搜索
Udemy - Master statistics & machine learning intuition, math, code (3.2025)
磁力链接/BT种子名称
Udemy - Master statistics & machine learning intuition, math, code (3.2025)
磁力链接/BT种子简介
种子哈希:
65dc0cbe2b0e2976d6a9564f3a8c85b85c1d619b
文件大小:
12.98G
已经下载:
78
次
下载速度:
极快
收录时间:
2025-07-30
最近下载:
2025-08-17
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:65DC0CBE2B0E2976D6A9564F3A8C85B85C1D619B
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
哆哔涩漫
呦乐园
萝莉岛
最近搜索
逼痒
借东西的小人
信哥
我是他的了
连欣
on+trial++
nana_taipei
ほしのあき
家族中文
光漏
绿帽 极致
诱人
the.sandman.s02
丢丢
争宠
卡斯
大陸av劇作
逼真
美穴推荐
在父母面前
台湾美臀
model++
jk 学生
非常丰满
kiddy+porn
极美御姐啪啪
[realitykings]+-+hotbush
fc2 ppv
小小小梦
老爷爷
文件列表
06. Descriptive statistics/4. Code data from different distributions.mp4
317.8 MB
16. Clustering and dimension-reduction/6. Code dbscan.mp4
302.1 MB
12. Correlation/6. Code correlation matrix.mp4
296.2 MB
06. Descriptive statistics/12. Code Computing dispersion.mp4
279.0 MB
18. A real-world data journey/7. Python Import and clean the marriage data.mp4
262.0 MB
10. The t-test family/13. Code permutation testing.mp4
252.6 MB
16. Clustering and dimension-reduction/2. Code k-means clustering.mp4
241.5 MB
12. Correlation/3. Code correlation coefficient.mp4
224.5 MB
10. The t-test family/6. Code Two-samples t-test.mp4
221.6 MB
18. A real-world data journey/3. MATLAB Import and clean the marriage data.mp4
211.1 MB
12. Correlation/18. Code Kendall correlation.mp4
193.2 MB
16. Clustering and dimension-reduction/11. Code PCA.mp4
183.6 MB
13. Analysis of Variance (ANOVA)/8. Code One-way ANOVA (independent samples).mp4
181.1 MB
14. Regression/9. Code Multiple regression.mp4
179.3 MB
08. Probability theory/21. Code Law of Large Numbers in action.mp4
173.7 MB
10. The t-test family/9. Code Signed-rank test.mp4
169.7 MB
10. The t-test family/3. Code One-sample t-test.mp4
165.6 MB
08. Probability theory/15. Code sampling variability.mp4
162.3 MB
08. Probability theory/4. Code compute probabilities.mp4
155.6 MB
13. Analysis of Variance (ANOVA)/1. ANOVA intro, part1.mp4
144.4 MB
18. A real-world data journey/8. Python Import the divorce data.mp4
143.8 MB
07. Data normalizations and outliers/10. Code z-score for outlier removal.mp4
143.5 MB
11. Confidence intervals on parameters/5. Code bootstrapping confidence intervals.mp4
143.4 MB
08. Probability theory/7. Probability mass vs. density.mp4
140.7 MB
05. Visualizing data/7. Code histograms.mp4
140.0 MB
13. Analysis of Variance (ANOVA)/6. The two-way ANOVA.mp4
136.9 MB
14. Regression/11. Code polynomial modeling.mp4
135.4 MB
08. Probability theory/12. Creating sample estimate distributions.mp4
130.9 MB
14. Regression/15. Under- and over-fitting.mp4
126.7 MB
12. Correlation/1. Motivation and description of correlation.mp4
124.2 MB
06. Descriptive statistics/19. Code Histogram bins.mp4
123.9 MB
18. A real-world data journey/9. Python Inferential statistics.mp4
121.2 MB
08. Probability theory/18. Code conditional probabilities.mp4
120.7 MB
13. Analysis of Variance (ANOVA)/11. Code Two-way mixed ANOVA.mp4
119.7 MB
18. A real-world data journey/6. MATLAB Inferential statistics.mp4
119.0 MB
16. Clustering and dimension-reduction/9. Code KNN.mp4
113.6 MB
12. Correlation/10. Code partial correlation.mp4
113.5 MB
17. Signal detection theory/6. F-score.mp4
112.5 MB
09. Hypothesis testing/4. P-values definition, tails, and misinterpretations.mp4
111.6 MB
08. Probability theory/14. Sampling variability, noise, and other annoyances.mp4
111.2 MB
06. Descriptive statistics/21. Code violin plots.mp4
110.1 MB
12. Correlation/22. Code Cosine similarity vs. Pearson correlation.mp4
107.2 MB
16. Clustering and dimension-reduction/5. Clustering via dbscan.mp4
105.2 MB
05. Visualizing data/2. Code bar plots.mp4
104.9 MB
06. Descriptive statistics/24. Code entropy.mp4
101.5 MB
18. A real-world data journey/4. MATLAB Import the divorce data.mp4
101.0 MB
08. Probability theory/10. Code cdfs and pdfs.mp4
100.6 MB
11. Confidence intervals on parameters/3. Code compute confidence intervals by formula.mp4
98.9 MB
10. The t-test family/5. Two-samples t-test.mp4
98.4 MB
08. Probability theory/23. Code the CLT in action.mp4
97.9 MB
