
406 Bytes
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.en.vtt
406 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.pt-BR.vtt
406 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ar.vtt
405 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.pt-BR.vtt
405 Bytes
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.pt-BR.vtt
405 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.en.vtt
405 Bytes
Part 16-Module 01-Lesson 12_Feature Selection/18. Lasso Prediction with sklearn Quiz-v2_aFAmQxfw.zh-CN.vtt
405 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.pt-BR.vtt
405 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ar.vtt
404 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/09. [object Object]-i7pRvuVoWg0.en.vtt
404 Bytes
Part 16-Module 01-Lesson 14_Validation/05. Where to use training vs. testing data 2-5v1jxDIwGqk.zh-CN.vtt
404 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ja.vtt
403 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.zh-CN.vtt
403 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.zh-CN.vtt
403 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.ar.vtt
402 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.ar.vtt
402 Bytes
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.pt-BR.vtt
402 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.ar.vtt
402 Bytes
Part 03-Module 02-Lesson 01_The Data Analysis Process/22. Drawing Conclusions-Glctk6ahdFU.zh-CN.vtt
401 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.pt-BR.vtt
401 Bytes
Part 16-Module 01-Lesson 03_SVM/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.zh-CN.vtt
401 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.zh-CN.vtt
400 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ar.vtt
399 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.en.vtt
399 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ar.vtt
399 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.zh-CN.vtt
399 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.en.vtt
399 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-hqO8kxRJdd4.zh-CN.vtt
399 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.th.vtt
398 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.ja.vtt
398 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.ja.vtt
398 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ja.vtt
397 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.pt-BR.vtt
397 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.en.vtt
397 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-J0Ls7F-lN4o.en.vtt
397 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ar.vtt
396 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.pt-BR.vtt
396 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.pt-BR.vtt
396 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/10. MinMax Rescaler Coding Quiz-xTEkF0voyoM.zh-CN.vtt
396 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ar.vtt
395 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ja.vtt
395 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.ja.vtt
395 Bytes
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.en.vtt
395 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.en.vtt
394 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.en.vtt
394 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.es-ES.vtt
393 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.pt-BR.vtt
393 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.th.vtt
393 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.pt-BR.vtt
393 Bytes
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.en-US.vtt
393 Bytes
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.ar.vtt
393 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.pt-BR.vtt
392 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.ja.vtt
392 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/15. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt
392 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.pt-BR.vtt
391 Bytes
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.ar.vtt
391 Bytes
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.en.vtt
391 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ja.vtt
390 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.es-ES.vtt
390 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ja.vtt
389 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ja.vtt
389 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.zh-CN.vtt
389 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.es-ES.vtt
389 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-GR1ZsrwhZUs.zh-CN.vtt
389 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.ja.vtt
389 Bytes
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.pt-BR.vtt
389 Bytes
Part 18-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.zh-CN.vtt
389 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.es-ES.vtt
388 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.ar.vtt
388 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.en.vtt
387 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.ar.vtt
387 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.ar.vtt
387 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.en.vtt
386 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.pt-BR.vtt
386 Bytes
Part 16-Module 01-Lesson 09_Clustering/03. How Many Clusters-8Ygq5dRV0Kk.zh-CN.vtt
385 Bytes
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.ar.vtt
385 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.hr.vtt
384 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.hr.vtt
383 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.pt-BR.vtt
383 Bytes
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.pt-BR.vtt
383 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.it.vtt
382 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.en.vtt
382 Bytes
Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.pt-BR.vtt
382 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.en.vtt
382 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.pt-BR.vtt
381 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.zh-CN.vtt
380 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.zh-CN.vtt
380 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.zh-CN.vtt
379 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.pt-BR.vtt
379 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.zh-CN.vtt
378 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/08. Filling in a Confusion Matrix-FwaYsmnlLM4.zh-CN.vtt
378 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.pt-BR.vtt
377 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.pt-BR.vtt
377 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.pt-BR.vtt
377 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.en.vtt
377 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.zh-CN.vtt
376 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.pt-BR.vtt
376 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.pt-BR.vtt
376 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.it.vtt
375 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.pt-BR.vtt
375 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ja.vtt
374 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.pt-BR.vtt
374 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.en.vtt
373 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ja.vtt
373 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.pt-BR.vtt
373 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/29. Analyzing One Variable-yqwCYeaQAl0.zh-CN.vtt
373 Bytes
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.ar.vtt
373 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.it.vtt
372 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.ja.vtt
372 Bytes
Part 16-Module 01-Lesson 07_Regressions/10. Equation of the Regression Line-O4jFvJWal6s.zh-CN.vtt
372 Bytes
Part 16-Module 01-Lesson 07_Regressions/29. Problem with SSE-VD14oP-Ue6M.zh-CN.vtt
372 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ja.vtt
371 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt
371 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.en.vtt
371 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.zh-CN.vtt
371 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ja.vtt
370 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.en.vtt
370 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.pt-BR.vtt
370 Bytes
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.pt-BR.vtt
370 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.zh-CN.vtt
369 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.zh-CN.vtt
369 Bytes
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.pt-BR.vtt
369 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/05. Chris's Shirt Size by Our Metric-e83ZS4VqGZ0.zh-CN.vtt
369 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.en.vtt
368 Bytes
Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.en.vtt
368 Bytes
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.en.vtt
368 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.es-ES.vtt
367 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.zh-CN.vtt
367 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.ar.vtt
367 Bytes
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.pt-BR.vtt
367 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.es-ES.vtt
366 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.zh-CN.vtt
366 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.pt-BR.vtt
366 Bytes
Part 16-Module 01-Lesson 07_Regressions/13. Intercept Quiz-cuBxHYSPrkA.zh-CN.vtt
366 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-HAQ0-Skvzmc.zh-CN.vtt
366 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ar.vtt
364 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.en.vtt
364 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/08. The Demand of Diamonds-y8g6YeD7Gyk.zh-CN.vtt
364 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.en.vtt
364 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/25. Prior and Posterior-45_uUhPcz38.zh-CN.vtt
364 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.pt-BR.vtt
363 Bytes
Part 03-Module 02-Lesson 02_Data Analysis Process - Case Study 1/08. Troubleshooting With Appending-KwtjTmDMZGE.zh-CN.vtt
362 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.pt-BR.vtt
362 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.zh-CN.vtt
362 Bytes
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.ar.vtt
362 Bytes
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.en.vtt
362 Bytes
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.pt-BR.vtt
362 Bytes
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-FY0DXe0lfrI.zh-CN.vtt
361 Bytes
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality-s24-ikl3ZAs.zh-CN.vtt
361 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.pt-BR.vtt
360 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.es-ES.vtt
360 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.en.vtt
