MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

Udemy - Linear Algebra and Geometry 2

磁力链接/BT种子名称

Udemy - Linear Algebra and Geometry 2

磁力链接/BT种子简介

种子哈希:7f89a2aa7f46d4d2142ed47bc9c6b0d963230efe
文件大小: 36.24G
已经下载:4263次
下载速度:极快
收录时间:2022-04-10
最近下载:2025-09-01

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:7F89A2AA7F46D4D2142ED47BC9C6B0D963230EFE
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 她趣 TikTok成人版 PornHub 听泉鉴鲍 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

主题 伊東ちなみ 干一炮泄泄火 032312 抖音 电影 群交现场 tt28132016 单位领导潜规则 ipzz-173 nisemonogatari 若菜ちゃん初エッチ 菲律宾交缠 韩漫 加勒比ppv public+agent+-+e113 bmw cos-268 张萌 play natasha rios john wick: ballerina 悲惨 onlyfans+ aiden ashley 21.05.26 gia+paige 国产ts meet ruth ol上司 成人 hellgirrl

文件列表

  • 11 General linear transformations in different bases/005 Linear transformations, Problem 4.mp4 817.9 MB
  • 04 Coordinates, basis, and dimension/002 Bases in the 3-space, Problem 1.mp4 800.7 MB
  • 05 Change of basis/010 Change of basis, Problem 1.mp4 676.4 MB
  • 14 Eigenvalues and eigenvectors/013 Eigenvalues and eigenvectors, Problem 6.mp4 632.8 MB
  • 11 General linear transformations in different bases/004 Linear transformations, Problem 3.mp4 621.8 MB
  • 15 Diagonalization/009 Eigenspaces, Problem 2.mp4 613.4 MB
  • 03 Linear combinations and linear independence/006 Linear combinations, Problem 2.mp4 586.2 MB
  • 14 Eigenvalues and eigenvectors/010 Eigenvalues and eigenvectors, Problem 3.mp4 582.3 MB
  • 04 Coordinates, basis, and dimension/006 Bases in the 4-space, Problem 4.mp4 575.3 MB
  • 11 General linear transformations in different bases/002 Linear transformations, Problem 1.mp4 560.6 MB
  • 14 Eigenvalues and eigenvectors/009 Eigenvalues and eigenvectors for examples from Video 180.mp4 548.3 MB
  • 12 Gram-Schmidt process/007 Coordinates in ON bases, Problem 1.mp4 494.0 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/013 Rotations in the 3-space, Problem 7.mp4 485.3 MB
  • 15 Diagonalization/010 Eigenvectors corresponding to different eigenvalues are linearly independent.mp4 481.2 MB
  • 05 Change of basis/012 Change of basis, Problem 3.mp4 477.3 MB
  • 03 Linear combinations and linear independence/015 Linearly independent generators, Problem 6.mp4 466.1 MB
  • 10 Properties of matrix transformations/011 Compositions of linear transformations, Problem 5.mp4 463.0 MB
  • 11 General linear transformations in different bases/009 Linear transformations in different bases, Problem 7.mp4 456.1 MB
  • 14 Eigenvalues and eigenvectors/012 Eigenvalues and eigenvectors, Problem 5.mp4 422.6 MB
  • 11 General linear transformations in different bases/003 Linear transformations, Problem 2.mp4 422.4 MB
  • 02 Real vector spaces and their subspaces/015 Subspaces, Problem 2.mp4 407.1 MB
  • 12 Gram-Schmidt process/010 Coordinates in orthogonal bases, Problem 2.mp4 399.0 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/012 Projection on a given plane, Problem 6.mp4 384.3 MB
  • 13 Orthogonal matrices/010 Property 5_ Preserving distances and angles.mp4 383.9 MB
  • 02 Real vector spaces and their subspaces/016 Subspaces, Problem 3.mp4 380.6 MB
  • 06 Row space, column space, and nullspace of a matrix/014 Nullspace, Problem 10.mp4 379.9 MB
  • 06 Row space, column space, and nullspace of a matrix/013 Nullspace, Problem 9.mp4 372.3 MB
  • 04 Coordinates, basis, and dimension/005 Bases in the 4-space, Problem 3.mp4 369.9 MB
  • 03 Linear combinations and linear independence/019 Linear independence in C^∞(R), Problem 9.mp4 364.9 MB
  • 08 Matrix transformations from R^n to R^m/009 Image, kernel, and inverse operators, Problem 2.mp4 361.4 MB
  • 11 General linear transformations in different bases/006 Linear transformations, Problem 5.mp4 360.6 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/004 Projection on a given vector, Problem 1.mp4 357.8 MB
  • 06 Row space, column space, and nullspace of a matrix/010 A basis in the space of polynomials, Problem 7.mp4 344.8 MB
  • 08 Matrix transformations from R^n to R^m/013 Inverse operators, Problem 6.mp4 343.2 MB
  • 14 Eigenvalues and eigenvectors/007 How to compute eigenvectors.mp4 335.3 MB
  • 11 General linear transformations in different bases/007 Linear transformations in different bases, Problem 6.mp4 332.2 MB
  • 12 Gram-Schmidt process/013 Projection Theorem 2.mp4 326.1 MB
  • 03 Linear combinations and linear independence/008 Span, Problem 3.mp4 319.2 MB
  • 03 Linear combinations and linear independence/009 Span, Problem 4.mp4 315.9 MB
  • 06 Row space, column space, and nullspace of a matrix/008 Determining a basis for a span consisting of a subset of given vectors, Prob.mp4 313.8 MB
  • 03 Linear combinations and linear independence/016 Linear independence in the set of matrices, Problem 7.mp4 310.3 MB
  • 11 General linear transformations in different bases/010 Linear transformations in different bases, Problem 8.mp4 308.8 MB
  • 10 Properties of matrix transformations/010 Compositions of linear transformations, Problem 4.mp4 305.5 MB
  • 12 Gram-Schmidt process/020 Gram-Schmidt Process, Problem 7.mp4 298.9 MB
  • 11 General linear transformations in different bases/013 Linear transformations, Problem 11.mp4 296.4 MB
  • 06 Row space, column space, and nullspace of a matrix/007 Determining a basis for a span consisting of a subset of given vectors, Prob.mp4 293.6 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/011 Symmetry about a given plane, Problem 5.mp4 287.3 MB
  • 05 Change of basis/011 Change of basis, Problem 2.mp4 286.3 MB
  • 03 Linear combinations and linear independence/005 Linear combinations, Problem 1.mp4 283.4 MB
  • 06 Row space, column space, and nullspace of a matrix/003 What are the elementary row operations doing to the row spaces_.mp4 275.9 MB
  • 15 Diagonalization/013 Diagonalizability, Problem 3.mp4 270.2 MB
  • 11 General linear transformations in different bases/011 Linear transformations in different bases, Problem 9.mp4 264.2 MB
  • 06 Row space, column space, and nullspace of a matrix/006 Determining a basis for a span, Problem 3.mp4 262.9 MB
  • 15 Diagonalization/017 Diagonalizability, Problem 7.mp4 262.7 MB
  • 13 Orthogonal matrices/012 Orthogonal matrices, Problem 1.mp4 262.2 MB
  • 14 Eigenvalues and eigenvectors/011 Eigenvalues and eigenvectors, Problem 4.mp4 260.3 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/009 Plane symmetry in the 3-space, Problem 3.mp4 259.9 MB
  • 08 Matrix transformations from R^n to R^m/005 When is a function from Rn to Rm linear_ Approach 2.mp4 259.3 MB
  • 05 Change of basis/014 Change of basis, Problem 5.mp4 251.2 MB
  • 10 Properties of matrix transformations/004 Transformations of straight lines, Problem 2.mp4 245.0 MB
  • 12 Gram-Schmidt process/015 Calculating projections, Problem 4.mp4 244.1 MB
  • 02 Real vector spaces and their subspaces/010 Some properties of vector spaces.mp4 242.7 MB
  • 02 Real vector spaces and their subspaces/009 Two properties of vector spaces; Definition of difference.mp4 237.8 MB
  • 02 Real vector spaces and their subspaces/011 What is a subspace.mp4 226.2 MB
  • 04 Coordinates, basis, and dimension/011 Dimension of a subspace, Problem 6.mp4 223.7 MB
  • 06 Row space, column space, and nullspace of a matrix/009 A tricky one_ Let rows become columns, Problem 6.mp4 223.2 MB
  • 02 Real vector spaces and their subspaces/007 Vector spaces, Example 4_ complex numbers.mp4 220.2 MB
  • 08 Matrix transformations from R^n to R^m/012 Image and kernel, Problem 5.mp4 213.8 MB
  • 06 Row space, column space, and nullspace of a matrix/005 Column space, Problem 2.mp4 210.2 MB
  • 02 Real vector spaces and their subspaces/004 Formal definition of vector spaces Example 1_ Rn.mp4 208.7 MB
  • 12 Gram-Schmidt process/019 Gram-Schmidt Process, Problem 6.mp4 208.1 MB
  • 08 Matrix transformations from R^n to R^m/014 Linear transformations, Problem 7.mp4 205.7 MB
  • 04 Coordinates, basis, and dimension/012 Bases in a space of functions, Problem 7.mp4 205.6 MB
  • 08 Matrix transformations from R^n to R^m/016 Linear transformations, Problem 9.mp4 202.9 MB
  • 02 Real vector spaces and their subspaces/006 Vector spaces, Example 3_ real-valued functions on some interval.mp4 199.7 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/005 Symmetry about the line y = kx, Problem 2.mp4 197.8 MB
  • 10 Properties of matrix transformations/009 Why does it work_.mp4 195.9 MB
  • 08 Matrix transformations from R^n to R^m/011 Kernel, Problem 4.mp4 190.0 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/002 An example with nontrivial kernel.mp4 187.8 MB
  • 03 Linear combinations and linear independence/017 Linear independence in C^0[−∞, ∞], Problem 8.mp4 186.9 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/004 Relationship between rank and nullity, Problem 1.mp4 182.9 MB
  • 03 Linear combinations and linear independence/022 Linear independence in C^∞(R), Problem 11.mp4 177.2 MB
  • 08 Matrix transformations from R^n to R^m/015 Kernel and geometry, Problem 8.mp4 176.5 MB
  • 05 Change of basis/013 Change of basis, Problem 4.mp4 175.9 MB
  • 06 Row space, column space, and nullspace of a matrix/011 Nullspace for a matrix.mp4 175.1 MB
  • 15 Diagonalization/019 Powers of matrices, Problem 8.mp4 173.0 MB
  • 12 Gram-Schmidt process/012 Projection Theorem 1.mp4 169.9 MB
  • 13 Orthogonal matrices/013 Orthogonal matrices, Problem 2.mp4 168.7 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/010 Projections on planes in the 3-space, Problem 4.mp4 165.1 MB