09. Hypothesis testing/1. IVs, DVs, models, and other stats lingo.mp4
95.6 MB
06. Descriptive statistics/16. Code QQ plots.mp4
94.7 MB
09. Hypothesis testing/8. Parametric vs. non-parametric tests.mp4
91.7 MB
08. Probability theory/17. Conditional probability.mp4
89.8 MB
05. Visualizing data/4. Code box plots.mp4
87.7 MB
06. Descriptive statistics/14. Code IQR.mp4
87.4 MB
14. Regression/14. Code Logistic regression.mp4
85.2 MB
05. Visualizing data/10. Code pie charts.mp4
82.8 MB
09. Hypothesis testing/9. Multiple comparisons and Bonferroni correction.mp4
79.1 MB
14. Regression/8. Standardizing regression coefficients.mp4
78.8 MB
13. Analysis of Variance (ANOVA)/2. ANOVA intro, part 2.mp4
77.5 MB
16. Clustering and dimension-reduction/14. Code ICA.mp4
76.9 MB
13. Analysis of Variance (ANOVA)/9. Code One-way repeated-measures ANOVA.mp4
76.7 MB
12. Correlation/4. Code Simulate data with specified correlation.mp4
73.5 MB
17. Signal detection theory/3. Code d-prime.mp4
72.9 MB
07. Data normalizations and outliers/3. Code z-score.mp4
70.0 MB
06. Descriptive statistics/9. Code computing central tendency.mp4
69.8 MB
08. Probability theory/8. Code compute probability mass functions.mp4
69.4 MB
07. Data normalizations and outliers/15. Code Data trimming to remove outliers.mp4
68.5 MB
17. Signal detection theory/7. Receiver operating characteristics (ROC).mp4
67.5 MB
10. The t-test family/12. Permutation testing for t-test significance.mp4
66.6 MB
13. Analysis of Variance (ANOVA)/5. The omnibus F-test and post-hoc comparisons.mp4
66.4 MB
14. Regression/3. Evaluating regression models R2 and F.mp4
65.8 MB
14. Regression/1. Introduction to GLM regression.mp4
65.0 MB
17. Signal detection theory/2. d-prime.mp4
62.5 MB
08. Probability theory/16. Expected value.mp4
62.5 MB
04. What are (is) data/3. Types of data categorical, numerical, etc.mp4
62.3 MB
12. Correlation/9. Partial correlation.mp4
62.2 MB
06. Descriptive statistics/11. Measures of dispersion (variance, standard deviation).mp4
59.7 MB
17. Signal detection theory/8. Code ROC curves.mp4
57.3 MB
16. Clustering and dimension-reduction/1. K-means clustering.mp4
56.9 MB
11. Confidence intervals on parameters/4. Confidence intervals via bootstrapping (resampling).mp4
56.9 MB
10. The t-test family/2. One-sample t-test.mp4
56.6 MB
18. A real-world data journey/2. Introduction.mp4
55.6 MB
14. Regression/13. Logistic regression.mp4
55.3 MB
14. Regression/5. Code simple regression.mp4
54.8 MB
10. The t-test family/11. Code Mann-Whitney U test.mp4
54.6 MB
03. IMPORTANT Download course materials/1. Download materials for the entire course!.mp4
53.7 MB
09. Hypothesis testing/2. What is an hypothesis and how do you specify one.mp4
51.5 MB
01. Introductions/3. Statistics guessing game!.mp4
50.7 MB
14. Regression/10. Polynomial regression models.mp4
50.5 MB
04. What are (is) data/4. Code representing types of data on computers.mp4
50.2 MB
09. Hypothesis testing/7. Type 1 and Type 2 errors.mp4
48.1 MB
13. Analysis of Variance (ANOVA)/3. Sum of squares.mp4
48.1 MB
16. Clustering and dimension-reduction/13. Independent components analysis (ICA).mp4
47.7 MB
08. Probability theory/9. Cumulative distribution functions.mp4
47.6 MB
14. Regression/7. Multiple regression.mp4
47.3 MB
01. Introductions/1. Important Getting the most out of this course.mp4
47.0 MB
13. Analysis of Variance (ANOVA)/7. One-way ANOVA example.mp4
46.5 MB
18. A real-world data journey/10. Take-home messages.mp4
45.9 MB
09. Hypothesis testing/3. Sample distributions under null and alternative hypotheses.mp4
45.9 MB
05. Visualizing data/6. Histograms.mp4
45.9 MB
07. Data normalizations and outliers/13. Code Euclidean distance for outlier removal.mp4
45.8 MB
07. Data normalizations and outliers/7. What are outliers and why are they dangerous.mp4
45.1 MB
12. Correlation/14. Code Spearman correlation and Fisher-Z.mp4
44.8 MB
16. Clustering and dimension-reduction/10. Principal components analysis (PCA).mp4
44.6 MB
09. Hypothesis testing/12. Statistical significance vs. classification accuracy.mp4
44.6 MB
14. Regression/2. Least-squares solution to the GLM.mp4
43.4 MB
14. Regression/17. Comparing nested models.mp4
43.3 MB