360 Bytes
Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.ja.vtt
360 Bytes
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.ar.vtt
360 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.th.vtt
359 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.it.vtt
359 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.ar.vtt
359 Bytes
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.ar.vtt
359 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.es-ES.vtt
358 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.en.vtt
358 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ja.vtt
357 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.es-ES.vtt
357 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.en.vtt
357 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.es-ES.vtt
357 Bytes
Part 12-Module 01-Lesson 01_GitHub Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt
357 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.ar.vtt
357 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.ja.vtt
357 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.ja.vtt
357 Bytes
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.ar.vtt
357 Bytes
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.ar.vtt
357 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.es-ES.vtt
356 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.pt-BR.vtt
356 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.ar.vtt
356 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.ar.vtt
356 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.zh-CN.vtt
356 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.zh-CN.vtt
355 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.es-ES.vtt
355 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.zh-CN.vtt
355 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.ar.vtt
355 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.pt-BR.vtt
355 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-T7rdBFQQ0Fw.zh-CN.vtt
355 Bytes
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.en.vtt
355 Bytes
Part 16-Module 01-Lesson 09_Clustering/07. Match Points (again)-9J3IwQFXveI.zh-CN.vtt
355 Bytes
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.pt-BR.vtt
355 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.th.vtt
354 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.pt-BR.vtt
354 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.en.vtt
354 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.pt-BR.vtt
354 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.ar.vtt
354 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.pt-BR.vtt
354 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ja.vtt
353 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.en.vtt
353 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.ar.vtt
352 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.zh-CN.vtt
352 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.zh-CN.vtt
352 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.ar.vtt
352 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/15. Classifying Chavez Correctly 2-HWW9BNHnPo0.zh-CN.vtt
352 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.zh-CN.vtt
351 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.en.vtt
351 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.ja.vtt
351 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.ja.vtt
351 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.es-ES.vtt
350 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ja.vtt
350 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.en.vtt
350 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.ja.vtt
350 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.en.vtt
350 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.pt-BR.vtt
349 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.en.vtt
349 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.en.vtt
349 Bytes
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.pt-BR.vtt
349 Bytes
Part 04-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.zh-CN.vtt
348 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.es-ES.vtt
348 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.es-ES.vtt
348 Bytes
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.en.vtt
348 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.en.vtt
347 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.en.vtt
346 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.zh-CN.vtt
346 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.en.vtt
346 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ja.vtt
345 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/19. Linear Models in R-aUc0FKD4834.zh-CN.vtt
345 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.ja.vtt
345 Bytes
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.ar.vtt
345 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.pt-BR.vtt
344 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.zh-CN.vtt
344 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.pt-BR.vtt
344 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.en.vtt
343 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.th.vtt
342 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.en.vtt
342 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ar.vtt
342 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.en.vtt
342 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.pt-BR.vtt
342 Bytes
Part 16-Module 01-Lesson 13_PCA/20. Maximal Variance and Information Loss-DX_f02bUHT0.zh-CN.vtt
342 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.en.vtt
341 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.zh-CN.vtt
341 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.it.vtt
341 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ar.vtt
341 Bytes
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.pt-BR.vtt
341 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.en.vtt
340 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.ar.vtt
340 Bytes
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.pt-BR.vtt
340 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.en.vtt
339 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ar.vtt
339 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.pt-BR.vtt
339 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.th.vtt
339 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.ja.vtt
339 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/05. Frances Gerety-n9heeZ1Dw8A.en.vtt
339 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/26. Normalizing 1-aALYYSwS7MM.zh-CN.vtt
339 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.it.vtt
338 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.es-ES.vtt
337 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.en.vtt
337 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.pt-BR.vtt
337 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.en.vtt
337 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.ar.vtt
337 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.en.vtt
337 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.pt-BR.vtt
337 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ar.vtt
336 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.en.vtt
336 Bytes
Part 07-Module 01-Lesson 03_Explore One Variable/20. The Spread of Memes-B-khnSU3DfM.zh-CN.vtt
336 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.ja.vtt
336 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.pt-BR.vtt
335 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.zh-CN.vtt
335 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.pt-BR.vtt
335 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/01. Chris's T-Shirt Size (Intuition)-l6YXxmCNtHk.zh-CN.vtt
335 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.zh-CN.vtt
335 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ar.vtt
334 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.ja.vtt
334 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.es-ES.vtt
333 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.zh-CN.vtt
333 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/17. Powell Precision and Recall-QWWq77k-K_0.zh-CN.vtt
333 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.es-ES.vtt
332 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ja.vtt
332 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.pt-BR.vtt
332 Bytes
Part 07-Module 01-Lesson 05_Explore Two Variables/21. A New Perspective-bUvlDsmmpIo.zh-CN.vtt
332 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price--P5lMGuVA6U.en.vtt
332 Bytes
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.en.vtt
332 Bytes
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.zh-CN.vtt
332 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ja.vtt
331 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.zh-CN.vtt
331 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/11. Overplotting Revisited-AvokBc1DoEU.zh-CN.vtt
331 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.en.vtt
331 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.en.vtt
331 Bytes
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.pt-BR.vtt
331 Bytes
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.pt-BR.vtt
331 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.es-ES.vtt
329 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.pt-BR.vtt
329 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.ja.vtt
329 Bytes
Part 16-Module 01-Lesson 07_Regressions/16. Handoff to Katie-M3Nwl_B_bZ8.zh-CN.vtt
328 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.es-ES.vtt
327 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ja.vtt
327 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-vhDpWgdpSHg.zh-CN.vtt
327 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.ar.vtt
327 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ja.vtt
326 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ja.vtt
326 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.ar.vtt
326 Bytes
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.pt-BR.vtt
326 Bytes
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.pt-BR.vtt
326 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.ar.vtt
326 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.en.vtt
325 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ar.vtt
325 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.zh-CN.vtt
325 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.ja.vtt
325 Bytes
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.en.vtt
325 Bytes
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.en.vtt
325 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.it.vtt
324 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.pt-BR.vtt
324 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.zh-CN.vtt
323 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ja.vtt
323 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.ar.vtt