  • 01 Introduction to the course/001 Introduction to the course.mp4 164.7 MB
  • 08 Matrix transformations from R^n to R^m/010 Basis for the image, Problem 3.mp4 163.7 MB
  • 02 Real vector spaces and their subspaces/017 Subspaces, Problem 4.mp4 152.8 MB
  • 12 Gram-Schmidt process/011 Orthonormal bases, Problem 3.mp4 150.1 MB
  • 11 General linear transformations in different bases/012 Linear transformations, Problem 10.mp4 148.1 MB
  • 12 Gram-Schmidt process/016 Calculating projections, Problem 5.mp4 144.3 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/003 Line symmetries in the plane.mp4 139.0 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/006 Rotation by 90 degrees about the origin.mp4 138.7 MB
  • 10 Properties of matrix transformations/005 Change of area (volume) under linear operators in the plane (space).mp4 135.6 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/001 Our unifying example_ linear transformations and change of basis.mp4 134.9 MB
  • 13 Orthogonal matrices/005 Useful formulas for the coming proofs.mp4 134.6 MB
  • 13 Orthogonal matrices/011 Property 6_ Product of orthogonal matrices is orthogonal.mp4 134.2 MB
  • 04 Coordinates, basis, and dimension/009 Coordinates with respect to a basis are unique.mp4 128.6 MB
  • 15 Diagonalization/020 Diagonalization, Problem 9.mp4 126.6 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/003 Relationship between rank and nullity.mp4 122.0 MB
  • 13 Orthogonal matrices/004 A 3-by-3 example.mp4 113.8 MB
  • 04 Coordinates, basis, and dimension/004 Bases in the 3-space, Problem 2.mp4 112.4 MB
  • 03 Linear combinations and linear independence/021 Linear independence in C^∞(R), Problem 10.mp4 111.5 MB
  • 15 Diagonalization/008 Eigenspaces; geometric and algebraic multiplicity of eigenvalues.mp4 108.8 MB
  • 13 Orthogonal matrices/007 Property 2_ Each orthogonal matrix A is invertible and A−1 is also orthogona.mp4 104.3 MB
  • 08 Matrix transformations from R^n to R^m/008 Matrix transformations, Problem 1.mp4 103.6 MB
  • 05 Change of basis/009 How to recalculate coordinates between two non-standard bases_ An algorithm.mp4 103.2 MB
  • 14 Eigenvalues and eigenvectors/001 Crash course in factoring polynomials.mp4 101.9 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/007 Orthogonal complements, Problem 4.mp4 101.9 MB
  • 14 Eigenvalues and eigenvectors/004 Eigenvalues and eigenvectors geometrically.mp4 100.1 MB
  • 02 Real vector spaces and their subspaces/008 Cancellation property.mp4 97.8 MB
  • 10 Properties of matrix transformations/003 Parallel lines transform into parallel lines, Problem 1.mp4 97.1 MB
  • 03 Linear combinations and linear independence/018 Vandermonde determinant and polynomials.mp4 96.9 MB
  • 14 Eigenvalues and eigenvectors/005 Eigenvalues and eigenvectors, Problem 1.mp4 95.7 MB
  • 02 Real vector spaces and their subspaces/005 Vector spaces, Example 2_ m × n matrices with real entries.mp4 95.7 MB
  • 12 Gram-Schmidt process/001 Dot product and orthogonality until now.mp4 95.5 MB
  • 15 Diagonalization/015 Diagonalizability, Problem 5.mp4 94.4 MB
  • 04 Coordinates, basis, and dimension/007 Bases in the space of polynomials, Problem 5.mp4 93.2 MB
  • 04 Coordinates, basis, and dimension/003 Bases in the plane and in the 3-space.mp4 93.1 MB
  • 14 Eigenvalues and eigenvectors/006 How to compute eigenvalues Characteristic polynomial.mp4 89.6 MB
  • 10 Properties of matrix transformations/008 How to obtain the standard matrix of a composition of linear transformations.mp4 89.4 MB
  • 05 Change of basis/008 Two non-standard bases, Method 2.mp4 88.4 MB
  • 15 Diagonalization/003 Similarity of matrices is an equivalence relation (RST).mp4 84.5 MB
  • 08 Matrix transformations from R^n to R^m/001 What do we mean by linear_.mp4 83.0 MB
  • 06 Row space, column space, and nullspace of a matrix/001 What you are going to learn in this section.mp4 81.2 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/008 Expansion, compression, scaling, and shear.mp4 80.9 MB
  • 03 Linear combinations and linear independence/012 Linear independence and linear dependence.mp4 79.2 MB
  • 02 Real vector spaces and their subspaces/012 All the subspaces in R2.mp4 79.1 MB
  • 04 Coordinates, basis, and dimension/008 Coordinates with respect to a basis.mp4 77.8 MB
  • 10 Properties of matrix transformations/007 Compositions of linear transformations.mp4 77.7 MB
  • 08 Matrix transformations from R^n to R^m/006 When is a function from Rn to Rm linear_ Approach 3.mp4 77.6 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/009 The Fundamental Theorem of Linear Algebra and Gilbert Strang.mp4 77.1 MB
  • 05 Change of basis/003 Transition matrix, a derivation.mp4 76.9 MB
  • 08 Matrix transformations from R^n to R^m/003 How to think about functions from Rn to Rm_.mp4 74.7 MB
  • 03 Linear combinations and linear independence/002 Linear combinations in Part 1.mp4 74.6 MB
  • 15 Diagonalization/006 How to diagonalize a matrix, a recipe.mp4 74.5 MB
  • 12 Gram-Schmidt process/017 Gram-Schmidt Process.mp4 74.4 MB
  • 03 Linear combinations and linear independence/014 An important remark on linear independence in Rn.mp4 74.3 MB
  • 12 Gram-Schmidt process/009 Each orthogonal set is linearly independent, Proof.mp4 72.6 MB
  • 05 Change of basis/002 It is easy to recalculate from the standard basis.mp4 72.5 MB
  • 05 Change of basis/015 Change to an orthonormal basis in R^2.mp4 69.8 MB
  • 05 Change of basis/005 Our unifying example.mp4 69.8 MB
  • 08 Matrix transformations from R^n to R^m/004 When is a function from Rn to Rm linear_ Approach 1.mp4 69.6 MB
  • 03 Linear combinations and linear independence/013 Geometry of linear independence and linear dependence.mp4 68.7 MB
  • 03 Linear combinations and linear independence/001 Our unifying example.mp4 68.3 MB
  • 08 Matrix transformations from R^n to R^m/002 Some terminology.mp4 68.2 MB
  • 15 Diagonalization/014 Diagonalizability, Problem 4.mp4 66.8 MB
  • 06 Row space, column space, and nullspace of a matrix/004 What are the elementary row operations doing to the column spaces_.mp4 64.3 MB
  • 11 General linear transformations in different bases/001 Linear transformations between two linear spaces.mp4 64.2 MB
  • 11 General linear transformations in different bases/008 Linear transformations in different bases.mp4 63.8 MB
  • 02 Real vector spaces and their subspaces/003 Our prototype.mp4 63.4 MB
  • 08 Matrix transformations from R^n to R^m/007 Approaches 2 and 3 are equivalent.mp4 63.2 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/005 Relationship between rank and nullity, Problem 2.mp4 62.6 MB
  • 15 Diagonalization/016 Diagonalizability, Problem 6.mp4 61.6 MB
  • 06 Row space, column space, and nullspace of a matrix/012 How to find the nullspace, Problem 8.mp4 59.9 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/007 Rotation by the angle α about the origin.mp4 59.7 MB
  • 12 Gram-Schmidt process/002 Orthonormal bases are awesome.mp4 59.5 MB
  • 03 Linear combinations and linear independence/011 What do we mean by trivial_.mp4 58.6 MB
  • 10 Properties of matrix transformations/006 Change of area under linear transformations, Problem 3.mp4 58.3 MB
  • 14 Eigenvalues and eigenvectors/014 Eigenvalues and eigenvectors, Problem 7.mp4 57.6 MB
  • 15 Diagonalization/012 Necessary and sufficient condition for diagonalizability.mp4 57.4 MB
  • 06 Row space, column space, and nullspace of a matrix/002 Row space and column space for a matrix.mp4 56.9 MB
  • 16 Wrap-up Linear Algebra and Geometry 2/001 Linear Algebra and Geometry 2, Wrap-up.mp4 56.2 MB
  • 04 Coordinates, basis, and dimension/001 What is a basis and dimension_.mp4 54.9 MB
  • 03 Linear combinations and linear independence/020 Wronskian and linear independence in C∞(R).mp4 53.0 MB
  • 12 Gram-Schmidt process/008 Coordinates in orthogonal bases, Theorem and proof.mp4 52.8 MB
  • 03 Linear combinations and linear independence/007 What is a span, definition and some examples.mp4 52.5 MB
  • 05 Change of basis/007 Two non-standard bases, Method 1.mp4 52.1 MB
  • 02 Real vector spaces and their subspaces/014 Subspaces, Problem 1.mp4 50.9 MB
  • 05 Change of basis/001 Coordinates in different bases.mp4 49.0 MB
  • 13 Orthogonal matrices/001 Product of a matrix and its transposed is symmetric.mp4 46.9 MB
  • 15 Diagonalization/001 Why you should love diagonal matrices.mp4 44.5 MB
  • 14 Eigenvalues and eigenvectors/008 Finding eigenvalues and eigenvectors_ short and sweet.mp4 44.1 MB
  • 02 Real vector spaces and their subspaces/013 All the subspaces in R3.mp4 43.4 MB
  • 15 Diagonalization/004 Shared properties of similar matrices.mp4 42.9 MB
  • 12 Gram-Schmidt process/014 Projection Formula, an illustration in the 3-space.mp4 42.4 MB
  • 13 Orthogonal matrices/003 Geometry of 2-by-2 orthogonal matrices.mp4 41.9 MB
  • 12 Gram-Schmidt process/018 Gram-Schmidt Process, Our unifying example.mp4 41.7 MB
  • 10 Properties of matrix transformations/002 What happens with vector subspaces and affine subspaces under linear transfo.mp4 40.4 MB
  • 13 Orthogonal matrices/009 Property 4_ Orthogonal matrices are transition matrices between ON-bases.mp4 39.8 MB
  • 03 Linear combinations and linear independence/003 Linear combinations, new stuff. Example 1.mp4 38.4 MB
  • 15 Diagonalization/007 Diagonalize our favourite matrix.mp4 38.3 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/008 Four fundamental matrix spaces.mp4 38.2 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/001 Rank of a matrix.mp4 38.1 MB