08. Probability theory/1. What is probability.mp4
43.1 MB
08. Probability theory/20. The Law of Large Numbers.mp4
42.5 MB
07. Data normalizations and outliers/5. Code min-max scaling.mp4
42.4 MB
15. Statistical power and sample sizes/1. What is statistical power and why is it important.mp4
42.2 MB
12. Correlation/2. Covariance and correlation formulas.mp4
41.9 MB
06. Descriptive statistics/7. Measures of central tendency (mean).mp4
40.6 MB
08. Probability theory/3. Computing probabilities.mp4
39.3 MB
08. Probability theory/2. Probability vs. proportion.mp4
39.3 MB
05. Visualizing data/13. Code line plots.mp4
39.1 MB
04. What are (is) data/5. Sample vs. population data.mp4
38.9 MB
05. Visualizing data/1. Bar plots.mp4
38.6 MB
14. Regression/4. Simple regression.mp4
38.6 MB
07. Data normalizations and outliers/2. Z-score standardization.mp4
38.0 MB
15. Statistical power and sample sizes/2. Estimating statistical power and sample size.mp4
37.8 MB
13. Analysis of Variance (ANOVA)/10. Two-way ANOVA example.mp4
37.7 MB
04. What are (is) data/2. Where do data come from and what do they mean.mp4
37.3 MB
18. A real-world data journey/5. MATLAB More data visualizations.mp4
36.0 MB
06. Descriptive statistics/8. Measures of central tendency (median, mode).mp4
35.9 MB
07. Data normalizations and outliers/17. Nonlinear data transformations.mp4
35.3 MB
07. Data normalizations and outliers/8. Removing outliers z-score method.mp4
35.1 MB
06. Descriptive statistics/23. Shannon entropy.mp4
34.7 MB
09. Hypothesis testing/6. Degrees of freedom.mp4
34.5 MB
10. The t-test family/14. Unsupervised learning How many permutations.mp4
34.1 MB
12. Correlation/17. Kendall's correlation for ordinal data.mp4
34.0 MB
10. The t-test family/1. Purpose and interpretation of the t-test.mp4
33.7 MB
06. Descriptive statistics/3. Data distributions.mp4
33.5 MB
15. Statistical power and sample sizes/3. Compute power and sample size using GPower.mp4
32.7 MB
12. Correlation/5. Correlation matrix.mp4
32.5 MB
11. Confidence intervals on parameters/1. What are confidence intervals and why do we need them.mp4
31.3 MB
10. The t-test family/4. Unsupervised learning The role of variance.mp4
30.0 MB
12. Correlation/13. Fisher-Z transformation for correlations.mp4
29.9 MB
02. Math prerequisites/1. Should you memorize statistical formulas.mp4
29.4 MB
09. Hypothesis testing/11. Cross-validation.mp4
29.3 MB
08. Probability theory/22. The Central Limit Theorem.mp4
28.0 MB
10. The t-test family/8. Wilcoxon signed-rank (nonparametric t-test).mp4
27.2 MB
05. Visualizing data/12. Linear vs. logarithmic axis scaling.mp4
26.9 MB
06. Descriptive statistics/2. Accuracy, precision, resolution.mp4
26.7 MB
07. Data normalizations and outliers/12. Multivariate outlier detection.mp4
26.3 MB
01. Introductions/4. Using the Q&A forum.mp4
25.5 MB
12. Correlation/12. Nonparametric correlation Spearman rank.mp4
24.9 MB
06. Descriptive statistics/18. Histograms part 2 Number of bins.mp4
24.6 MB
07. Data normalizations and outliers/16. Non-parametric solutions to outliers.mp4
24.1 MB
17. Signal detection theory/5. Code Response bias.mp4
23.9 MB
17. Signal detection theory/4. Response bias.mp4
22.9 MB
06. Descriptive statistics/17. Statistical moments.mp4
22.7 MB
12. Correlation/20. The subgroups correlation paradox.mp4
22.6 MB
06. Descriptive statistics/1. Descriptive vs. inferential statistics.mp4
22.5 MB
10. The t-test family/10. Mann-Whitney U test (nonparametric t-test).mp4
21.3 MB
16. Clustering and dimension-reduction/7. Unsupervised learning dbscan vs. k-means.mp4
20.9 MB
13. Analysis of Variance (ANOVA)/4. The F-test and the ANOVA table.mp4
20.9 MB
04. What are (is) data/7. The ethics of making up data.mp4
20.6 MB
09. Hypothesis testing/10. Statistical vs. theoretical vs. clinical significance.mp4
20.0 MB
11. Confidence intervals on parameters/7. Misconceptions about confidence intervals.mp4
19.5 MB
12. Correlation/7. Unsupervised learning average correlation matrices.mp4
19.4 MB
05. Visualizing data/11. When to use lines instead of bars.mp4
18.9 MB
02. Math prerequisites/7. The logistic function.mp4
18.8 MB
04. What are (is) data/6. Samples, case reports, and anecdotes.mp4