323 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.en.vtt
322 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.en.vtt
321 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.en-US.vtt
321 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.zh-CN.vtt
320 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.en.vtt
320 Bytes
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.en.vtt
320 Bytes
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.en.vtt
320 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.hr.vtt
319 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ar.vtt
319 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.en.vtt
319 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.ar.vtt
319 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/09. Connecting Demand and Price Distribution-Rj6g9jpX9MQ.zh-CN.vtt
319 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.zh-CN.vtt
319 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/07. Confusion Matrix Practice 2-XN1eS7boCNg.en.vtt
319 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.ar.vtt
319 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.es-ES.vtt
318 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.pt-BR.vtt
318 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.en.vtt
318 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.en.vtt
317 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.pt-BR.vtt
317 Bytes
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.ar.vtt
317 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.zh-CN.vtt
316 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.ja.vtt
316 Bytes
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.en.vtt
316 Bytes
Part 16-Module 01-Lesson 13_PCA/04. Slightly Less Perfect Data-g5yfjKWIKN4.zh-CN.vtt
316 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.it.vtt
315 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ja.vtt
315 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ar.vtt
315 Bytes
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.en.vtt
315 Bytes
Part 16-Module 01-Lesson 08_Outliers/06. Effect of Outlier Removal on Regression-iEvYp4hL6OY.zh-CN.vtt
315 Bytes
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.en.vtt
315 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.it.vtt
314 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.zh-CN.vtt
314 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.ja.vtt
314 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.ja.vtt
314 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.en.vtt
313 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ar.vtt
312 Bytes
Part 04-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.hr.vtt
312 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.zh-CN.vtt
312 Bytes
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-Bp6oBbLw8qE.zh-CN.vtt
312 Bytes
Part 16-Module 01-Lesson 09_Clustering/06. Moving Centers 2-uC1Xwc7warg.en.vtt
312 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.it.vtt
311 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/14. A Good Linear Decision Surface-sudTOiG-NJo.zh-CN.vtt
311 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.pt-BR.vtt
311 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.en.vtt
310 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ja.vtt
310 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.en.vtt
310 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.zh-CN.vtt
309 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.pt-BR.vtt
309 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.ar.vtt
309 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.pt-BR.vtt
309 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.it.vtt
308 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.ar.vtt
308 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.zh-CN.vtt
308 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.it.vtt
307 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.en.vtt
307 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.zh-CN.vtt
307 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.pt-BR.vtt
307 Bytes
Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.pt-BR.vtt
307 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.pt-BR.vtt
307 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.en.vtt
306 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/13. Price vs. Carat and Clarity-g88Q5qyiZxE.zh-CN.vtt
306 Bytes
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.pt-BR.vtt
306 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.ar.vtt
306 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.en.vtt
306 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ja.vtt
305 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.hr.vtt
305 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ja.vtt
305 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.th.vtt
305 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.zh-CN.vtt
305 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.pt-BR.vtt
305 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-AjI84ujXBHk.pt-BR.vtt
305 Bytes
Part 16-Module 01-Lesson 13_PCA/05. Trickiest Data Dimensionality-vIxDt0bNV9g.zh-CN.vtt
305 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.pt-BR.vtt
305 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ja.vtt
304 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.zh-CN.vtt
304 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ja.vtt
304 Bytes
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.ar.vtt
304 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ar.vtt
303 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ar.vtt
303 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.zh-CN.vtt
303 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.zh-CN.vtt
303 Bytes
Part 16-Module 01-Lesson 11_Text Learning/08. Stopwords-2FQu07aKLwg.zh-CN.vtt
303 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ar.vtt
302 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.zh-CN.vtt
302 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ar.vtt
302 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ja.vtt
302 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.en.vtt
302 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.ar.vtt
302 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.ar.vtt
302 Bytes
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.pt-BR.vtt
302 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.en.vtt
302 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ja.vtt
301 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ja.vtt
301 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.es-ES.vtt
301 Bytes
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.ar.vtt
301 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ja.vtt
300 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ja.vtt
300 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.th.vtt
299 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.ar.vtt
299 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.pt-BR.vtt
299 Bytes
Part 16-Module 01-Lesson 13_PCA/18. Maximal Variance-FpQm_dYA9LM.zh-CN.vtt
299 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ja.vtt
298 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.zh-CN.vtt
298 Bytes
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.ar.vtt
298 Bytes
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.en.vtt
298 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.zh-CN.vtt
297 Bytes
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.ja.vtt
297 Bytes
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.pt-BR.vtt
297 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.ja.vtt
297 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.ja.vtt
297 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.zh-CN.vtt
296 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ja.vtt
296 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.en.vtt
296 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.ja.vtt
296 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/05. Features Visualization Quiz-aMOZWZO5hZ8.zh-CN.vtt
295 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.zh-CN.vtt
294 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-CMIM_Ocu8vg.zh-CN.vtt
294 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ja.vtt
293 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.zh-CN.vtt
293 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.pt-BR.vtt
293 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.pt-BR.vtt
293 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.en.vtt
292 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-vG3ahYyLHlQ.zh-CN.vtt
292 Bytes
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.en.vtt
292 Bytes
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.pt-BR.vtt
292 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.en.vtt
292 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.hr.vtt
291 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.it.vtt
291 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.pt-BR.vtt
291 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.zh-CN.vtt
291 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.ja.vtt
291 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.pt-BR.vtt
291 Bytes
Part 16-Module 01-Lesson 07_Regressions/12. Slope Quiz-wnIQ6fCVD40.zh-CN.vtt
291 Bytes
Part 16-Module 01-Lesson 07_Regressions/15. Adding An Intercept-xPDk70gKkjk.zh-CN.vtt
291 Bytes
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.ar.vtt
291 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.zh-CN.vtt
291 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.en.vtt
290 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.en.vtt
290 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.hr.vtt
289 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.it.vtt
289 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.pt-BR.vtt
289 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.en.vtt
289 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.zh-CN.vtt
288 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/24. Equation for Recall-2cUiqlbt-hc.zh-CN.vtt
288 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.en.vtt
287 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.zh-CN.vtt
287 Bytes
Part 16-Module 01-Lesson 14_Validation/07. Where to use training vs. testing data 4-3RuKO3PQWg0.zh-CN.vtt
287 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ar.vtt
286 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.en.vtt
286 Bytes
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.zh-CN.vtt
286 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.pt-BR.vtt
285 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.ja.vtt
285 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.zh-CN.vtt
285 Bytes
Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.en.vtt
285 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.en.vtt