  • 13 Orthogonal matrices/002 Definition and examples of orthogonal matrices.mp4 37.5 MB
  • 13 Orthogonal matrices/006 Property 1_ Determinant of each orthogonal matrix is 1 or −1.mp4 36.8 MB
  • 01 Introduction to the course/001 Slides Introduction to the course.pdf 36.6 MB
  • 02 Real vector spaces and their subspaces/001 From abstract to concrete.mp4 35.6 MB
  • 04 Coordinates, basis, and dimension/010 Coordinates in our unifying example.mp4 35.6 MB
  • 10 Properties of matrix transformations/001 What kind of properties we will discuss.mp4 35.3 MB
  • 03 Linear combinations and linear independence/010 Span, Problem 5.mp4 34.7 MB
  • 13 Orthogonal matrices/008 Property 3_ Orthonormal columns and rows.mp4 34.5 MB
  • 12 Gram-Schmidt process/006 Orthonormal bases are awesome, Reason 4_ coordinates.mp4 34.1 MB
  • 05 Change of basis/004 Previous example with transition matrix.mp4 33.1 MB
  • 15 Diagonalization/021 Sneak peek into the next course; orthogonal diagonalization.mp4 30.9 MB
  • 02 Real vector spaces and their subspaces/002 From concrete to abstract.mp4 30.1 MB
  • 14 Eigenvalues and eigenvectors/002 Eigenvalues and eigenvectors, the terms.mp4 29.6 MB
  • 03 Linear combinations and linear independence/004 Linear combinations Example 2.mp4 28.6 MB
  • 15 Diagonalization/018 Powers of matrices.mp4 26.8 MB
  • 12 Gram-Schmidt process/005 Orthonormal bases are awesome, Reason 3_ transition matrix.mp4 26.0 MB
  • 15 Diagonalization/005 Diagonalizable matrices.mp4 25.8 MB
  • 05 Change of basis/006 One more simple example and bases.mp4 25.2 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/002 Nullity.mp4 25.2 MB
  • 16 Wrap-up Linear Algebra and Geometry 2/002 Yes, there will be Part 3!.mp4 24.9 MB
  • 15 Diagonalization/011 A sufficient, but not necessary, condition for diagonalizability.mp4 23.4 MB
  • 12 Gram-Schmidt process/004 Orthonormal bases are awesome, Reason 2_ dot product.mp4 21.9 MB
  • 12 Gram-Schmidt process/003 Orthonormal bases are awesome, Reason 1_ distance.mp4 19.7 MB
  • 15 Diagonalization/002 Similar matrices.mp4 19.0 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/006 Relationship between rank and nullity, Problem 3.mp4 15.7 MB
  • 16 Wrap-up Linear Algebra and Geometry 2/003 Final words.mp4 15.6 MB
  • 16 Wrap-up Linear Algebra and Geometry 2/212 Slides Linear Algebra and Geometry 2 Wrap-up.pdf 14.3 MB
  • 14 Eigenvalues and eigenvectors/003 Order of defining, order of computing.mp4 13.9 MB
  • 04 Coordinates, basis, and dimension/043 Slides Bases in the plane and in the 3 space.pdf 9.7 MB
  • 05 Change of basis/061 Slides How to recalculate coordinates between two non-standard bases An algorithm.pdf 6.6 MB
  • 03 Linear combinations and linear independence/019 Slides Our unifying example.pdf 6.5 MB
  • 05 Change of basis/060 Slides Two non standard bases Method 2.pdf 6.0 MB
  • 14 Eigenvalues and eigenvectors/185 Slides Eigenvalues and eigenvectors for examples from Video 180.pdf 5.5 MB
  • 10 Properties of matrix transformations/124 Slides Change of area and volume under linear operators in the plane and space.pdf 5.3 MB
  • 15 Diagonalization/211 Slides Sneak peek into the next course Orthogonal diagonalization.pdf 5.1 MB
  • 12 Gram-Schmidt process/144 Slides Dot product and orthogonality until now.pdf 4.8 MB
  • 14 Eigenvalues and eigenvectors/180 Slides Eigenvalues and eigenvectors geometrically.pdf 4.7 MB
  • 03 Linear combinations and linear independence/020 Slides Linear combinations In Part 1.pdf 4.7 MB
  • 03 Linear combinations and linear independence/031 Slides Geometry of linear independence and linear dependence.pdf 4.2 MB
  • 05 Change of basis/067 Slides Change to an orthonormal basis in the plane.pdf 4.1 MB
  • 13 Orthogonal matrices/166 Slides Geometry of 2 by 2 orthogonal matrices.pdf 3.7 MB
  • 14 Eigenvalues and eigenvectors/190 Slides Eigenvalues and eigenvectors Problem 7.pdf 3.6 MB
  • 11 General linear transformations in different bases/135 Notes Linear transformations Problem 4.pdf 3.6 MB
  • 14 Eigenvalues and eigenvectors/185 Notes Eigenvalues and eigenvectors for examples from Video 180.pdf 3.5 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/109 Slides Line symmetries in the plane.pdf 3.5 MB
  • 04 Coordinates, basis, and dimension/042 Notes Bases in the 3 space Problem 1.pdf 3.4 MB
  • 13 Orthogonal matrices/165 Slides Definition and examples of orthogonal matrices.pdf 3.2 MB
  • 15 Diagonalization/200 Notes Eigenvectors corresponding to different eigenvalues are linearly independent.pdf 3.2 MB
  • 15 Diagonalization/197 Slides Diagonalize our favorite matrix.pdf 3.1 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/107 Slides Our unifying example Linear transformations and change of basis.pdf 2.8 MB
  • 02 Real vector spaces and their subspaces/016 Notes Subspace Problem 2.pdf 2.8 MB
  • 12 Gram-Schmidt process/150 Notes Coordinates in ON bases Problem 1.pdf 2.6 MB
  • 15 Diagonalization/199 Notes Eigenspaces Problem 2.pdf 2.6 MB
  • 05 Change of basis/062 Notes Change of basis Problem 1.pdf 2.6 MB
  • 14 Eigenvalues and eigenvectors/189 Notes Eigenvalues and eigenvectors Problem 6.pdf 2.6 MB
  • 11 General linear transformations in different bases/133 Notes Linear transformations Problem 2.pdf 2.5 MB
  • 03 Linear combinations and linear independence/024 Notes Linear combinations Problem 2.pdf 2.4 MB
  • 02 Real vector spaces and their subspaces/017 Notes Subspace Problem 3.pdf 2.4 MB
  • 11 General linear transformations in different bases/134 Notes Linear transformations Problem 3.pdf 2.4 MB
  • 06 Row space, column space, and nullspace of a matrix/072 Notes Column space Problem 2.pdf 2.4 MB
  • 13 Orthogonal matrices/173 Notes Property 5 Preserving distances and angles.pdf 2.4 MB
  • 04 Coordinates, basis, and dimension/046 Notes Bases in the 4 space Problem 4.pdf 2.3 MB
  • 08 Matrix transformations from R^n to R^m/097 Slides Approaches 2 and 3 are equivalent.pdf 2.3 MB
  • 15 Diagonalization/205 Slides Diagonalizability Problem 5.pdf 2.2 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/114 Slides Expansion Compression Scaling and Shear.pdf 2.2 MB
  • 05 Change of basis/058 Slides One more simple example.pdf 2.2 MB
  • 14 Eigenvalues and eigenvectors/182 Slides How to compute eigenvalues Characteristic polynomial.pdf 2.1 MB
  • 05 Change of basis/064 Notes Change of basis Problem 3.pdf 2.0 MB
  • 14 Eigenvalues and eigenvectors/186 Notes Eigenvalues and eigenvectors Problem 3.pdf 2.0 MB
  • 12 Gram-Schmidt process/156 Notes Projection Theorem 2.pdf 2.0 MB
  • 11 General linear transformations in different bases/132 Notes Linear transformations Problem 1.pdf 2.0 MB
  • 04 Coordinates, basis, and dimension/045 Notes Bases in the 4 space Problem 3.pdf 2.0 MB
  • 06 Row space, column space, and nullspace of a matrix/071 Slides What are the elementary row operations doing to the column spaces.pdf 2.0 MB
  • 14 Eigenvalues and eigenvectors/183 Slides How to compute eigenvectors.pdf 1.9 MB
  • 10 Properties of matrix transformations/128 Slides Why does it work.pdf 1.9 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/113 Slides Rotation by the angle alpha about the origin.pdf 1.9 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/118 Notes Projection on a given plane Problem 6.pdf 1.9 MB
  • 14 Eigenvalues and eigenvectors/177 Slides Crash course in factoring polynomials.pdf 1.9 MB
  • 12 Gram-Schmidt process/153 Notes Coordinates in orthogonal bases Problem 2.pdf 1.8 MB
  • 14 Eigenvalues and eigenvectors/188 Notes Eigenvalues and eigenvectors Problem 5.pdf 1.8 MB
  • 03 Linear combinations and linear independence/030 Slides Linear independence and linear dependence.pdf 1.8 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/112 Slides Rotation by 90 degrees about the origin.pdf 1.8 MB
  • 13 Orthogonal matrices/172 Slides Property 4 Orthogonal matrices are transition matrices between ON-bases.pdf 1.7 MB
  • 10 Properties of matrix transformations/127 Slides How to obtain the standard matrix of a composition of linear transformations.pdf 1.7 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/117 Slides Symmetry about a given plane Problem 5.pdf 1.7 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/088 Slides Orthogonal complements Problem 4.pdf 1.7 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/118 Slides Projection on a given plane Problem 6.pdf 1.7 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/119 Notes Rotations in the 3-space Problem 7.pdf 1.7 MB
  • 11 General linear transformations in different bases/131 Slides Linear transformations between two linear spaces.pdf 1.6 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/110 Slides Projection on a given vector Problem 1.pdf 1.6 MB
  • 15 Diagonalization/202 Slides Necessary and sufficient condition for diagonalizability.pdf 1.6 MB
  • 12 Gram-Schmidt process/161 Slides Gram Schmidt Process Our unifying example.pdf 1.6 MB
  • 03 Linear combinations and linear independence/036 Slides Vandermonde determinant and polynomials.pdf 1.6 MB
  • 12 Gram-Schmidt process/163 Notes Gram Schmidt Process Problem 7.pdf 1.6 MB
  • 02 Real vector spaces and their subspaces/008 Notes Vector spaces Example 4 Complex numbers.pdf 1.6 MB
  • 02 Real vector spaces and their subspaces/007 Slides Vector spaces Example 3 Functions.pdf 1.6 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/111 Slides Symmetry about a line Problem 2.pdf 1.5 MB