18.7 MB
07. Data normalizations and outliers/18. An outlier lecture on personal accountability.mp4
18.6 MB
02. Math prerequisites/6. Natural exponent and logarithm.mp4
18.5 MB
11. Confidence intervals on parameters/2. Computing confidence intervals via formula.mp4
18.2 MB
06. Descriptive statistics/22. Unsupervised learning asymmetric violin plots.mp4
18.2 MB
09. Hypothesis testing/5. P-z combinations that you should memorize.mp4
18.2 MB
07. Data normalizations and outliers/14. Removing outliers by data trimming.mp4
17.7 MB
10. The t-test family/7. Unsupervised learning Importance of N for t-test.mp4
17.6 MB
06. Descriptive statistics/10. Unsupervised learning central tendencies with outliers.mp4
17.6 MB
12. Correlation/11. The problem with Pearson.mp4
17.4 MB
05. Visualizing data/9. Pie charts.mp4
17.3 MB
06. Descriptive statistics/15. QQ plots.mp4
17.0 MB
14. Regression/18. What to do about missing data.mp4
16.8 MB
12. Correlation/15. Unsupervised learning Spearman correlation.mp4
16.7 MB
12. Correlation/19. Unsupervised learning Does Kendall vs. Pearson matter.mp4
15.7 MB
12. Correlation/21. Cosine similarity.mp4
14.9 MB
17. Signal detection theory/1. The two perspectives of the world.mp4
14.6 MB
02. Math prerequisites/8. Rank and tied-rank.mp4
14.3 MB
08. Probability theory/19. Tree diagrams for conditional probabilities.mp4
14.2 MB
16. Clustering and dimension-reduction/3. Unsupervised learning K-means and normalization.mp4
13.5 MB
02. Math prerequisites/3. Scientific notation.mp4
13.5 MB
16. Clustering and dimension-reduction/8. K-nearest neighbor classification.mp4
13.1 MB
08. Probability theory/5. Probability and odds.mp4
12.6 MB
05. Visualizing data/8. Unsupervised learning Histogram proportion.mp4
12.4 MB
07. Data normalizations and outliers/4. Min-max scaling.mp4
12.3 MB
07. Data normalizations and outliers/1. Garbage in, garbage out (GIGO).mp4
12.1 MB
01. Introductions/2. About using MATLAB or Python.mp4
12.1 MB
16. Clustering and dimension-reduction/12. Unsupervised learning K-means on PC data.mp4
12.1 MB
17. Signal detection theory/9. Unsupervised learning Make this plot look nicer!.mp4
12.1 MB
05. Visualizing data/3. Box-and-whisker plots.mp4
11.7 MB
04. What are (is) data/1. Is data singular or plural!!!!.mp4
11.5 MB
12. Correlation/16. Unsupervised learning confidence interval on correlation.mp4
10.8 MB
06. Descriptive statistics/6. The beauty and simplicity of Normal.mp4
10.7 MB
06. Descriptive statistics/5. Unsupervised learning histograms of distributions.mp4
10.7 MB
12. Correlation/8. Unsupervised learning correlation to covariance matrix.mp4
10.6 MB
06. Descriptive statistics/13. Interquartile range (IQR).mp4
10.3 MB
07. Data normalizations and outliers/9. The modified z-score method.mp4
10.1 MB
08. Probability theory/24. Unsupervised learning Averaging pairs of numbers.mp4
9.9 MB
08. Probability theory/11. Unsupervised learning cdf's for various distributions.mp4
9.8 MB
07. Data normalizations and outliers/11. Unsupervised learning z vs. modified-z.mp4
9.5 MB
08. Probability theory/13. Monte Carlo sampling.mp4
9.3 MB
11. Confidence intervals on parameters/6. Unsupervised learning Confidence intervals for variance.mp4
9.0 MB
06. Descriptive statistics/25. Unsupervised learning entropy and number of bins.mp4
8.7 MB
05. Visualizing data/5. Unsupervised learning Boxplots of normal and uniform noise.mp4
8.6 MB
16. Clustering and dimension-reduction/4. Unsupervised learning K-means on a Gauss blur.mp4
8.3 MB
02. Math prerequisites/4. Summation notation.mp4
8.1 MB
02. Math prerequisites/2. Arithmetic and exponents.mp4
7.9 MB
01. Introductions/5. (optional) Entering time-stamped notes in the Udemy video player.mp4
7.4 MB
02. Math prerequisites/5. Absolute value.mp4
7.3 MB
07. Data normalizations and outliers/6. Unsupervised learning Invert the min-max scaling.mp4
7.1 MB
06. Descriptive statistics/20. Violin plots.mp4
6.8 MB
08. Probability theory/6. Unsupervised learning probabilities of odds-space.mp4
6.2 MB
14. Regression/6. Unsupervised learning Compute R2 and F.mp4
5.6 MB
14. Regression/16. Unsupervised learning Overfit data.mp4
5.1 MB
14. Regression/12. Unsupervised learning Polynomial design matrix.mp4