285 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.ar.vtt
285 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.pt-BR.vtt
284 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.ar.vtt
284 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ar.vtt
283 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.zh-CN.vtt
283 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.ja.vtt
283 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.ar.vtt
283 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/05. Confusion Matrices-bEAaNv-CBQ4.zh-CN.vtt
283 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.zh-CN.vtt
282 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.en.vtt
282 Bytes
Part 16-Module 01-Lesson 03_SVM/09. Handoff to Katie-GkqOdgZnkig.zh-CN.vtt
282 Bytes
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.ar.vtt
282 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.ar.vtt
282 Bytes
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.en.vtt
282 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.en.vtt
281 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.es-ES.vtt
281 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.pt-BR.vtt
281 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.ar.vtt
281 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.ar.vtt
281 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.ja.vtt
281 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.pt-BR.vtt
281 Bytes
Part 04-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.zh-CN.vtt
280 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ar.vtt
279 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.en.vtt
279 Bytes
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.ja.vtt
279 Bytes
Part 16-Module 01-Lesson 11_Text Learning/04. Mr. Day Loves a Nice Day-uETh8McUAfY.pt-BR.vtt
279 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ar.vtt
278 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.ar.vtt
278 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.zh-CN.vtt
277 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.en.vtt
277 Bytes
Part 08-Module 03-Lesson 01_Assessing Data/11. Quality Visual Assessment 2 -dRbjnKOnd0Y.zh-CN.vtt
277 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.ja.vtt
277 Bytes
Part 16-Module 01-Lesson 09_Clustering/14. Limitations of K-Means-nvLhUSSUhiY.zh-CN.vtt
277 Bytes
Part 16-Module 01-Lesson 13_PCA/03. One-Dimensional, or Two-QsncWsyboFk.zh-CN.vtt
277 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.en.vtt
277 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.pt-BR.vtt
276 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.pt-BR.vtt
276 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.zh-CN.vtt
275 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.pt-BR.vtt
274 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.ar.vtt
274 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.ar.vtt
273 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.pt-BR.vtt
273 Bytes
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.en.vtt
273 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.pt-BR.vtt
273 Bytes
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.en.vtt
273 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.es-ES.vtt
272 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.pt-BR.vtt
272 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.pt-BR.vtt
272 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.ar.vtt
271 Bytes
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.zh-CN.vtt
271 Bytes
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.pt-BR.vtt
271 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.pt-BR.vtt
270 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.pt-BR.vtt
269 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.zh-CN.vtt
268 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.en.vtt
268 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.th.vtt
267 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.ar.vtt
266 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.zh-CN.vtt
266 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.pt-BR.vtt
266 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ar.vtt
265 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.pt-BR.vtt
265 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ar.vtt
265 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.ar.vtt
265 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/12. From Scatterplots to Predictions 2-tkllhaHoko8.en.vtt
265 Bytes
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.ar.vtt
265 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.ar.vtt
265 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.ar.vtt
265 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ja.vtt
264 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.pt-BR.vtt
264 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.zh-CN.vtt
264 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.zh-CN.vtt
264 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.pt-BR.vtt
264 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.ja.vtt
263 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.ar.vtt
263 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.zh-CN.vtt
263 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.en.vtt
263 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.en.vtt
263 Bytes
Part 16-Module 01-Lesson 11_Text Learning/13. Weighting by Term Frequency-pt_S3HwE5GY.zh-CN.vtt
263 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ja.vtt
262 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.pt-BR.vtt
262 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.ar.vtt
262 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.en.vtt
262 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ja.vtt
261 Bytes
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.pt-BR.vtt
261 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.ja.vtt
261 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.pt-BR.vtt
261 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.en.vtt
260 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.pt-BR.vtt
260 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ja.vtt
260 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.es-ES.vtt
260 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.zh-CN.vtt
260 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.en.vtt
260 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.zh-CN.vtt
259 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.es-ES.vtt
258 Bytes
Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.ar.vtt
258 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.zh-CN.vtt
257 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.es-ES.vtt
257 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.en.vtt
256 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.en.vtt
256 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.zh-CN.vtt
256 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.ja.vtt
256 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.ar.vtt
256 Bytes
Part 16-Module 01-Lesson 03_SVM/05. Practice with Margins-l3zXhTxQiTs.zh-CN.vtt
256 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.ja.vtt
256 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.pt-BR.vtt
256 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.en.vtt
256 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-obhHCeHpysw.zh-CN.vtt
256 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.ja.vtt
255 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.pt-BR.vtt
255 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.zh-CN.vtt
255 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-DzyOcsBIncA.zh-CN.vtt
255 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ar.vtt
254 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ja.vtt
254 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.pt-BR.vtt
254 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.ja.vtt
254 Bytes
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.en.vtt
254 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.pt-BR.vtt
253 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.zh-CN.vtt
253 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.hr.vtt
252 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.th.vtt
252 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.es-ES.vtt
252 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ar.vtt
252 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.en.vtt
252 Bytes
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.en.vtt
252 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.en.vtt
252 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.es-ES.vtt
251 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.zh-CN.vtt
251 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.ja.vtt
251 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.ja.vtt
251 Bytes
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.ar.vtt
251 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/13. How Many Schroeder Predictions-r8stm2et_hI.zh-CN.vtt
251 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ar.vtt
250 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.zh-CN.vtt
250 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.pt-BR.vtt
250 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.en.vtt
250 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.ar.vtt
250 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.pt-BR.vtt
249 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.pt-BR.vtt
249 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.pt-BR.vtt
249 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.pt-BR.vtt
249 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.pt-BR.vtt
249 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/34. Bayesian Probabilities On Your Own-2StCBxTOoK0.zh-CN.vtt
249 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.zh-CN.vtt
248 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.it.vtt
248 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ja.vtt
248 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.en.vtt
248 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.ar.vtt
248 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/04. Price and Carat Relationship-gG4xwgj1yVA.zh-CN.vtt
248 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.pt-BR.vtt
248 Bytes
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.pt-BR.vtt
248 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.ar.vtt
248 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ja.vtt
247 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.en.vtt
247 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ja.vtt
247 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.en.vtt
247 Bytes
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.pt-BR.vtt
247 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.en.vtt