  • 10 Properties of matrix transformations/122 Slides Parallel lines transform into parallel lines Problem 1.pdf 1.5 MB
  • 10 Properties of matrix transformations/130 Notes Compositions of linear transformations Problem 5.pdf 1.5 MB
  • 08 Matrix transformations from R^n to R^m/099 Slides Image, kernel, and inverse operators Problem 2.pdf 1.5 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/090 Slides The Fundamental Theorem of Linear Algebra and Gilbert Strang.pdf 1.5 MB
  • 02 Real vector spaces and their subspaces/010 Notes Two properties of vector spaces Definition of difference.pdf 1.5 MB
  • 08 Matrix transformations from R^n to R^m/103 Notes Inverse operators Problem 6.pdf 1.5 MB
  • 10 Properties of matrix transformations/125 Slides Change of area under linear operators in the plane Problem 3.pdf 1.5 MB
  • 15 Diagonalization/193 Slides Similarity of matrices is an equivalence relation RST.pdf 1.5 MB
  • 11 General linear transformations in different bases/136 Notes Linear transformations Problem 5.pdf 1.5 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/084 Slides Relationship between the rank and nullity.pdf 1.5 MB
  • 11 General linear transformations in different bases/143 Notes Linear transformations Problem 11.pdf 1.5 MB
  • 05 Change of basis/063 Notes Change of basis Problem 2.pdf 1.5 MB
  • 03 Linear combinations and linear independence/027 Notes Span Problem 4.pdf 1.5 MB
  • 03 Linear combinations and linear independence/033 Notes Linearly independent generators Problem 6.pdf 1.4 MB
  • 11 General linear transformations in different bases/139 Notes Linear transformations in different bases Problem 7.pdf 1.4 MB
  • 07 Rank, nullity, and four fundamental matrix spaces/089 Slides Four fundamental matrix spaces.pdf 1.4 MB
  • 02 Real vector spaces and their subspaces/013 Slides All the subspace in R2.pdf 1.4 MB
  • 15 Diagonalization/196 Slides How to diagonalize a matrix A recipe.pdf 1.3 MB
  • 02 Real vector spaces and their subspaces/011 Notes Some properties of vector spaces.pdf 1.3 MB
  • 15 Diagonalization/194 Slides Shared properties of similar matrices.pdf 1.3 MB
  • 06 Row space, column space, and nullspace of a matrix/077 Notes A basis in the space of polynomials Problem 7.pdf 1.3 MB
  • 02 Real vector spaces and their subspaces/012 Notes What is a subspace.pdf 1.3 MB
  • 03 Linear combinations and linear independence/025 Slides What is span Definition and some examples.pdf 1.3 MB
  • 02 Real vector spaces and their subspaces/006 Slides Vector spaces Example 2 Matrices.pdf 1.3 MB
  • 06 Row space, column space, and nullspace of a matrix/070 Notes What are the elementary row operations doing to the row spaces.pdf 1.3 MB
  • 03 Linear combinations and linear independence/026 Notes Span Problem 3.pdf 1.3 MB
  • 04 Coordinates, basis, and dimension/051 Notes Dimension of a subspace Problem 6.pdf 1.3 MB
  • 11 General linear transformations in different bases/140 Notes Linear transformations in different bases Problem 8.pdf 1.3 MB
  • 03 Linear combinations and linear independence/034 Notes Linear independence in the set of matrices Problem 7.pdf 1.3 MB
  • 02 Real vector spaces and their subspaces/007 Notes Vector spaces Example 3 Functions.pdf 1.2 MB
  • 12 Gram-Schmidt process/155 Slides Projection Theorem 1.pdf 1.2 MB
  • 05 Change of basis/066 Notes Change of basis Problem 5.pdf 1.2 MB
  • 06 Row space, column space, and nullspace of a matrix/070 Slides What are the elementary row operations doing to the row spaces.pdf 1.2 MB
  • 15 Diagonalization/206 Slides Diagonalizability Problem 6.pdf 1.2 MB
  • 05 Change of basis/054 Slides It is easy to recalculate from the standard basis.pdf 1.2 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/110 Notes Projection on a given vector Problem 1.pdf 1.2 MB
  • 14 Eigenvalues and eigenvectors/187 Notes Eigenvalues and eigenvectors Problem 4.pdf 1.2 MB
  • 10 Properties of matrix transformations/129 Notes Compositions of linear transformations Problem 4.pdf 1.2 MB
  • 05 Change of basis/055 Slides Transition matrix A derivation.pdf 1.2 MB
  • 03 Linear combinations and linear independence/023 Notes Linear combinations Problem 1.pdf 1.2 MB
  • 14 Eigenvalues and eigenvectors/183 Notes How to compute eigenvectors.pdf 1.2 MB
  • 08 Matrix transformations from R^n to R^m/099 Notes Image, kernel, and inverse operators Problem 2.pdf 1.2 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/117 Notes Symmetry about a given plane Problem 5.pdf 1.2 MB
  • 13 Orthogonal matrices/175 Notes Orthogonal matrices Problem 1.pdf 1.2 MB
  • 08 Matrix transformations from R^n to R^m/102 Notes Image and kernel Problem 5.pdf 1.1 MB
  • 15 Diagonalization/204 Slides Diagonalizability Problem 4.pdf 1.1 MB
  • 06 Row space, column space, and nullspace of a matrix/074 Notes Determining a basis for a span consisting of a subset of given vectors Problem 4.pdf 1.1 MB
  • 04 Coordinates, basis, and dimension/050 Slides Coordinates in our unifying example.pdf 1.1 MB
  • 10 Properties of matrix transformations/128 Notes Why does it work.pdf 1.1 MB
  • 11 General linear transformations in different bases/141 Notes Linear transformations in different bases Problem 9.pdf 1.1 MB
  • 13 Orthogonal matrices/169 Slides Property 1 Determinant of each orthogonal matrix is 1 or -1.pdf 1.1 MB
  • 15 Diagonalization/195 Slides Diagonalizable matrices.pdf 1.1 MB
  • 15 Diagonalization/207 Notes Diagonalizability Problem 7.pdf 1.1 MB
  • 11 General linear transformations in different bases/137 Notes Linear transformations Problem 6.pdf 1.1 MB
  • 06 Row space, column space, and nullspace of a matrix/080 Notes Nullspace Problem 9.pdf 1.1 MB
  • 12 Gram-Schmidt process/162 Notes Gram Schmidt Process Problem 6.pdf 1.1 MB
  • 05 Change of basis/059 Slides Two non standard bases Method 1.pdf 1.1 MB
  • 15 Diagonalization/203 Notes Diagonalizability Problem 3.pdf 1.1 MB
  • 06 Row space, column space, and nullspace of a matrix/081 Notes Nullspace Problem 10.pdf 1.1 MB
  • 12 Gram-Schmidt process/159 Notes Calculating projections Problem 5.pdf 1.1 MB
  • 10 Properties of matrix transformations/126 Slides Composition of linear transformations.pdf 1.1 MB
  • 06 Row space, column space, and nullspace of a matrix/079 Slides How to find the nullspace Problem 8.pdf 1.1 MB
  • 15 Diagonalization/191 Slides Why you should love diagonal matrices.pdf 1.0 MB
  • 08 Matrix transformations from R^n to R^m/101 Notes Kernel Problem 4.pdf 1.0 MB
  • 09 Geometry of matrix transformations on R^2 and R^3/115 Notes Plane symmetry in the 3-space Problem 3.pdf 1.0 MB
  • 08 Matrix transformations from R^n to R^m/106 Notes Linear transformations Problem 9.pdf 1.0 MB
  • 15 Diagonalization/209 Notes Powers of matrices Problem 8.pdf 997.5 kB
  • 08 Matrix transformations from R^n to R^m/095 Notes When is a function from Rn to Rm linear Approach 2.pdf 991.1 kB
  • 06 Row space, column space, and nullspace of a matrix/075 Notes Determining a basis for a span consisting of a subset of given vectors Problem 5.pdf 986.7 kB
  • 08 Matrix transformations from R^n to R^m/105 Notes Kernel and geometry Problem 8.pdf 985.2 kB
  • 08 Matrix transformations from R^n to R^m/095 Slides When is a function from Rn to Rm linear Approach 2.pdf 985.1 kB
  • 05 Change of basis/057 Slides Our unifying example and bases.pdf 981.0 kB
  • 04 Coordinates, basis, and dimension/048 Slides Coordinates with respect to a basis.pdf 967.4 kB
  • 03 Linear combinations and linear independence/035 Notes Linear independence in the space of functions Problem 8.pdf 958.5 kB
  • 03 Linear combinations and linear independence/032 Slides An important remark on linear independence in Rn.pdf 956.5 kB
  • 03 Linear combinations and linear independence/038 Slides Wronskian and linear independence for smooth functions.pdf 953.4 kB
  • 08 Matrix transformations from R^n to R^m/104 Notes Linear transformations Problem 7.pdf 953.3 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/083 Slides Nullity.pdf 950.2 kB
  • 06 Row space, column space, and nullspace of a matrix/078 Slides Nullspace for a matrix.pdf 937.7 kB
  • 02 Real vector spaces and their subspaces/009 Slides Cancellation property.pdf 929.9 kB
  • 03 Linear combinations and linear independence/037 Notes Linear independence for smooth functions Problem 9.pdf 916.6 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/116 Notes Projections on planes in the 3-space Problem 4.pdf 913.9 kB
  • 12 Gram-Schmidt process/160 Slides Gram Schmidt Process.pdf 893.5 kB
  • 12 Gram-Schmidt process/148 Slides Orthonormal bases are awesome Reason 3 Transition matrix.pdf 871.7 kB
  • 02 Real vector spaces and their subspaces/018 Notes Subspace Problem 4.pdf 864.7 kB
  • 04 Coordinates, basis, and dimension/041 Slides What is a basis and dimension.pdf 856.6 kB
  • 02 Real vector spaces and their subspaces/015 Slides Subspace Problem 1.pdf 852.4 kB
  • 02 Real vector spaces and their subspaces/010 Slides Two properties of vector spaces Definition of difference.pdf 849.0 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/082 Slides Rank of a matrix.pdf 830.9 kB
  • 03 Linear combinations and linear independence/040 Notes Linear independence for smooth functions Problem 11.pdf 828.9 kB
  • 05 Change of basis/056 Slides Previous example with transition matrix.pdf 822.8 kB
  • 02 Real vector spaces and their subspaces/004 Slides Our prototype.pdf 820.5 kB