5.0 MB
05. Visualizing data/14. Unsupervised learning log-scaled plots.mp4
3.9 MB
03. IMPORTANT Download course materials/1. Statistics_course-main.zip
2.6 MB
16. Clustering and dimension-reduction/6. Code dbscan.vtt
47.2 kB
06. Descriptive statistics/4. Code data from different distributions.vtt
44.7 kB
12. Correlation/3. Code correlation coefficient.vtt
38.9 kB
06. Descriptive statistics/12. Code Computing dispersion.vtt
37.0 kB
08. Probability theory/15. Code sampling variability.vtt
36.6 kB
10. The t-test family/13. Code permutation testing.vtt
35.8 kB
17. Signal detection theory/6. F-score.vtt
33.9 kB
16. Clustering and dimension-reduction/2. Code k-means clustering.vtt
33.3 kB
07. Data normalizations and outliers/10. Code z-score for outlier removal.vtt
32.5 kB
10. The t-test family/6. Code Two-samples t-test.vtt
31.0 kB
18. A real-world data journey/7. Python Import and clean the marriage data.vtt
30.2 kB
12. Correlation/22. Code Cosine similarity vs. Pearson correlation.vtt
30.2 kB
13. Analysis of Variance (ANOVA)/6. The two-way ANOVA.vtt
30.1 kB
12. Correlation/6. Code correlation matrix.vtt
30.0 kB
14. Regression/1. Introduction to GLM regression.vtt
29.6 kB
10. The t-test family/3. Code One-sample t-test.vtt
29.4 kB
08. Probability theory/18. Code conditional probabilities.vtt
28.4 kB
06. Descriptive statistics/24. Code entropy.vtt
28.3 kB
13. Analysis of Variance (ANOVA)/2. ANOVA intro, part 2.vtt
28.3 kB
12. Correlation/10. Code partial correlation.vtt
28.2 kB
08. Probability theory/12. Creating sample estimate distributions.vtt
27.5 kB
14. Regression/9. Code Multiple regression.vtt
27.2 kB
12. Correlation/1. Motivation and description of correlation.vtt
27.0 kB
08. Probability theory/21. Code Law of Large Numbers in action.vtt
26.6 kB
06. Descriptive statistics/11. Measures of dispersion (variance, standard deviation).vtt
26.4 kB
09. Hypothesis testing/4. P-values definition, tails, and misinterpretations.vtt
26.3 kB
13. Analysis of Variance (ANOVA)/3. Sum of squares.vtt
26.3 kB
13. Analysis of Variance (ANOVA)/1. ANOVA intro, part1.vtt
26.0 kB
10. The t-test family/9. Code Signed-rank test.vtt
25.6 kB
12. Correlation/18. Code Kendall correlation.vtt
25.3 kB
16. Clustering and dimension-reduction/11. Code PCA.vtt
25.1 kB
14. Regression/15. Under- and over-fitting.vtt
24.4 kB
16. Clustering and dimension-reduction/10. Principal components analysis (PCA).vtt
24.4 kB
18. A real-world data journey/3. MATLAB Import and clean the marriage data.vtt
24.3 kB
18. A real-world data journey/3. state-marriage-rates-90-95-99-19.xlsx
24.2 kB
09. Hypothesis testing/1. IVs, DVs, models, and other stats lingo.vtt
24.1 kB
13. Analysis of Variance (ANOVA)/8. Code One-way ANOVA (independent samples).vtt
24.1 kB
14. Regression/13. Logistic regression.vtt
24.1 kB
11. Confidence intervals on parameters/3. Code compute confidence intervals by formula.vtt
23.9 kB
05. Visualizing data/7. Code histograms.vtt
23.7 kB
05. Visualizing data/2. Code bar plots.vtt
23.2 kB
08. Probability theory/23. Code the CLT in action.vtt
23.2 kB
18. A real-world data journey/4. state-divorce-rates-90-95-99-19.xlsx
23.0 kB
06. Descriptive statistics/16. Code QQ plots.vtt
22.8 kB
06. Descriptive statistics/14. Code IQR.vtt
22.0 kB
14. Regression/11. Code polynomial modeling.vtt
21.9 kB
09. Hypothesis testing/2. What is an hypothesis and how do you specify one.vtt
21.6 kB
08. Probability theory/4. Code compute probabilities.vtt
21.4 kB
16. Clustering and dimension-reduction/5. Clustering via dbscan.vtt
21.3 kB
09. Hypothesis testing/7. Type 1 and Type 2 errors.vtt
21.3 kB
07. Data normalizations and outliers/7. What are outliers and why are they dangerous.vtt
21.3 kB
07. Data normalizations and outliers/17. Nonlinear data transformations.vtt
21.0 kB
17. Signal detection theory/3. Code d-prime.vtt
20.9 kB
08. Probability theory/9. Cumulative distribution functions.vtt
20.8 kB
16. Clustering and dimension-reduction/1. K-means clustering.vtt
20.8 kB
04. What are (is) data/3. Types of data categorical, numerical, etc.vtt
20.8 kB
13. Analysis of Variance (ANOVA)/7. One-way ANOVA example.vtt
20.4 kB