246 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.pt-BR.vtt
246 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.ja.vtt
246 Bytes
Part 16-Module 01-Lesson 11_Text Learning/03. A Very Nice Day-yB866_TLZB8.en.vtt
246 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.en.vtt
245 Bytes
Part 16-Module 01-Lesson 13_PCA/07. Center of a New Coordinate System-1ask5zHGQKM.zh-CN.vtt
245 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.en.vtt
244 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.zh-CN.vtt
244 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.th.vtt
244 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.ar.vtt
244 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.zh-CN.vtt
244 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ja.vtt
243 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.es-ES.vtt
243 Bytes
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.ja.vtt
243 Bytes
Part 16-Module 01-Lesson 13_PCA/24. Maximum Number of PCs Quiz-oOUx6NHppdQ.zh-CN.vtt
243 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.es-ES.vtt
242 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.zh-CN.vtt
241 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.en.vtt
241 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ja.vtt
241 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.zh-CN.vtt
241 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.ar.vtt
241 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/19. True Positives in Eigenfaces-TWGqylKdGWs.zh-CN.vtt
241 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.en.vtt
240 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.it.vtt
240 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.th.vtt
240 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.th.vtt
240 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.pt-BR.vtt
240 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/06. Types of Data Quiz 2-k63Why0c1KU.pt-BR.vtt
240 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.it.vtt
239 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.es-ES.vtt
239 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.pt-BR.vtt
239 Bytes
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.en.vtt
239 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.hr.vtt
238 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.en.vtt
238 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.es-ES.vtt
238 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ar.vtt
238 Bytes
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.ar.vtt
238 Bytes
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.en.vtt
238 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ja.vtt
237 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.pt-BR.vtt
237 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ja.vtt
236 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.es-ES.vtt
236 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.zh-CN.vtt
236 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.es-ES.vtt
234 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.it.vtt
234 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.es-ES.vtt
234 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.ar.vtt
234 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.ar.vtt
234 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.es-ES.vtt
233 Bytes
Part 16-Module 01-Lesson 03_SVM/17. Separating with the New Feature-9KAHkienFWk.zh-CN.vtt
233 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.pt-BR.vtt
233 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.zh-CN.vtt
232 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.ja.vtt
232 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.en.vtt
232 Bytes
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.pt-BR.vtt
232 Bytes
Part 16-Module 01-Lesson 13_PCA/01. Data Dimensionality-bAZJT4xHiXM.zh-CN.vtt
232 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.en.vtt
231 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.it.vtt
231 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.es-ES.vtt
231 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.ar.vtt
231 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.pt-BR.vtt
230 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.pt-BR.vtt
230 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.en.vtt
229 Bytes
Part 04-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.zh-CN.vtt
228 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.zh-CN.vtt
228 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.th.vtt
228 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/31. Bayes Rule for Classification-oNTklG8dh-0.pt-BR.vtt
228 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.es-ES.vtt
227 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.zh-CN.vtt
226 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.pt-BR.vtt
226 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.ja.vtt
226 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-Thj7e55iSlA.ar.vtt
226 Bytes
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.zh-CN.vtt
226 Bytes
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.pt-BR.vtt
226 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.zh-CN.vtt
225 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.ar.vtt
225 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.pt-BR.vtt
225 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.ja.vtt
225 Bytes
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.pt-BR.vtt
224 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.en.vtt
224 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-BR.vtt
223 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.pt-BR.vtt
223 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ar.vtt
222 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ar.vtt
222 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.en.vtt
222 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ar.vtt
222 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.en.vtt
222 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.zh-CN.vtt
222 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.zh-CN.vtt
222 Bytes
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.pt-BR.vtt
222 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.es-ES.vtt
221 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.en.vtt
221 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.pt-BR.vtt
221 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/32. Chris or Sara-nNna_SLlIT8.en.vtt
221 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.en.vtt
220 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.en.vtt
220 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.ja.vtt
220 Bytes
Part 16-Module 01-Lesson 07_Regressions/14. Predictions Using Regression-T-dTpFd7EO0.zh-CN.vtt
220 Bytes
Part 16-Module 01-Lesson 11_Text Learning/02. Bag Of Words-QfIgUDXPhi8.en.vtt
220 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ja.vtt
219 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.pt-BR.vtt
219 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.en.vtt
219 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.es-ES.vtt
219 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.en.vtt
219 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.pt-BR.vtt
219 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.en.vtt
219 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-ijy0n1EjY0M.zh-CN.vtt
219 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.pt-BR.vtt
219 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.en.vtt
219 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.pt-BR.vtt
218 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.zh-CN.vtt
218 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.ar.vtt
218 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.ar.vtt
218 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.ar.vtt
218 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.ar.vtt
218 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.en.vtt
217 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ja.vtt
217 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.es-ES.vtt
217 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.pt-BR.vtt
217 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.hr.vtt
216 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ja.vtt
216 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.zh-CN.vtt
216 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.pt-BR.vtt
216 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.en.vtt
216 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.en.vtt
216 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-PT.vtt
215 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.zh-CN.vtt
215 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.pt-BR.vtt
215 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.en.vtt
214 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.en.vtt
214 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.zh-CN.vtt
214 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.en.vtt
214 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.en.vtt
214 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron-MetxO9LDp-I.en.vtt
214 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.hr.vtt
213 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.it.vtt
213 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.en.vtt
213 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/17. Price vs Carat and Color-ow70HVqX4OY.zh-CN.vtt
213 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.en.vtt
213 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.it.vtt
212 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ja.vtt
212 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.zh-CN.vtt
212 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.zh-CN.vtt
212 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.pt-BR.vtt
212 Bytes
Part 07-Module 01-Lesson 02_R Basics/08. Demystifying R-Or9KvEd1flY.zh-CN.vtt
212 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/18. Color and Price--9CHGW25yMg.zh-CN.vtt
212 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.en.vtt
212 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ar.vtt
211 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.ja.vtt
211 Bytes
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.zh-CN.vtt
211 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.es-ES.vtt
210 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.en.vtt
210 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.it.vtt
210 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.zh-CN.vtt
210 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.ar.vtt
210 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.en.vtt
210 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.hr.vtt
209 Bytes
Part 04-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.pt-BR.vtt