  • 12 Gram-Schmidt process/163 Slides Gram Schmidt Process Problem 7.pdf 818.2 kB
  • 02 Real vector spaces and their subspaces/003 Slides From concrete to abstract.pdf 817.2 kB
  • 13 Orthogonal matrices/164 Slides Product of a matrix and its transposed is symmetric.pdf 816.8 kB
  • 12 Gram-Schmidt process/158 Notes Calculating projections Problem 4.pdf 813.4 kB
  • 04 Coordinates, basis, and dimension/052 Notes Bases in a space of functions Problem 7.pdf 798.1 kB
  • 04 Coordinates, basis, and dimension/049 Notes Coordinates with respect to a basis are unique.pdf 796.2 kB
  • 15 Diagonalization/192 Slides Similar matrices.pdf 795.7 kB
  • 02 Real vector spaces and their subspaces/018 Slides Subspace Problem 4.pdf 795.3 kB
  • 03 Linear combinations and linear independence/040 Slides Linear independence for smooth functions Problem 11.pdf 789.6 kB
  • 06 Row space, column space, and nullspace of a matrix/081 Slides Nullspace Problem 10.pdf 771.5 kB
  • 13 Orthogonal matrices/168 Slides Useful formulas for the coming proofs.pdf 767.1 kB
  • 13 Orthogonal matrices/174 Notes Property 6 Product of orthogonal matrices is orthogonal.pdf 750.1 kB
  • 08 Matrix transformations from R^n to R^m/098 Slides Matrix transformations Problem 1.pdf 747.9 kB
  • 06 Row space, column space, and nullspace of a matrix/073 Notes Determining a basis for a span Problem 3.pdf 744.3 kB
  • 06 Row space, column space, and nullspace of a matrix/073 Slides Determining a basis for a span Problem 3.pdf 717.6 kB
  • 05 Change of basis/065 Notes Change of basis Problem 4.pdf 717.3 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/086 Slides Relationship between rank and nullity, Problem 2.pdf 714.9 kB
  • 12 Gram-Schmidt process/151 Slides Coordinates in orthogonal bases Theorem and proof.pdf 712.8 kB
  • 15 Diagonalization/209 Slides Powers of matrices Problem 8.pdf 687.4 kB
  • 10 Properties of matrix transformations/123 Notes Transformations of straight lines Problem 2.pdf 686.2 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/111 Notes Symmetry about a line Problem 2.pdf 684.1 kB
  • 04 Coordinates, basis, and dimension/044 Notes Bases in the 3 space Problem 2.pdf 681.8 kB
  • 02 Real vector spaces and their subspaces/002 Slides From abstract to concrete.pdf 669.3 kB
  • 03 Linear combinations and linear independence/021 Slides Linear combinations New stuff Example 1.pdf 667.8 kB
  • 15 Diagonalization/210 Notes Diagonalization Problem 9.pdf 664.1 kB
  • 13 Orthogonal matrices/173 Slides Property 5 Preserving distances and angles.pdf 663.0 kB
  • 13 Orthogonal matrices/176 Notes Orthogonal matrices Problem 2.pdf 653.3 kB
  • 06 Row space, column space, and nullspace of a matrix/078 Notes Nullspace for a matrix.pdf 651.6 kB
  • 08 Matrix transformations from R^n to R^m/098 Notes Matrix transformations Problem 1.pdf 651.2 kB
  • 06 Row space, column space, and nullspace of a matrix/076 Notes A tricky one Let rows become columns Problem 6.pdf 643.2 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/087 Slides Relationship between rank and nullity, Problem 3.pdf 627.6 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/119 Slides Rotations in the 3-space Problem 7.pdf 626.5 kB
  • 15 Diagonalization/210 Slides Diagonalization Problem 9.pdf 621.0 kB
  • 06 Row space, column space, and nullspace of a matrix/069 Slides Row space and column space for a matrix.pdf 612.2 kB
  • 15 Diagonalization/198 Slides Eigenspaces Geometric and algebraic multiplicity of eigenvalues.pdf 611.4 kB
  • 03 Linear combinations and linear independence/039 Slides Linear independence for smooth functions Problem 10.pdf 607.2 kB
  • 02 Real vector spaces and their subspaces/011 Slides Some properties of vector spaces.pdf 605.4 kB
  • 12 Gram-Schmidt process/154 Notes Orthonormal bases Problem 3.pdf 597.3 kB
  • 03 Linear combinations and linear independence/039 Notes Linear independence for smooth functions Problem 10.pdf 595.9 kB
  • 08 Matrix transformations from R^n to R^m/104 Slides Linear transformations Problem 7.pdf 595.2 kB
  • 08 Matrix transformations from R^n to R^m/106 Slides Linear transformations Problem 9.pdf 593.0 kB
  • 14 Eigenvalues and eigenvectors/181 Slides Eigenvalues and eigenvectors Problem 1.pdf 592.7 kB
  • 11 General linear transformations in different bases/142 Notes Linear transformations Problem 10.pdf 589.7 kB
  • 14 Eigenvalues and eigenvectors/178 Slides Eigenvalues and eigenvectors The terms.pdf 588.1 kB
  • 04 Coordinates, basis, and dimension/049 Slides Coordinates with respect to a basis are unique.pdf 582.8 kB
  • 08 Matrix transformations from R^n to R^m/100 Notes Basis for the image Problem 3.pdf 581.6 kB
  • 04 Coordinates, basis, and dimension/045 Slides Bases in the 4 space Problem 3.pdf 578.5 kB
  • 13 Orthogonal matrices/170 Notes Property 2 Each orthogonal matrix is invertible and the inverse is also orthogonal.pdf 575.6 kB
  • 03 Linear combinations and linear independence/033 Slides Linearly independent generators Problem 6.pdf 571.5 kB
  • 12 Gram-Schmidt process/155 Notes Projection Theorem 1.pdf 558.2 kB
  • 13 Orthogonal matrices/168 Notes Useful formulas for the coming proofs.pdf 554.1 kB
  • 02 Real vector spaces and their subspaces/009 Notes Cancellation property.pdf 550.9 kB
  • 04 Coordinates, basis, and dimension/047 Notes Bases in the space of polynomials Problem 5.pdf 544.3 kB
  • 08 Matrix transformations from R^n to R^m/096 Slides When is a function from Rn to Rm linear Approach 3.pdf 542.0 kB
  • 08 Matrix transformations from R^n to R^m/091 Slides What do we mean by linear.pdf 541.2 kB
  • 12 Gram-Schmidt process/150 Slides Coordinates in ON bases Problem 1.pdf 537.5 kB
  • 06 Row space, column space, and nullspace of a matrix/080 Slides Nullspace Problem 9.pdf 537.0 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/108 Notes An example with nontrivial kernel.pdf 516.8 kB
  • 02 Real vector spaces and their subspaces/005 Notes Formal definition of vector spaces Example 1.pdf 516.0 kB
  • 08 Matrix transformations from R^n to R^m/094 Slides When is a function from Rn to Rm linear Approach 1.pdf 513.0 kB
  • 15 Diagonalization/204 Notes Diagonalizability Problem 4.pdf 507.2 kB
  • 14 Eigenvalues and eigenvectors/184 Slides Finding eigenvalues and eigenvectors Short and sweet.pdf 507.1 kB
  • 06 Row space, column space, and nullspace of a matrix/076 Slides A tricky one Let rows become columns Problem 6.pdf 504.7 kB
  • 12 Gram-Schmidt process/147 Slides Orthonormal bases are awesome Reason 2 Dot product.pdf 491.9 kB
  • 15 Diagonalization/203 Slides Diagonalizability Problem 3.pdf 489.4 kB
  • 05 Change of basis/065 Slides Change of basis Problem 4.pdf 487.3 kB
  • 06 Row space, column space, and nullspace of a matrix/072 Slides Column space Problem 2.pdf 487.0 kB
  • 02 Real vector spaces and their subspaces/014 Slides All the subspace in R3.pdf 483.9 kB
  • 15 Diagonalization/205 Notes Diagonalizability Problem 5.pdf 479.6 kB
  • 04 Coordinates, basis, and dimension/044 Slides Bases in the 3 space Problem 2.pdf 476.4 kB
  • 15 Diagonalization/208 Slides Powers of matrices.pdf 470.0 kB
  • 05 Change of basis/053 Slides Coordinates in different bases.pdf 467.2 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/085 Notes Relationship between rank and nullity, Problem 1.pdf 460.5 kB
  • 15 Diagonalization/206 Notes Diagonalizability Problem 6.pdf 459.5 kB
  • 15 Diagonalization/201 Slides Sufficient but not necessary condition for diagonalizability.pdf 445.3 kB
  • 08 Matrix transformations from R^n to R^m/102 Slides Image and kernel Problem 5.pdf 444.7 kB
  • 08 Matrix transformations from R^n to R^m/101 Slides Kernel Problem 4.pdf 444.4 kB
  • 08 Matrix transformations from R^n to R^m/103 Slides Inverse operators Problem 6.pdf 444.0 kB
  • 10 Properties of matrix transformations/130 Slides Compositions of linear transformations Problem 5.pdf 435.7 kB
  • 14 Eigenvalues and eigenvectors/181 Notes Eigenvalues and eigenvectors Problem 1.pdf 434.4 kB
  • 02 Real vector spaces and their subspaces/016 Slides Subspace Problem 2.pdf 430.5 kB
  • 12 Gram-Schmidt process/157 Slides Projection Formula An illustration in the 3-space.pdf 428.8 kB
  • 12 Gram-Schmidt process/158 Slides Calculating projections Problem 4.pdf 428.6 kB
  • 12 Gram-Schmidt process/156 Slides Projection Theorem 2.pdf 426.7 kB
  • 13 Orthogonal matrices/167 Slides A 3 by 3 example.pdf 426.2 kB
  • 13 Orthogonal matrices/167 Notes A 3 by 3 example.pdf 423.6 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/112 Notes Rotation by 90 degrees about the origin.pdf 410.1 kB
  • 10 Properties of matrix transformations/130 Article-Solved-Problems-Compositions-of-Linear-Transformations.pdf 406.2 kB
  • 13 Orthogonal matrices/170 Slides Property 2 Each orthogonal matrix is invertible and the inverse is also orthogonal.pdf 403.3 kB
  • 12 Gram-Schmidt process/145 Slides Orthonormal bases are awesome.pdf 402.7 kB
  • 04 Coordinates, basis, and dimension/047 Slides Bases in the space of polynomials Problem 5.pdf 396.2 kB
  • 13 Orthogonal matrices/175 Slides Orthogonal matrices Problem 1.pdf 391.2 kB
  • 14 Eigenvalues and eigenvectors/187 Slides Eigenvalues and eigenvectors Problem 4.pdf 382.0 kB
  • 14 Eigenvalues and eigenvectors/186 Slides Eigenvalues and eigenvectors Problem 3.pdf 381.8 kB
  • 01 Introduction to the course/001 List_of_all_Videos_and_Problems_Linear_Algebra_and_Geometry_2.pdf 374.8 kB