11. Confidence intervals on parameters/5. Code bootstrapping confidence intervals.vtt
20.3 kB
13. Analysis of Variance (ANOVA)/11. Code Two-way mixed ANOVA.vtt
20.2 kB
14. Regression/3. Evaluating regression models R2 and F.vtt
20.2 kB
06. Descriptive statistics/9. Code computing central tendency.vtt
19.7 kB
12. Correlation/4. Code Simulate data with specified correlation.vtt
19.7 kB
05. Visualizing data/10. Code pie charts.vtt
19.2 kB
10. The t-test family/1. Purpose and interpretation of the t-test.vtt
19.2 kB
10. The t-test family/5. Two-samples t-test.vtt
19.1 kB
14. Regression/4. Simple regression.vtt
18.9 kB
14. Regression/7. Multiple regression.vtt
18.8 kB
09. Hypothesis testing/9. Multiple comparisons and Bonferroni correction.vtt
18.7 kB
07. Data normalizations and outliers/3. Code z-score.vtt
18.6 kB
13. Analysis of Variance (ANOVA)/5. The omnibus F-test and post-hoc comparisons.vtt
18.5 kB
18. A real-world data journey/8. Python Import the divorce data.vtt
18.4 kB
06. Descriptive statistics/7. Measures of central tendency (mean).vtt
18.3 kB
17. Signal detection theory/2. d-prime.vtt
18.3 kB
08. Probability theory/7. Probability mass vs. density.vtt
18.2 kB
08. Probability theory/17. Conditional probability.vtt
18.2 kB
13. Analysis of Variance (ANOVA)/9. Code One-way repeated-measures ANOVA.vtt
18.1 kB
12. Correlation/2. Covariance and correlation formulas.vtt
18.1 kB
06. Descriptive statistics/19. Code Histogram bins.vtt
18.0 kB
06. Descriptive statistics/8. Measures of central tendency (median, mode).vtt
18.0 kB
16. Clustering and dimension-reduction/13. Independent components analysis (ICA).vtt
17.8 kB
14. Regression/17. Comparing nested models.vtt
17.8 kB
16. Clustering and dimension-reduction/14. Code ICA.vtt
17.7 kB
14. Regression/8. Standardizing regression coefficients.vtt
17.7 kB
08. Probability theory/1. What is probability.vtt
17.5 kB
04. What are (is) data/5. Sample vs. population data.vtt
17.4 kB
09. Hypothesis testing/11. Cross-validation.vtt
17.1 kB
08. Probability theory/8. Code compute probability mass functions.vtt
17.0 kB
10. The t-test family/12. Permutation testing for t-test significance.vtt
16.8 kB
06. Descriptive statistics/3. Data distributions.vtt
16.8 kB
16. Clustering and dimension-reduction/9. Code KNN.vtt
16.7 kB
18. A real-world data journey/9. Python Inferential statistics.vtt
16.7 kB
09. Hypothesis testing/12. Statistical significance vs. classification accuracy.vtt
16.5 kB
13. Analysis of Variance (ANOVA)/10. Two-way ANOVA example.vtt
16.5 kB
15. Statistical power and sample sizes/2. Estimating statistical power and sample size.vtt
16.2 kB
08. Probability theory/22. The Central Limit Theorem.vtt
15.9 kB
05. Visualizing data/6. Histograms.vtt
15.9 kB
07. Data normalizations and outliers/15. Code Data trimming to remove outliers.vtt
15.8 kB
05. Visualizing data/1. Bar plots.vtt
15.6 kB
06. Descriptive statistics/23. Shannon entropy.vtt
15.6 kB
12. Correlation/9. Partial correlation.vtt
15.6 kB
15. Statistical power and sample sizes/1. What is statistical power and why is it important.vtt
15.3 kB
18. A real-world data journey/6. MATLAB Inferential statistics.vtt
15.3 kB
12. Correlation/17. Kendall's correlation for ordinal data.vtt
15.2 kB
08. Probability theory/16. Expected value.vtt
15.0 kB
06. Descriptive statistics/21. Code violin plots.vtt
14.8 kB
09. Hypothesis testing/3. Sample distributions under null and alternative hypotheses.vtt
14.8 kB
08. Probability theory/10. Code cdfs and pdfs.vtt
14.6 kB
08. Probability theory/3. Computing probabilities.vtt
14.5 kB
08. Probability theory/20. The Law of Large Numbers.vtt
14.4 kB
06. Descriptive statistics/18. Histograms part 2 Number of bins.vtt
14.3 kB
07. Data normalizations and outliers/2. Z-score standardization.vtt
14.0 kB
07. Data normalizations and outliers/8. Removing outliers z-score method.vtt
14.0 kB
14. Regression/2. Least-squares solution to the GLM.vtt
13.9 kB
08. Probability theory/2. Probability vs. proportion.vtt
13.7 kB
07. Data normalizations and outliers/12. Multivariate outlier detection.vtt
13.7 kB
14. Regression/14. Code Logistic regression.vtt
13.5 kB
08. Probability theory/14. Sampling variability, noise, and other annoyances.vtt