209 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.zh-CN.vtt
209 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ar.vtt
208 Bytes
Part 16-Module 01-Lesson 07_Regressions/02. Continuous Quiz-IC-fo_A0PxQ.zh-CN.vtt
208 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.en.vtt
208 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ar.vtt
207 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.zh-CN.vtt
207 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.en.vtt
207 Bytes
Part 08-Module 01-Lesson 01_Introduction to Data Wrangling/17. Assess Tidiness-LSdhieL7nXU.en.vtt
207 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/11. From Scatterplots to Predictions-SuGzxfoye9s.zh-CN.vtt
207 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.zh-CN.vtt
207 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.pt-BR.vtt
207 Bytes
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.en.vtt
207 Bytes
Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.en.vtt
207 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/03. Scatterplot Review-W96zaGEma7o.zh-CN.vtt
206 Bytes
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.pt-BR.vtt
206 Bytes
Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.zh-CN.vtt
206 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.it.vtt
205 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.th.vtt
205 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.ja.vtt
205 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.ja.vtt
205 Bytes
Part 16-Module 01-Lesson 07_Regressions/07. Income Continuous or Discrete-4yapJV56YoM.pt-BR.vtt
205 Bytes
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.en.vtt
205 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ar.vtt
204 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.hr.vtt
204 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.th.vtt
204 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.zh-CN.vtt
204 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.zh-CN.vtt
204 Bytes
Part 16-Module 01-Lesson 09_Clustering/08. Handoff to Katie-knrPsGtpyQY.pt-BR.vtt
204 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.ar.vtt
204 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.zh-CN.vtt
204 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.pt-BR.vtt
203 Bytes
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.en.vtt
203 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.en.vtt
203 Bytes
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-th34aboBOO0.ar.vtt
203 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/18. Bush Precision and Recall-8fM13xqU2a8.pt-BR.vtt
203 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ar.vtt
202 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.pt-BR.vtt
202 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ja.vtt
202 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ja.vtt
201 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.pt-BR.vtt
201 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/16. Cut and Price-MZyle39D5Ks.zh-CN.vtt
201 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.pt-BR.vtt
201 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.en.vtt
201 Bytes
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.en.vtt
201 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ja.vtt
200 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.zh-CN.vtt
200 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ja.vtt
199 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.pt-BR.vtt
199 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.ja.vtt
199 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.en.vtt
199 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.en.vtt
198 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.zh-CN.vtt
198 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ja.vtt
198 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.zh-CN.vtt
197 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.hr.vtt
197 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ja.vtt
197 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.en.vtt
196 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.zh-CN.vtt
196 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.ar.vtt
196 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.ja.vtt
196 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.pt-BR.vtt
196 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.ar.vtt
196 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ja.vtt
194 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ja.vtt
194 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.en.vtt
194 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/05. Types of Data Quiz 1-j1vFBL3khh0.zh-CN.vtt
194 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.en.vtt
193 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.ja.vtt
193 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.es-ES.vtt
192 Bytes
Part 04-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.zh-CN.vtt
192 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ar.vtt
191 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/10. Speed Scatterplot 3-PaE5caOJ5kg.zh-CN.vtt
191 Bytes
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.zh-CN.vtt
191 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.en.vtt
190 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ja.vtt
190 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ar.vtt
190 Bytes
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.ja.vtt
190 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.zh-CN.vtt
190 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-Hans.vtt
189 Bytes
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.zh-CN.vtt
189 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.pt-BR.vtt
189 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.pt-BR.vtt
188 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/14. Clarity and Price-UnkrtPPx9-c.zh-CN.vtt
188 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.pt-BR.vtt
188 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.ar.vtt
188 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.pt-BR.vtt
188 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.it.vtt
187 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ja.vtt
187 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.zh-CN.vtt
187 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.ar.vtt
187 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.ar.vtt
187 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.ja.vtt
187 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.zh-CN.vtt
187 Bytes
Part 04-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.pt-BR.vtt
186 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.zh-CN.vtt
186 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.en.vtt
186 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.pt-BR.vtt
186 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.en.vtt
186 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.es-ES.vtt
185 Bytes
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.pt-BR.vtt
185 Bytes
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.en.vtt
185 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.zh-CN.vtt
185 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ar.vtt
184 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.pt-BR.vtt
184 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ja.vtt
184 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.ar.vtt
184 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.en.vtt
184 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.pt-BR.vtt
183 Bytes
Part 07-Module 01-Lesson 09_Diamonds & Price Predictions/15. Price vs Carat and Cut-RF9V7l00a28.zh-CN.vtt
183 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.zh-CN.vtt
182 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.en.vtt
182 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-FBRK-XwPC54.zh-CN.vtt
182 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.en.vtt
182 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.ja.vtt
181 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.pt-BR.vtt
181 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.en.vtt
181 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-CN.vtt
180 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.en.vtt
180 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ja.vtt
180 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.zh-CN.vtt
180 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.pt-BR.vtt
180 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/22. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.zh-CN.vtt
180 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.it.vtt
178 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.th.vtt
178 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.en.vtt
178 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.en.vtt
178 Bytes
Part 04-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.zh-CN.vtt
177 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.th.vtt
177 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.pt-BR.vtt
177 Bytes
Part 16-Module 01-Lesson 03_SVM/15. A New Feature-8TqVHRan4Fo.pt-BR.vtt
177 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.pt-BR.vtt
177 Bytes
Part 16-Module 01-Lesson 07_Regressions/04. Weather Continuous or Discrete-jTKkq6DdJMw.zh-CN.vtt
177 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.pt-BR.vtt
177 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ar.vtt
176 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ja.vtt
176 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/09. Speed Scatterplot 2-T4GbEVybNlY.zh-CN.vtt
176 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-dk3FxGVdP7Q.ar.vtt
176 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ar.vtt
175 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ja.vtt
175 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.es-ES.vtt
174 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.it.vtt
174 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.es-ES.vtt
174 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.en.vtt
174 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.en.vtt
174 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.it.vtt
173 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.pt-BR.vtt
173 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.pt-BR.vtt
173 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.pt-BR.vtt
173 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.pt-BR.vtt
173 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.zh-CN.vtt
172 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.it.vtt
171 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.it.vtt
171 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.pt-BR.vtt
171 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron--dT9dztM-Lc.ar.vtt
171 Bytes
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.pt-BR.vtt