  • 08 Matrix transformations from R^n to R^m/093 Slides How to think about functions from Rn to Rm.pdf 374.1 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/109 Notes Line symmetries in the plane.pdf 372.6 kB
  • 13 Orthogonal matrices/171 Slides Property 3 Orthonormal columns and rows.pdf 359.6 kB
  • 08 Matrix transformations from R^n to R^m/100 Slides Basis for the image Problem 3.pdf 358.5 kB
  • 03 Linear combinations and linear independence/023 Slides Linear combinations Problem 1.pdf 352.1 kB
  • 15 Diagonalization/207 Slides Diagonalizability Problem 7.pdf 349.7 kB
  • 10 Properties of matrix transformations/123 Slides Transformations of straight lines Problem 2.pdf 345.8 kB
  • 11 General linear transformations in different bases/138 Slides Linear transformations in different bases.pdf 344.4 kB
  • 02 Real vector spaces and their subspaces/005 Slides Formal definition of vector spaces Example 1.pdf 343.8 kB
  • 12 Gram-Schmidt process/162 Slides Gram Schmidt Process Problem 6.pdf 338.1 kB
  • 12 Gram-Schmidt process/153 Slides Coordinates in orthogonal bases Problem 2.pdf 337.4 kB
  • 10 Properties of matrix transformations/121 Slides What happens with vector subspaces and affine subspaces under linear transformations.pdf 324.8 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/116 Slides Projections on planes in the 3-space Problem 4.pdf 322.9 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/115 Slides Plane symmetry in the 3-space Problem 3.pdf 322.3 kB
  • 16 Wrap-up Linear Algebra and Geometry 2/213 Slides Yes There will be Part 3.pdf 321.8 kB
  • 02 Real vector spaces and their subspaces/017 Slides Subspace Problem 3.pdf 312.9 kB
  • 04 Coordinates, basis, and dimension/051 Slides Dimension of a subspace Problem 6.pdf 308.2 kB
  • 14 Eigenvalues and eigenvectors/188 Slides Eigenvalues and eigenvectors Problem 5.pdf 306.3 kB
  • 14 Eigenvalues and eigenvectors/189 Slides Eigenvalues and eigenvectors Problem 6.pdf 306.2 kB
  • 08 Matrix transformations from R^n to R^m/092 Slides Some terminology.pdf 304.8 kB
  • 06 Row space, column space, and nullspace of a matrix/077 Slides A basis in the space of polynomials Problem 7.pdf 304.3 kB
  • 06 Row space, column space, and nullspace of a matrix/075 Slides Determining a basis for a span consisting of a subset of given vectors Problem 5.pdf 304.0 kB
  • 06 Row space, column space, and nullspace of a matrix/074 Slides Determining a basis for a span consisting of a subset of given vectors Problem 4.pdf 302.5 kB
  • 05 Change of basis/062 Slides Change of basis Problem 1.pdf 300.4 kB
  • 11 General linear transformations in different bases/140 Slides Linear transformations in different bases Problem 8.pdf 300.3 kB
  • 11 General linear transformations in different bases/139 Slides Linear transformations in different bases Problem 7.pdf 299.7 kB
  • 02 Real vector spaces and their subspaces/012 Slides What is a subspace.pdf 294.8 kB
  • 12 Gram-Schmidt process/159 Slides Calculating projections Problem 5.pdf 285.2 kB
  • 04 Coordinates, basis, and dimension/042 Slides Bases in the 3 space Problem 1.pdf 276.6 kB
  • 11 General linear transformations in different bases/135 Slides Linear transformations Problem 4.pdf 276.0 kB
  • 11 General linear transformations in different bases/137 Slides Linear transformations Problem 6.pdf 270.7 kB
  • 12 Gram-Schmidt process/152 Slides Each orthogonal set is linearly independent Proof.pdf 269.8 kB
  • 03 Linear combinations and linear independence/037 Slides Linear independence for smooth functions Problem 9.pdf 267.4 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/108 Slides An example with nontrivial kernel.pdf 265.9 kB
  • 12 Gram-Schmidt process/146 Slides Orthonormal bases are awesome Reason 1 Distance.pdf 265.0 kB
  • 11 General linear transformations in different bases/133 Slides Linear transformations Problem 2.pdf 261.3 kB
  • 03 Linear combinations and linear independence/034 Slides Linear independence in the set of matrices Problem 7.pdf 251.4 kB
  • 10 Properties of matrix transformations/129 Slides Compositions of linear transformations Problem 4.pdf 243.9 kB
  • 15 Diagonalization/200 Slides Eigenvectors corresponding to different eigenvalues are linearly independent.pdf 242.6 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/085 Slides Relationship between rank and nullity, Problem 1.pdf 241.4 kB
  • 12 Gram-Schmidt process/149 Slides Orthonormal bases are awesome Reason 4 Coordinates.pdf 241.1 kB
  • 11 General linear transformations in different bases/141 Slides Linear transformations in different bases Problem 9.pdf 239.4 kB
  • 15 Diagonalization/199 Slides Eigenspaces Problem 2.pdf 236.9 kB
  • 11 General linear transformations in different bases/143 Slides Linear transformations Problem 11.pdf 236.6 kB
  • 11 General linear transformations in different bases/142 Slides Linear transformations Problem 10.pdf 236.6 kB
  • 04 Coordinates, basis, and dimension/052 Slides Bases in a space of functions Problem 7.pdf 234.4 kB
  • 13 Orthogonal matrices/176 Slides Orthogonal matrices Problem 2.pdf 229.3 kB
  • 03 Linear combinations and linear independence/026 Slides Span Problem 3.pdf 221.1 kB
  • 05 Change of basis/066 Slides Change of basis Problem 5.pdf 218.7 kB
  • 12 Gram-Schmidt process/154 Slides Orthonormal bases Problem 3.pdf 213.3 kB
  • 03 Linear combinations and linear independence/028 Slides Span Problem 5.pdf 212.0 kB
  • 11 General linear transformations in different bases/134 Slides Linear transformations Problem 3.pdf 211.6 kB
  • 11 General linear transformations in different bases/136 Slides Linear transformations Problem 5.pdf 210.9 kB
  • 05 Change of basis/064 Slides Change of basis Problem 3.pdf 206.2 kB
  • 11 General linear transformations in different bases/132 Slides Linear transformations Problem 1.pdf 203.0 kB
  • 03 Linear combinations and linear independence/027 Slides Span Problem 4.pdf 201.9 kB
  • 02 Real vector spaces and their subspaces/008 Slides Vector spaces Example 4 Complex numbers.pdf 196.1 kB
  • 04 Coordinates, basis, and dimension/046 Slides Bases in the 4 space Problem 4.pdf 187.4 kB
  • 03 Linear combinations and linear independence/024 Slides Linear combinations Problem 2.pdf 183.8 kB
  • 08 Matrix transformations from R^n to R^m/105 Slides Kernel and geometry Problem 8.pdf 182.3 kB
  • 06 Row space, column space, and nullspace of a matrix/068 Slides What you are going to learn in this section.pdf 181.6 kB
  • 05 Change of basis/063 Slides Change of basis Problem 2.pdf 174.0 kB
  • 03 Linear combinations and linear independence/022 Slides Linear combinations Example 2.pdf 170.8 kB
  • 03 Linear combinations and linear independence/035 Slides Linear independence in the space of functions Problem 8.pdf 164.7 kB
  • 13 Orthogonal matrices/174 Slides Property 6 Product of orthogonal matrices is orthogonal.pdf 163.1 kB
  • 03 Linear combinations and linear independence/029 Slides What do we mean by trivial.pdf 145.6 kB
  • 12 Gram-Schmidt process/163 Article-Solved-Problems-Gram-Schmidt.pdf 143.4 kB
  • 15 Diagonalization/211 Article-Solved-Problems-Diagonalization.pdf 138.3 kB
  • 14 Eigenvalues and eigenvectors/190 Article-Solved-Problems-Eigenvalues.pdf 132.4 kB
  • 10 Properties of matrix transformations/120 Slides What kind of properties we will discuss.pdf 85.9 kB
  • 14 Eigenvalues and eigenvectors/179 Slides Order of defining Order of computing.pdf 66.3 kB
  • 04 Coordinates, basis, and dimension/002 Bases in the 3-space, Problem 1.en.srt 42.4 kB
  • 05 Change of basis/010 Change of basis, Problem 1.en.srt 40.4 kB
  • 11 General linear transformations in different bases/005 Linear transformations, Problem 4.en.srt 40.0 kB
  • 14 Eigenvalues and eigenvectors/009 Eigenvalues and eigenvectors for examples from Video 180.en.srt 33.8 kB
  • 11 General linear transformations in different bases/004 Linear transformations, Problem 3.en.srt 31.4 kB
  • 11 General linear transformations in different bases/002 Linear transformations, Problem 1.en.srt 30.8 kB
  • 08 Matrix transformations from R^n to R^m/009 Image, kernel, and inverse operators, Problem 2.en.srt 30.8 kB
  • 14 Eigenvalues and eigenvectors/013 Eigenvalues and eigenvectors, Problem 6.en.srt 30.0 kB
  • 15 Diagonalization/009 Eigenspaces, Problem 2.en.srt 29.6 kB
  • 14 Eigenvalues and eigenvectors/010 Eigenvalues and eigenvectors, Problem 3.en.srt 29.4 kB
  • 04 Coordinates, basis, and dimension/006 Bases in the 4-space, Problem 4.en.srt 28.0 kB
  • 03 Linear combinations and linear independence/006 Linear combinations, Problem 2.en.srt 27.5 kB
  • 11 General linear transformations in different bases/003 Linear transformations, Problem 2.en.srt 27.5 kB
  • 13 Orthogonal matrices/010 Property 5_ Preserving distances and angles.en.srt 27.2 kB
  • 12 Gram-Schmidt process/007 Coordinates in ON bases, Problem 1.en.srt 26.9 kB
  • 02 Real vector spaces and their subspaces/015 Subspaces, Problem 2.en.srt 26.1 kB
  • 06 Row space, column space, and nullspace of a matrix/014 Nullspace, Problem 10.en.srt 25.0 kB
  • 11 General linear transformations in different bases/009 Linear transformations in different bases, Problem 7.en.srt 24.5 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/013 Rotations in the 3-space, Problem 7.en.srt 24.4 kB
  • 05 Change of basis/012 Change of basis, Problem 3.en.srt 24.4 kB
  • 03 Linear combinations and linear independence/015 Linearly independent generators, Problem 6.en.srt 23.8 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/004 Projection on a given vector, Problem 1.en.srt 22.8 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/012 Projection on a given plane, Problem 6.en.srt 22.6 kB