13.5 kB
09. Hypothesis testing/8. Parametric vs. non-parametric tests.vtt
13.5 kB
12. Correlation/5. Correlation matrix.vtt
13.4 kB
01. Introductions/3. Statistics guessing game!.vtt
13.4 kB
11. Confidence intervals on parameters/4. Confidence intervals via bootstrapping (resampling).vtt
13.2 kB
14. Regression/5. Code simple regression.vtt
13.1 kB
02. Math prerequisites/7. The logistic function.vtt
12.7 kB
07. Data normalizations and outliers/13. Code Euclidean distance for outlier removal.vtt
12.7 kB
11. Confidence intervals on parameters/1. What are confidence intervals and why do we need them.vtt
12.6 kB
14. Regression/10. Polynomial regression models.vtt
12.5 kB
04. What are (is) data/4. Code representing types of data on computers.vtt
12.4 kB
05. Visualizing data/12. Linear vs. logarithmic axis scaling.vtt
12.2 kB
18. A real-world data journey/4. MATLAB Import the divorce data.vtt
12.2 kB
06. Descriptive statistics/17. Statistical moments.vtt
12.2 kB
17. Signal detection theory/4. Response bias.vtt
12.1 kB
05. Visualizing data/4. Code box plots.vtt
12.1 kB
07. Data normalizations and outliers/5. Code min-max scaling.vtt
11.6 kB
10. The t-test family/2. One-sample t-test.vtt
11.4 kB
17. Signal detection theory/8. Code ROC curves.vtt
11.3 kB
02. Math prerequisites/6. Natural exponent and logarithm.vtt
11.2 kB
06. Descriptive statistics/2. Accuracy, precision, resolution.vtt
11.2 kB
17. Signal detection theory/7. Receiver operating characteristics (ROC).vtt
11.1 kB
12. Correlation/14. Code Spearman correlation and Fisher-Z.vtt
11.1 kB
13. Analysis of Variance (ANOVA)/4. The F-test and the ANOVA table.vtt
11.0 kB
05. Visualizing data/13. Code line plots.vtt
10.9 kB
12. Correlation/12. Nonparametric correlation Spearman rank.vtt
10.8 kB
10. The t-test family/8. Wilcoxon signed-rank (nonparametric t-test).vtt
10.5 kB
04. What are (is) data/7. The ethics of making up data.vtt
10.4 kB
06. Descriptive statistics/15. QQ plots.vtt
10.3 kB
12. Correlation/11. The problem with Pearson.vtt
10.3 kB
12. Correlation/13. Fisher-Z transformation for correlations.vtt
10.2 kB
09. Hypothesis testing/10. Statistical vs. theoretical vs. clinical significance.vtt
10.0 kB
08. Probability theory/19. Tree diagrams for conditional probabilities.vtt
9.7 kB
14. Regression/18. What to do about missing data.vtt
9.6 kB
18. A real-world data journey/5. MATLAB More data visualizations.vtt
9.6 kB
11. Confidence intervals on parameters/2. Computing confidence intervals via formula.vtt
9.6 kB
16. Clustering and dimension-reduction/8. K-nearest neighbor classification.vtt
9.2 kB
02. Math prerequisites/8. Rank and tied-rank.vtt
9.1 kB
11. Confidence intervals on parameters/7. Misconceptions about confidence intervals.vtt
9.0 kB
09. Hypothesis testing/5. P-z combinations that you should memorize.vtt
8.7 kB
18. A real-world data journey/10. Take-home messages.vtt
8.7 kB
10. The t-test family/10. Mann-Whitney U test (nonparametric t-test).vtt
8.7 kB
17. Signal detection theory/1. The two perspectives of the world.vtt
8.6 kB
07. Data normalizations and outliers/14. Removing outliers by data trimming.vtt
8.5 kB
05. Visualizing data/11. When to use lines instead of bars.vtt
8.4 kB
04. What are (is) data/2. Where do data come from and what do they mean.vtt
8.4 kB
12. Correlation/21. Cosine similarity.vtt
8.3 kB
05. Visualizing data/9. Pie charts.vtt
8.2 kB
06. Descriptive statistics/6. The beauty and simplicity of Normal.vtt
8.2 kB
01. Introductions/4. Using the Q&A forum.vtt
8.1 kB
02. Math prerequisites/3. Scientific notation.vtt
8.0 kB
04. What are (is) data/6. Samples, case reports, and anecdotes.vtt
8.0 kB
05. Visualizing data/3. Box-and-whisker plots.vtt
7.9 kB
10. The t-test family/14. Unsupervised learning How many permutations.vtt
7.8 kB
10. The t-test family/11. Code Mann-Whitney U test.vtt
7.6 kB
03. IMPORTANT Download course materials/1. Download materials for the entire course!.vtt
7.2 kB
07. Data normalizations and outliers/4. Min-max scaling.vtt
7.2 kB
12. Correlation/20. The subgroups correlation paradox.vtt
7.2 kB
08. Probability theory/5. Probability and odds.vtt
6.9 kB
