MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FTUForum.com] [UDEMY] Deployment of Machine Learning Models [FTU]

磁力链接/BT种子名称

[FTUForum.com] [UDEMY] Deployment of Machine Learning Models [FTU]

磁力链接/BT种子简介

种子哈希:3b823b10b12df325cf7a086be6f52a79802fd8c0
文件大小: 3.65G
已经下载:1785次
下载速度:极快
收录时间:2021-04-06
最近下载:2025-06-20

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:3B823B10B12DF325CF7A086BE6F52A79802FD8C0
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 TikTok成人版 PornHub 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

质量 没有过约炮经验的 しずく ui 中字 无码 秘宝館 崽不在 酒店偷怕 优优 kbj18.com 不敢发出声音 传媒乱伦 mandingo+e+katy+jane 经典回顾 勾引小男 爱猛男人 记录日记 ▌茜茜▌ [한국] x-art++-+addison 舒可芯 跨越雙白線罰款 私拍 模特 풀 node 宾馆服务 单男3p logan teenpies.24.02 终极标靶+2016

文件列表

  • 4. Building a Reproducible Machine Learning Pipeline/3. Designing a Custom Pipeline.mp4 160.3 MB
  • 2. Machine Learning Pipeline - Research Environment/6. Data Analysis - Demo.mp4 142.0 MB
  • 2. Machine Learning Pipeline - Research Environment/7. Feature Engineering - Demo.mp4 102.9 MB
  • 13. A Deep Learning Model with Big Data/3. Building a CNN in the Research Environment.mp4 93.1 MB
  • 4. Building a Reproducible Machine Learning Pipeline/2. Procedural Programming Pipeline.mp4 90.4 MB
  • 4. Building a Reproducible Machine Learning Pipeline/5. Third Party Pipeline Create Scikit-Learn compatible Feature Transformers.mp4 88.4 MB
  • 13. A Deep Learning Model with Big Data/4. Production Code for a CNN Learning Pipeline.mp4 83.4 MB
  • 5. Course Setup and Key Tools/9. Section5.5b - Virtualenv Introduction.mp4 83.2 MB
  • 7. Serving the model via REST API/7. 7.6 - API Schema Validation.mp4 81.9 MB
  • 3. Machine Learning System Architecture/5. Building a Reproducible Machine Learning Pipeline.mp4 80.8 MB
  • 6. Creating a Machine Learning Pipeline Application/9. 6.8 - Building the Package.mp4 79.6 MB
  • 13. A Deep Learning Model with Big Data/8. 13.8 - Packaging the CNN.mp4 75.4 MB
  • 6. Creating a Machine Learning Pipeline Application/8. 6.7 - Versioning and Logging.mp4 73.9 MB
  • 8. Continuous Integration and Deployment Pipelines/4. 8.4 - Publishing the Model to Gemfury.mp4 72.5 MB
  • 2. Machine Learning Pipeline - Research Environment/10. Getting Ready for Deployment - Demo.mp4 71.1 MB
  • 2. Machine Learning Pipeline - Research Environment/1. Machine Learning Pipeline Overview.mp4 63.5 MB
  • 12. Deploying to IaaS (AWS ECS)/12. 12.11 - Creating the ECS Cluster with the EC2 Launch Method.mp4 62.8 MB
  • 2. Machine Learning Pipeline - Research Environment/2. Machine Learning Pipeline Feature Engineering.mp4 60.5 MB
  • 4. Building a Reproducible Machine Learning Pipeline/4. Leveraging a Third Party Pipeline Scikit-Learn.mp4 59.4 MB
  • 8. Continuous Integration and Deployment Pipelines/3. 8.3 - Setup Circle CI Config.mp4 53.3 MB
  • 9. Differential Testing/2. 9.2 - Setting up Differential Tests.mp4 52.7 MB
  • 8. Continuous Integration and Deployment Pipelines/5. 8.5 - Testing the CI Pipeline.mp4 52.6 MB
  • 12. Deploying to IaaS (AWS ECS)/10. 12.9 - Uploading Images to the Elastic Container Registry (ECR).mp4 52.2 MB
  • 2. Machine Learning Pipeline - Research Environment/3. Machine Learning Pipeline Feature Selection.mp4 50.8 MB
  • 1. Introduction/2. Course curriculum overview.mp4 50.6 MB
  • 11. Running Apps with Containers (Docker)/5. 11.5 Releasing to Heroku with Docker.mp4 49.2 MB
  • 6. Creating a Machine Learning Pipeline Application/2. 6.2 - Training the Model.mp4 48.5 MB
  • 6. Creating a Machine Learning Pipeline Application/3. 6.3 - Connecting the Pipeline.mp4 47.6 MB
  • 6. Creating a Machine Learning Pipeline Application/5. 6.4 - Making Predictions with the Model.mp4 46.9 MB
  • 8. Continuous Integration and Deployment Pipelines/1.1 section8.1.mp4.mp4 43.9 MB
  • 13. A Deep Learning Model with Big Data/9. 13.9 - Adding the CNN to the API.mp4 43.3 MB
  • 3. Machine Learning System Architecture/2. Specific Challenges of Machine Learning Systems.mp4 41.0 MB
  • 7. Serving the model via REST API/5. 7.4 - Adding the Prediction Endpoint.mp4 40.8 MB