171 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.es-ES.vtt
170 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.pt-BR.vtt
170 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.pt-BR.vtt
170 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.pt-BR.vtt
170 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.pt-BR.vtt
169 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.en.vtt
169 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.pt-BR.vtt
169 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.zh-CN.vtt
169 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.pt-BR.vtt
168 Bytes
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.ar.vtt
168 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ar.vtt
167 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.en.vtt
167 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.pt-BR.vtt
167 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.en.vtt
167 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-8TeKzSUGAJQ.en.vtt
167 Bytes
Part 16-Module 01-Lesson 13_PCA/08. Principal Axis of New Coordinate System-qPr3Uj55eog.zh-CN.vtt
167 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.pt-BR.vtt
167 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ar.vtt
166 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.es-ES.vtt
166 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.zh-CN.vtt
166 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/08. Types of Data Quiz 4-wzNCL-MJ2bc.zh-CN.vtt
166 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.zh-CN.vtt
166 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/07. Feature Scaling Formula Quiz 1-sPqs7DoBkXQ.zh-CN.vtt
166 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.en.vtt
165 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.es-ES.vtt
165 Bytes
Part 16-Module 01-Lesson 03_SVM/02. Separating Line-NTm_mA4akP4.ja.vtt
165 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.pt-BR.vtt
165 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-J6RyUyWxrM4.zh-CN.vtt
165 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.zh-CN.vtt
164 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.th.vtt
164 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.it.vtt
164 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.pt-BR.vtt
164 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.pt-BR.vtt
164 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron--dT9dztM-Lc.pt-BR.vtt
164 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-OdsfV143AMc.en.vtt
164 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.hr.vtt
163 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.zh-CN.vtt
163 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ar.vtt
163 Bytes
Part 16-Module 01-Lesson 03_SVM/03. Choosing Between Separating Lines-ppSLADGROp8.en.vtt
163 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.pt-BR.vtt
162 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ar.vtt
161 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.en.vtt
161 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/20. False Positives in Eigenfaces-0bEbJ33dUis.en.vtt
161 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.es-ES.vtt
160 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.pt-BR.vtt
160 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.th.vtt
160 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.zh-CN.vtt
160 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.pt-BR.vtt
160 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/06. Confusion Matrix Practice 1-Nn_8kCRYn2k.zh-CN.vtt
160 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ja.vtt
159 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.pt-BR.vtt
159 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.pt-BR.vtt
159 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.pt-BR.vtt
158 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.zh-CN.vtt
158 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ar.vtt
158 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.zh-CN.vtt
158 Bytes
Part 04-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.hr.vtt
157 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ja.vtt
157 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.es-ES.vtt
157 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.pt-BR.vtt
157 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.zh-CN.vtt
157 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.zh-CN.vtt
157 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.ar.vtt
157 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/11. Confusion Matrix for Eigenfaces-jkjr_prWyt8.zh-CN.vtt
157 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ja.vtt
156 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.en.vtt
155 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.zh-CN.vtt
155 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.hr.vtt
155 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ja.vtt
155 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.es-ES.vtt
155 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.en.vtt
155 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.pt-BR.vtt
155 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-jO81hfubpXY.pt-BR.vtt
155 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ja.vtt
154 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.zh-CN.vtt
153 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ar.vtt
153 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.en.vtt
153 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.zh-CN.vtt
152 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.en.vtt
152 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.th.vtt
152 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ar.vtt
152 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.ja.vtt
152 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.zh-CN.vtt
152 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.it.vtt
151 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.zh-CN.vtt
150 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.zh-CN.vtt
150 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-jO81hfubpXY.zh-CN.vtt
150 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.pt-BR.vtt
149 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.hr.vtt
149 Bytes
Part 04-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ja.vtt
149 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.pt-BR.vtt
149 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.zh-CN.vtt
149 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.zh-CN.vtt
149 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.ja.vtt
149 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.en.vtt
148 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.en.vtt
147 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.en.vtt
146 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.pt-BR.vtt
146 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.hr.vtt
144 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ar.vtt
144 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.es-ES.vtt
143 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.en.vtt
143 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-Thj7e55iSlA.pt-BR.vtt
143 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.es-ES.vtt
142 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ja.vtt
142 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.en.vtt
142 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.zh-CN.vtt
142 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.en.vtt
142 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-T2dveKB64Ho.zh-CN.vtt
142 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/12. How Many Schroeders-jO81hfubpXY.en.vtt
142 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.es-ES.vtt
141 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ar.vtt
141 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ja.vtt
141 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ja.vtt
141 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.es-ES.vtt
141 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/03. Height + Weight for Cameron--dT9dztM-Lc.en.vtt
141 Bytes
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-th34aboBOO0.pt-BR.vtt
141 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.en.vtt
140 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.es-ES.vtt
140 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/02. A Metric for Chris-Thj7e55iSlA.en.vtt
140 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.ar.vtt
140 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ja.vtt
139 Bytes
Part 16-Module 01-Lesson 13_PCA/11. Practice Finding New Axes-th34aboBOO0.en.vtt
139 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.en.vtt
138 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.it.vtt
138 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ja.vtt
138 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.es-ES.vtt
138 Bytes
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.en.vtt
138 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ja.vtt
137 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.th.vtt
137 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.en.vtt
137 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-dyShKWpTo-c.en.vtt
137 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.zh-CN.vtt
136 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.en.vtt
136 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.ar.vtt
136 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.th.vtt
135 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ja.vtt
134 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-dk3FxGVdP7Q.pt-BR.vtt
134 Bytes
Part 04-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.pt-BR.vtt
133 Bytes
Part 16-Module 01-Lesson 15_Evaluation Metrics/21. False Negatives in Eigenfaces-dyShKWpTo-c.pt-BR.vtt
133 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ar.vtt
132 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ja.vtt
132 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.ja.vtt
131 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.en.vtt
131 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.ja.vtt
131 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.es-ES.vtt
130 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.th.vtt
130 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.en.vtt
130 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.pt-BR.vtt
130 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.en.vtt
130 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/09. Types of Data Quiz 5-dk3FxGVdP7Q.en.vtt
130 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.it.vtt
129 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.en.vtt
129 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.zh-CN.vtt
129 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ar.vtt