  • 14 Eigenvalues and eigenvectors/001 Crash course in factoring polynomials.en.srt 22.4 kB
  • 08 Matrix transformations from R^n to R^m/005 When is a function from Rn to Rm linear_ Approach 2.en.srt 22.4 kB
  • 15 Diagonalization/010 Eigenvectors corresponding to different eigenvalues are linearly independent.en.srt 21.8 kB
  • 02 Real vector spaces and their subspaces/016 Subspaces, Problem 3.en.srt 21.5 kB
  • 12 Gram-Schmidt process/013 Projection Theorem 2.en.srt 21.1 kB
  • 14 Eigenvalues and eigenvectors/012 Eigenvalues and eigenvectors, Problem 5.en.srt 21.0 kB
  • 06 Row space, column space, and nullspace of a matrix/003 What are the elementary row operations doing to the row spaces_.en.srt 20.9 kB
  • 10 Properties of matrix transformations/005 Change of area (volume) under linear operators in the plane (space).en.srt 20.9 kB
  • 10 Properties of matrix transformations/011 Compositions of linear transformations, Problem 5.en.srt 20.8 kB
  • 03 Linear combinations and linear independence/018 Vandermonde determinant and polynomials.en.srt 20.4 kB
  • 02 Real vector spaces and their subspaces/011 What is a subspace.en.srt 20.0 kB
  • 02 Real vector spaces and their subspaces/012 All the subspaces in R2.en.srt 19.8 kB
  • 12 Gram-Schmidt process/020 Gram-Schmidt Process, Problem 7.en.srt 19.7 kB
  • 03 Linear combinations and linear independence/019 Linear independence in C^∞(R), Problem 9.en.srt 19.6 kB
  • 12 Gram-Schmidt process/010 Coordinates in orthogonal bases, Problem 2.en.srt 19.5 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/011 Symmetry about a given plane, Problem 5.en.srt 19.5 kB
  • 02 Real vector spaces and their subspaces/004 Formal definition of vector spaces Example 1_ Rn.en.srt 19.2 kB
  • 11 General linear transformations in different bases/006 Linear transformations, Problem 5.en.srt 19.2 kB
  • 14 Eigenvalues and eigenvectors/007 How to compute eigenvectors.en.srt 19.1 kB
  • 06 Row space, column space, and nullspace of a matrix/008 Determining a basis for a span consisting of a subset of given vectors, Prob.en.srt 19.1 kB
  • 14 Eigenvalues and eigenvectors/006 How to compute eigenvalues Characteristic polynomial.en.srt 19.0 kB
  • 11 General linear transformations in different bases/007 Linear transformations in different bases, Problem 6.en.srt 18.8 kB
  • 06 Row space, column space, and nullspace of a matrix/010 A basis in the space of polynomials, Problem 7.en.srt 18.4 kB
  • 02 Real vector spaces and their subspaces/005 Vector spaces, Example 2_ m × n matrices with real entries.en.srt 18.3 kB
  • 06 Row space, column space, and nullspace of a matrix/013 Nullspace, Problem 9.en.srt 18.2 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/003 Relationship between rank and nullity.en.srt 18.2 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/003 Line symmetries in the plane.en.srt 18.0 kB
  • 14 Eigenvalues and eigenvectors/004 Eigenvalues and eigenvectors geometrically.en.srt 18.0 kB
  • 08 Matrix transformations from R^n to R^m/013 Inverse operators, Problem 6.en.srt 18.0 kB
  • 04 Coordinates, basis, and dimension/005 Bases in the 4-space, Problem 3.en.srt 17.8 kB
  • 06 Row space, column space, and nullspace of a matrix/007 Determining a basis for a span consisting of a subset of given vectors, Prob.en.srt 17.5 kB
  • 02 Real vector spaces and their subspaces/006 Vector spaces, Example 3_ real-valued functions on some interval.en.srt 17.2 kB
  • 15 Diagonalization/013 Diagonalizability, Problem 3.en.srt 17.0 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/005 Symmetry about the line y = kx, Problem 2.en.srt 16.9 kB
  • 03 Linear combinations and linear independence/013 Geometry of linear independence and linear dependence.en.srt 16.8 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/009 The Fundamental Theorem of Linear Algebra and Gilbert Strang.en.srt 16.8 kB
  • 10 Properties of matrix transformations/010 Compositions of linear transformations, Problem 4.en.srt 16.6 kB
  • 03 Linear combinations and linear independence/016 Linear independence in the set of matrices, Problem 7.en.srt 16.3 kB
  • 03 Linear combinations and linear independence/009 Span, Problem 4.en.srt 16.3 kB
  • 05 Change of basis/015 Change to an orthonormal basis in R^2.en.srt 16.1 kB
  • 01 Introduction to the course/001 Introduction to the course.en.srt 16.0 kB
  • 03 Linear combinations and linear independence/008 Span, Problem 3.en.srt 16.0 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/001 Our unifying example_ linear transformations and change of basis.en.srt 15.9 kB
  • 10 Properties of matrix transformations/009 Why does it work_.en.srt 15.9 kB
  • 15 Diagonalization/003 Similarity of matrices is an equivalence relation (RST).en.srt 15.6 kB
  • 03 Linear combinations and linear independence/005 Linear combinations, Problem 1.en.srt 15.6 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/007 Orthogonal complements, Problem 4.en.srt 15.5 kB
  • 02 Real vector spaces and their subspaces/010 Some properties of vector spaces.en.srt 15.5 kB
  • 03 Linear combinations and linear independence/012 Linear independence and linear dependence.en.srt 15.3 kB
  • 11 General linear transformations in different bases/010 Linear transformations in different bases, Problem 8.en.srt 15.2 kB
  • 10 Properties of matrix transformations/007 Compositions of linear transformations.en.srt 15.1 kB
  • 04 Coordinates, basis, and dimension/003 Bases in the plane and in the 3-space.en.srt 15.1 kB
  • 15 Diagonalization/008 Eigenspaces; geometric and algebraic multiplicity of eigenvalues.en.srt 14.9 kB
  • 05 Change of basis/008 Two non-standard bases, Method 2.en.srt 14.9 kB
  • 06 Row space, column space, and nullspace of a matrix/006 Determining a basis for a span, Problem 3.en.srt 14.7 kB
  • 05 Change of basis/009 How to recalculate coordinates between two non-standard bases_ An algorithm.en.srt 14.7 kB
  • 05 Change of basis/003 Transition matrix, a derivation.en.srt 14.7 kB
  • 12 Gram-Schmidt process/015 Calculating projections, Problem 4.en.srt 14.6 kB
  • 08 Matrix transformations from R^n to R^m/006 When is a function from Rn to Rm linear_ Approach 3.en.srt 14.2 kB
  • 05 Change of basis/011 Change of basis, Problem 2.en.srt 14.2 kB
  • 08 Matrix transformations from R^n to R^m/002 Some terminology.en.srt 14.2 kB
  • 08 Matrix transformations from R^n to R^m/003 How to think about functions from Rn to Rm_.en.srt 14.0 kB
  • 06 Row space, column space, and nullspace of a matrix/004 What are the elementary row operations doing to the column spaces_.en.srt 13.9 kB
  • 02 Real vector spaces and their subspaces/007 Vector spaces, Example 4_ complex numbers.en.srt 13.9 kB
  • 11 General linear transformations in different bases/011 Linear transformations in different bases, Problem 9.en.srt 13.9 kB
  • 11 General linear transformations in different bases/013 Linear transformations, Problem 11.en.srt 13.8 kB
  • 10 Properties of matrix transformations/004 Transformations of straight lines, Problem 2.en.srt 13.6 kB
  • 06 Row space, column space, and nullspace of a matrix/011 Nullspace for a matrix.en.srt 13.5 kB
  • 15 Diagonalization/006 How to diagonalize a matrix, a recipe.en.srt 13.5 kB
  • 14 Eigenvalues and eigenvectors/011 Eigenvalues and eigenvectors, Problem 4.en.srt 13.5 kB
  • 10 Properties of matrix transformations/006 Change of area under linear transformations, Problem 3.en.srt 13.4 kB
  • 04 Coordinates, basis, and dimension/008 Coordinates with respect to a basis.en.srt 13.4 kB
  • 12 Gram-Schmidt process/012 Projection Theorem 1.en.srt 13.2 kB
  • 02 Real vector spaces and their subspaces/003 Our prototype.en.srt 13.2 kB
  • 12 Gram-Schmidt process/001 Dot product and orthogonality until now.en.srt 13.1 kB
  • 06 Row space, column space, and nullspace of a matrix/005 Column space, Problem 2.en.srt 13.1 kB
  • 13 Orthogonal matrices/012 Orthogonal matrices, Problem 1.en.srt 12.9 kB
  • 08 Matrix transformations from R^n to R^m/007 Approaches 2 and 3 are equivalent.en.srt 12.8 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/009 Plane symmetry in the 3-space, Problem 3.en.srt 12.7 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/008 Expansion, compression, scaling, and shear.en.srt 12.6 kB
  • 02 Real vector spaces and their subspaces/009 Two properties of vector spaces; Definition of difference.en.srt 12.5 kB
  • 12 Gram-Schmidt process/019 Gram-Schmidt Process, Problem 6.en.srt 12.5 kB
  • 15 Diagonalization/017 Diagonalizability, Problem 7.en.srt 12.5 kB
  • 10 Properties of matrix transformations/003 Parallel lines transform into parallel lines, Problem 1.en.srt 12.1 kB
  • 06 Row space, column space, and nullspace of a matrix/009 A tricky one_ Let rows become columns, Problem 6.en.srt 12.0 kB
  • 03 Linear combinations and linear independence/002 Linear combinations in Part 1.en.srt 11.7 kB
  • 08 Matrix transformations from R^n to R^m/016 Linear transformations, Problem 9.en.srt 11.7 kB
  • 10 Properties of matrix transformations/008 How to obtain the standard matrix of a composition of linear transformations.en.srt 11.7 kB
  • 05 Change of basis/014 Change of basis, Problem 5.en.srt 11.6 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/006 Rotation by 90 degrees about the origin.en.srt 11.5 kB