06. Descriptive statistics/13. Interquartile range (IQR).vtt
6.9 kB
10. The t-test family/7. Unsupervised learning Importance of N for t-test.vtt
6.8 kB
07. Data normalizations and outliers/16. Non-parametric solutions to outliers.vtt
6.6 kB
01. Introductions/1. Important Getting the most out of this course.vtt
6.5 kB
06. Descriptive statistics/1. Descriptive vs. inferential statistics.vtt
6.4 kB
17. Signal detection theory/5. Code Response bias.vtt
6.3 kB
15. Statistical power and sample sizes/3. Compute power and sample size using GPower.vtt
6.2 kB
18. A real-world data journey/2. Introduction.vtt
6.2 kB
07. Data normalizations and outliers/9. The modified z-score method.vtt
6.0 kB
12. Correlation/8. Unsupervised learning correlation to covariance matrix.vtt
6.0 kB
01. Introductions/2. About using MATLAB or Python.vtt
6.0 kB
02. Math prerequisites/4. Summation notation.vtt
6.0 kB
07. Data normalizations and outliers/1. Garbage in, garbage out (GIGO).vtt
5.9 kB
02. Math prerequisites/2. Arithmetic and exponents.vtt
5.7 kB
19. Bonus section/2. Bonus content.html
4.8 kB
06. Descriptive statistics/20. Violin plots.vtt
4.8 kB
16. Clustering and dimension-reduction/7. Unsupervised learning dbscan vs. k-means.vtt
4.5 kB
07. Data normalizations and outliers/18. An outlier lecture on personal accountability.vtt
4.4 kB
06. Descriptive statistics/10. Unsupervised learning central tendencies with outliers.vtt
4.4 kB
02. Math prerequisites/1. Should you memorize statistical formulas.vtt
4.4 kB
02. Math prerequisites/5. Absolute value.vtt
4.3 kB
10. The t-test family/4. Unsupervised learning The role of variance.vtt
4.2 kB
12. Correlation/7. Unsupervised learning average correlation matrices.vtt
4.2 kB
08. Probability theory/13. Monte Carlo sampling.vtt
4.0 kB
07. Data normalizations and outliers/11. Unsupervised learning z vs. modified-z.vtt
4.0 kB
05. Visualizing data/5. Unsupervised learning Boxplots of normal and uniform noise.vtt
3.8 kB
01. Introductions/3. stats_intro_GuessTheTest.zip
3.8 kB
07. Data normalizations and outliers/6. Unsupervised learning Invert the min-max scaling.vtt
3.8 kB
06. Descriptive statistics/22. Unsupervised learning asymmetric violin plots.vtt
3.7 kB
12. Correlation/19. Unsupervised learning Does Kendall vs. Pearson matter.vtt
3.7 kB
12. Correlation/16. Unsupervised learning confidence interval on correlation.vtt
3.5 kB
08. Probability theory/11. Unsupervised learning cdf's for various distributions.vtt
3.5 kB
05. Visualizing data/8. Unsupervised learning Histogram proportion.vtt
3.5 kB
08. Probability theory/6. Unsupervised learning probabilities of odds-space.vtt
3.2 kB
08. Probability theory/24. Unsupervised learning Averaging pairs of numbers.vtt
3.2 kB
01. Introductions/5. (optional) Entering time-stamped notes in the Udemy video player.vtt
3.1 kB
06. Descriptive statistics/5. Unsupervised learning histograms of distributions.vtt
2.9 kB
14. Regression/16. Unsupervised learning Overfit data.vtt
2.8 kB
16. Clustering and dimension-reduction/3. Unsupervised learning K-means and normalization.vtt
2.7 kB
04. What are (is) data/1. Is data singular or plural!!!!.vtt
2.5 kB
05. Visualizing data/14. Unsupervised learning log-scaled plots.vtt
2.5 kB
17. Signal detection theory/9. Unsupervised learning Make this plot look nicer!.vtt
2.5 kB
16. Clustering and dimension-reduction/12. Unsupervised learning K-means on PC data.vtt
2.3 kB
12. Correlation/15. Unsupervised learning Spearman correlation.vtt
2.1 kB
06. Descriptive statistics/25. Unsupervised learning entropy and number of bins.vtt
2.1 kB
11. Confidence intervals on parameters/6. Unsupervised learning Confidence intervals for variance.vtt
2.1 kB
16. Clustering and dimension-reduction/4. Unsupervised learning K-means on a Gauss blur.vtt
2.1 kB
14. Regression/6. Unsupervised learning Compute R2 and F.vtt
1.5 kB
14. Regression/12. Unsupervised learning Polynomial design matrix.vtt
1.2 kB
19. Bonus section/1. About deep learning.html
658 Bytes
18. A real-world data journey/1. Note about the code for this section.html
174 Bytes
03. IMPORTANT Download course materials/1. Link-to-code-on-github.txt
47 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!