129 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.es-ES.vtt
129 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.en.vtt
128 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/08. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.en.vtt
128 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.it.vtt
127 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.zh-CN.vtt
127 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.zh-CN.vtt
126 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ja.vtt
126 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ar.vtt
126 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.zh-CN.vtt
126 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.ar.vtt
126 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.es-ES.vtt
125 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.es-ES.vtt
125 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.pt-BR.vtt
125 Bytes
Part 16-Module 01-Lesson 06_Datasets and Questions/07. Types of Data Quiz 3-sMLnEgg2lqE.zh-CN.vtt
125 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.zh-CN.vtt
125 Bytes
Part 16-Module 01-Lesson 13_PCA/02. Trickier Data Dimensionality--dcNhrSPmoY.zh-CN.vtt
125 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.pt-BR.vtt
124 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.zh-CN.vtt
123 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.zh-CN.vtt
123 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.pt-BR.vtt
123 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ja.vtt
123 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ja.vtt
123 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.ar.vtt
123 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.en.vtt
122 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ja.vtt
122 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ar.vtt
122 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.pt-BR.vtt
122 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.pt-BR.vtt
122 Bytes
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.ar.vtt
122 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/29. Total Probability-FlbDcNPGgUE.pt-BR.vtt
121 Bytes
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-kNxZwfXwvuk.ar.vtt
121 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.en.vtt
120 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.es-ES.vtt
120 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-Hans.vtt
119 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.en.vtt
119 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.ja.vtt
119 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.en.vtt
118 Bytes
Part 04-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.zh-CN.vtt
118 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ar.vtt
118 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.es-ES.vtt
118 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ja.vtt
118 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.ar.vtt
118 Bytes
Part 04-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.zh-CN.vtt
117 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ja.vtt
116 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.zh-CN.vtt
116 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-CN.vtt
115 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.zh-CN.vtt
113 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ja.vtt
113 Bytes
Part 04-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.zh-CN.vtt
113 Bytes
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.zh-CN.vtt
113 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.zh-CN.vtt
111 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.pt-BR.vtt
111 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ar.vtt
110 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ja.vtt
110 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.en.vtt
110 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.zh-CN.vtt
110 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.ar.vtt
110 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.pt-BR.vtt
110 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.es-ES.vtt
109 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.es-ES.vtt
109 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.en.vtt
109 Bytes
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.en.vtt
109 Bytes
Part 16-Module 01-Lesson 13_PCA/10. Practice Finding Centers-FZVBF1HR4U0.pt-BR.vtt
109 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ar.vtt
108 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.th.vtt
108 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.pt-BR.vtt
108 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.es-ES.vtt
108 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.pt-BR.vtt
108 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.zh-CN.vtt
108 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.en.vtt
108 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/08. Feature Scaling Formula Quiz 2-vmIK4jpUtNo.en.vtt
108 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.es-ES.vtt
107 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.en.vtt
107 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.ja.vtt
107 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.zh-CN.vtt
107 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.pt-BR.vtt
106 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.ja.vtt
106 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.pt-BR.vtt
105 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.es-ES.vtt
104 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.en.vtt
104 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.ja.vtt
104 Bytes
Part 16-Module 01-Lesson 10_Feature Scaling/04. Sarah's Height + Weight-p5p3OLARpmA.en.vtt
104 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.en.vtt
103 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-BR.vtt
101 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-Hans.vtt
101 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.es-ES.vtt
101 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.zh-CN.vtt
101 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.en.vtt
101 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ja.vtt
100 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.pt-BR.vtt
100 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ar.vtt
99 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.pt-BR.vtt
99 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-CN.vtt
99 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.pt-BR.vtt
99 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.ar.vtt
99 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-Hans.vtt
98 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ar.vtt
98 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.zh-CN.vtt
98 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ja.vtt
97 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.en.vtt
97 Bytes
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-kNxZwfXwvuk.pt-BR.vtt
97 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.it.vtt
96 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ar.vtt
96 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.es-ES.vtt
95 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.es-ES.vtt
95 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.en.vtt
95 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.hr.vtt
95 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ar.vtt
95 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.en.vtt
95 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-CN.vtt
94 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ar.vtt
94 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.it.vtt
94 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ja.vtt
94 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.pt-BR.vtt
94 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.ar.vtt
93 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ar.vtt
92 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.pt-BR.vtt
92 Bytes
Part 16-Module 01-Lesson 07_Regressions/03. Age Continuous or Discrete-kNxZwfXwvuk.en.vtt
92 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.pt-BR.vtt
91 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ja.vtt
91 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.en.vtt
90 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ar.vtt
90 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.zh-CN.vtt
90 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.en.vtt
90 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.it.vtt
90 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.zh-CN.vtt
90 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.pt-BR.vtt
90 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.it.vtt
89 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-PT.vtt
89 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.it.vtt
89 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.it.vtt
89 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ja.vtt
89 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.pt-BR.vtt
89 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.pt-BR.vtt
89 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.en.vtt
89 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/28. Normalizing 3-L4elyDe8pFk.zh-CN.vtt
89 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.ja.vtt
89 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.en.vtt
88 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.it.vtt
88 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ja.vtt
88 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ja.vtt
88 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.hr.vtt
87 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.it.vtt
87 Bytes
Part 04-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.zh-CN.vtt
87 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.en.vtt
86 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.hr.vtt
86 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.en.vtt
86 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.en.vtt
86 Bytes
Part 16-Module 01-Lesson 02_Naive Bayes/27. Normalizing 2-rnaZpqIqA2g.pt-BR.vtt
86 Bytes
Part 16-Module 01-Lesson 04_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.en.vtt
86 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.hr.vtt
85 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-Hans.vtt
85 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.hr.vtt
85 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.zh-CN.vtt
84 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.zh-CN.vtt
84 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-CN.vtt
83 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.hr.vtt
83 Bytes
Part 04-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.tr.vtt
81 Bytes
[DesireCourse.Net].url
51 Bytes
[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!