  • 08 Matrix transformations from R^n to R^m/012 Image and kernel, Problem 5.en.srt 11.5 kB
  • 15 Diagonalization/012 Necessary and sufficient condition for diagonalizability.en.srt 11.4 kB
  • 06 Row space, column space, and nullspace of a matrix/002 Row space and column space for a matrix.en.srt 11.4 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/002 An example with nontrivial kernel.en.srt 11.2 kB
  • 02 Real vector spaces and their subspaces/013 All the subspaces in R3.en.srt 11.2 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/007 Rotation by the angle α about the origin.en.srt 11.1 kB
  • 04 Coordinates, basis, and dimension/012 Bases in a space of functions, Problem 7.en.srt 11.0 kB
  • 12 Gram-Schmidt process/017 Gram-Schmidt Process.en.srt 11.0 kB
  • 04 Coordinates, basis, and dimension/011 Dimension of a subspace, Problem 6.en.srt 10.9 kB
  • 02 Real vector spaces and their subspaces/017 Subspaces, Problem 4.en.srt 10.9 kB
  • 05 Change of basis/005 Our unifying example.en.srt 10.7 kB
  • 08 Matrix transformations from R^n to R^m/011 Kernel, Problem 4.en.srt 10.6 kB
  • 03 Linear combinations and linear independence/014 An important remark on linear independence in Rn.en.srt 10.6 kB
  • 03 Linear combinations and linear independence/017 Linear independence in C^0[−∞, ∞], Problem 8.en.srt 10.6 kB
  • 03 Linear combinations and linear independence/020 Wronskian and linear independence in C∞(R).en.srt 10.6 kB
  • 08 Matrix transformations from R^n to R^m/014 Linear transformations, Problem 7.en.srt 10.6 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/004 Relationship between rank and nullity, Problem 1.en.srt 10.3 kB
  • 02 Real vector spaces and their subspaces/014 Subspaces, Problem 1.en.srt 10.1 kB
  • 08 Matrix transformations from R^n to R^m/004 When is a function from Rn to Rm linear_ Approach 1.en.srt 9.9 kB
  • 15 Diagonalization/020 Diagonalization, Problem 9.en.srt 9.8 kB
  • 08 Matrix transformations from R^n to R^m/015 Kernel and geometry, Problem 8.en.srt 9.8 kB
  • 15 Diagonalization/001 Why you should love diagonal matrices.en.srt 9.7 kB
  • 03 Linear combinations and linear independence/007 What is a span, definition and some examples.en.srt 9.4 kB
  • 03 Linear combinations and linear independence/022 Linear independence in C^∞(R), Problem 11.en.srt 9.3 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/005 Relationship between rank and nullity, Problem 2.en.srt 9.2 kB
  • 14 Eigenvalues and eigenvectors/014 Eigenvalues and eigenvectors, Problem 7.en.srt 9.2 kB
  • 04 Coordinates, basis, and dimension/001 What is a basis and dimension_.en.srt 9.1 kB
  • 06 Row space, column space, and nullspace of a matrix/012 How to find the nullspace, Problem 8.en.srt 9.0 kB
  • 12 Gram-Schmidt process/008 Coordinates in orthogonal bases, Theorem and proof.en.srt 9.0 kB
  • 10 Properties of matrix transformations/002 What happens with vector subspaces and affine subspaces under linear transfo.en.srt 8.9 kB
  • 13 Orthogonal matrices/009 Property 4_ Orthogonal matrices are transition matrices between ON-bases.en.srt 8.9 kB
  • 05 Change of basis/007 Two non-standard bases, Method 1.en.srt 8.8 kB
  • 15 Diagonalization/019 Powers of matrices, Problem 8.en.srt 8.8 kB
  • 05 Change of basis/013 Change of basis, Problem 4.en.srt 8.8 kB
  • 13 Orthogonal matrices/013 Orthogonal matrices, Problem 2.en.srt 8.8 kB
  • 11 General linear transformations in different bases/008 Linear transformations in different bases.en.srt 8.5 kB
  • 04 Coordinates, basis, and dimension/009 Coordinates with respect to a basis are unique.en.srt 8.4 kB
  • 13 Orthogonal matrices/006 Property 1_ Determinant of each orthogonal matrix is 1 or −1.en.srt 8.3 kB
  • 13 Orthogonal matrices/002 Definition and examples of orthogonal matrices.en.srt 8.3 kB
  • 12 Gram-Schmidt process/016 Calculating projections, Problem 5.en.srt 8.2 kB
  • 08 Matrix transformations from R^n to R^m/010 Basis for the image, Problem 3.en.srt 8.2 kB
  • 15 Diagonalization/015 Diagonalizability, Problem 5.en.srt 8.1 kB
  • 15 Diagonalization/004 Shared properties of similar matrices.en.srt 8.1 kB
  • 13 Orthogonal matrices/003 Geometry of 2-by-2 orthogonal matrices.en.srt 8.1 kB
  • 16 Wrap-up Linear Algebra and Geometry 2/001 Linear Algebra and Geometry 2, Wrap-up.en.srt 8.0 kB
  • 12 Gram-Schmidt process/002 Orthonormal bases are awesome.en.srt 7.9 kB
  • 13 Orthogonal matrices/005 Useful formulas for the coming proofs.en.srt 7.9 kB
  • 09 Geometry of matrix transformations on R^2 and R^3/010 Projections on planes in the 3-space, Problem 4.en.srt 7.8 kB
  • 08 Matrix transformations from R^n to R^m/001 What do we mean by linear_.en.srt 7.8 kB
  • 15 Diagonalization/007 Diagonalize our favourite matrix.en.srt 7.7 kB
  • 05 Change of basis/002 It is easy to recalculate from the standard basis.en.srt 7.7 kB
  • 12 Gram-Schmidt process/014 Projection Formula, an illustration in the 3-space.en.srt 7.6 kB
  • 12 Gram-Schmidt process/018 Gram-Schmidt Process, Our unifying example.en.srt 7.6 kB
  • 13 Orthogonal matrices/004 A 3-by-3 example.en.srt 7.5 kB
  • 03 Linear combinations and linear independence/001 Our unifying example.en.srt 7.4 kB
  • 11 General linear transformations in different bases/012 Linear transformations, Problem 10.en.srt 7.4 kB
  • 08 Matrix transformations from R^n to R^m/008 Matrix transformations, Problem 1.en.srt 7.3 kB
  • 05 Change of basis/001 Coordinates in different bases.en.srt 7.2 kB
  • 03 Linear combinations and linear independence/011 What do we mean by trivial_.en.srt 7.0 kB
  • 03 Linear combinations and linear independence/003 Linear combinations, new stuff. Example 1.en.srt 6.9 kB
  • 12 Gram-Schmidt process/011 Orthonormal bases, Problem 3.en.srt 6.9 kB
  • 12 Gram-Schmidt process/009 Each orthogonal set is linearly independent, Proof.en.srt 6.9 kB
  • 11 General linear transformations in different bases/001 Linear transformations between two linear spaces.en.srt 6.9 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/008 Four fundamental matrix spaces.en.srt 6.7 kB
  • 06 Row space, column space, and nullspace of a matrix/001 What you are going to learn in this section.en.srt 6.5 kB
  • 02 Real vector spaces and their subspaces/008 Cancellation property.en.srt 6.5 kB
  • 13 Orthogonal matrices/001 Product of a matrix and its transposed is symmetric.en.srt 6.3 kB
  • 13 Orthogonal matrices/011 Property 6_ Product of orthogonal matrices is orthogonal.en.srt 6.2 kB
  • 14 Eigenvalues and eigenvectors/008 Finding eigenvalues and eigenvectors_ short and sweet.en.srt 6.1 kB
  • 15 Diagonalization/021 Sneak peek into the next course; orthogonal diagonalization.en.srt 6.1 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/001 Rank of a matrix.en.srt 6.1 kB
  • 03 Linear combinations and linear independence/021 Linear independence in C^∞(R), Problem 10.en.srt 6.1 kB
  • 05 Change of basis/006 One more simple example and bases.en.srt 5.8 kB
  • 03 Linear combinations and linear independence/004 Linear combinations Example 2.en.srt 5.8 kB
  • 10 Properties of matrix transformations/001 What kind of properties we will discuss.en.srt 5.8 kB
  • 13 Orthogonal matrices/008 Property 3_ Orthonormal columns and rows.en.srt 5.7 kB
  • 05 Change of basis/004 Previous example with transition matrix.en.srt 5.6 kB
  • 15 Diagonalization/018 Powers of matrices.en.srt 5.5 kB
  • 14 Eigenvalues and eigenvectors/005 Eigenvalues and eigenvectors, Problem 1.en.srt 5.4 kB
  • 04 Coordinates, basis, and dimension/004 Bases in the 3-space, Problem 2.en.srt 5.4 kB
  • 13 Orthogonal matrices/007 Property 2_ Each orthogonal matrix A is invertible and A−1 is also orthogona.en.srt 5.3 kB
  • 15 Diagonalization/016 Diagonalizability, Problem 6.en.srt 5.3 kB
  • 12 Gram-Schmidt process/006 Orthonormal bases are awesome, Reason 4_ coordinates.en.srt 5.2 kB
  • 04 Coordinates, basis, and dimension/010 Coordinates in our unifying example.en.srt 5.1 kB
  • 15 Diagonalization/014 Diagonalizability, Problem 4.en.srt 5.0 kB
  • 15 Diagonalization/005 Diagonalizable matrices.en.srt 4.8 kB
  • 04 Coordinates, basis, and dimension/007 Bases in the space of polynomials, Problem 5.en.srt 4.7 kB
  • 12 Gram-Schmidt process/004 Orthonormal bases are awesome, Reason 2_ dot product.en.srt 4.5 kB
  • 02 Real vector spaces and their subspaces/001 From abstract to concrete.en.srt 4.1 kB
  • 16 Wrap-up Linear Algebra and Geometry 2/002 Yes, there will be Part 3!.en.srt 4.0 kB
  • 02 Real vector spaces and their subspaces/002 From concrete to abstract.en.srt 4.0 kB
  • 12 Gram-Schmidt process/005 Orthonormal bases are awesome, Reason 3_ transition matrix.en.srt 3.8 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/006 Relationship between rank and nullity, Problem 3.en.srt 3.5 kB
  • 15 Diagonalization/002 Similar matrices.en.srt 3.2 kB
  • 15 Diagonalization/011 A sufficient, but not necessary, condition for diagonalizability.en.srt 3.1 kB
  • 12 Gram-Schmidt process/003 Orthonormal bases are awesome, Reason 1_ distance.en.srt 2.9 kB
  • 07 Rank, nullity, and four fundamental matrix spaces/002 Nullity.en.srt 2.7 kB
  • 14 Eigenvalues and eigenvectors/002 Eigenvalues and eigenvectors, the terms.en.srt 2.7 kB
  • 03 Linear combinations and linear independence/010 Span, Problem 5.en.srt 2.5 kB
  • 14 Eigenvalues and eigenvectors/003 Order of defining, order of computing.en.srt 2.1 kB
  • 16 Wrap-up Linear Algebra and Geometry 2/003 Final words.en.srt 668 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!