  • 12. Deploying to IaaS (AWS ECS)/11. 12.10 - Creating the ECS Cluster with Fargate Launch Method.mp4 40.0 MB
  • 5. Course Setup and Key Tools/3. Section 5.3 - How to Use the Course Resources, Monorepos + Git Refresher.mp4 39.6 MB
  • 1. Introduction/1. Introduction to the course.mp4 39.4 MB
  • 5. Course Setup and Key Tools/4. Section5.3b - Opening Pull Requests.mp4 37.9 MB
  • 2. Machine Learning Pipeline - Research Environment/8. Feature Selection - Demo.mp4 37.1 MB
  • 7. Serving the model via REST API/2. 7.2 - Creating the API Skeleton.mp4 37.1 MB
  • 2. Machine Learning Pipeline - Research Environment/9. Model Building - Demo.mp4 35.8 MB
  • 9. Differential Testing/3. 9.3 - Differential Tests in CI (Part 1 of 2).mp4 35.2 MB
  • 7. Serving the model via REST API/4. 7.3 - Adding Config and Logging.mp4 34.6 MB
  • 9. Differential Testing/4. 9.4 - Differential Tests in CI (Part 2 of 2).mp4 34.4 MB
  • 6. Creating a Machine Learning Pipeline Application/6. 6.5 - Data Validation in the Model Package.mp4 34.1 MB
  • 10. Deploying to a PaaS (Heroku) without Containers/3. 10.3 - Heroku Config.mp4 33.8 MB
  • 11. Running Apps with Containers (Docker)/1. 11.1 Introduction to Containers and Docker.mp4 33.0 MB
  • 5. Course Setup and Key Tools/13. Section 5.7 - Engineering and Python Best Practices.mp4 32.9 MB
  • 12. Deploying to IaaS (AWS ECS)/13. 12.12 - Updating the Cluster Containers.mp4 32.5 MB
  • 3. Machine Learning System Architecture/3. Machine Learning System Approaches.mp4 31.5 MB
  • 3. Machine Learning System Architecture/4. Machine Learning System Component Breakdown.mp4 30.9 MB
  • 10. Deploying to a PaaS (Heroku) without Containers/5. 10.5 - Deploying to Heroku via CI.mp4 30.5 MB
  • 12. Deploying to IaaS (AWS ECS)/7. 12.6 - Installing the AWS CLI.mp4 30.3 MB
  • 4. Building a Reproducible Machine Learning Pipeline/8. Bonus Should feature selection be part of the pipeline.mp4 30.2 MB
  • 8. Continuous Integration and Deployment Pipelines/1. 8.1 - Introduction to CICD.mp4 29.8 MB
  • 5. Course Setup and Key Tools/2. Section 5.2 - Installing and Configuring Git.mp4 29.2 MB
  • 10. Deploying to a PaaS (Heroku) without Containers/1. 10.1 - Introduction.mp4 28.2 MB
  • 11. Running Apps with Containers (Docker)/4. 11.4 Building and Running the Docker Container.mp4 28.0 MB
  • 11. Running Apps with Containers (Docker)/2. 11.2 Installing Docker.mp4 27.9 MB
  • 6. Creating a Machine Learning Pipeline Application/7. 6.6 - Feature Engineering in the Pipeline.mp4 27.5 MB
  • 12. Deploying to IaaS (AWS ECS)/2. 12.2 - AWS Costs and Caution.mp4 26.7 MB
  • 2. Machine Learning Pipeline - Research Environment/11. Bonus Machine Learning Pipeline Additional Resources.mp4 26.7 MB
  • 5. Course Setup and Key Tools/11. Section5.5d - Virtualenv refresher.mp4 26.6 MB
  • 7. Serving the model via REST API/1. 7.1 - Introduction.mp4 26.3 MB
  • 12. Deploying to IaaS (AWS ECS)/4. 12.3b - Container Orchestration Options Kubernetes, ECS, Docker Swarm.mp4 24.9 MB
  • 12. Deploying to IaaS (AWS ECS)/15. 12.14 - Deploying to ECS via the CI pipeline.mp4 24.7 MB
  • 12. Deploying to IaaS (AWS ECS)/6. 12.5 - Setting Permissions with IAM.mp4 24.3 MB
  • 12. Deploying to IaaS (AWS ECS)/3. 12.3a - Intro to AWS ECS.mp4 23.9 MB
  • 5. Course Setup and Key Tools/7. Section 5.4b - System Path and Pythonpath Demo.mp4 22.9 MB
  • 11. Running Apps with Containers (Docker)/3. 11.3 Creating Our API App Dockerfile.mp4 22.6 MB
  • 10. Deploying to a PaaS (Heroku) without Containers/2. 10.2 - Heroku Account Creation.mp4 21.9 MB
  • 12. Deploying to IaaS (AWS ECS)/8. 12.7 - Configuring the AWS CLI.mp4 21.8 MB
  • 13. A Deep Learning Model with Big Data/10. 13.10 - Additional Considerations and Wrap Up.mp4 21.8 MB
  • 4. Building a Reproducible Machine Learning Pipeline/1. Production Code overview.mp4 20.2 MB
  • 12. Deploying to IaaS (AWS ECS)/1. 12.1 - Introduction to AWS.mp4 19.6 MB
  • 9. Differential Testing/1. 9.1 - Introduction.mp4 19.5 MB
  • 5. Course Setup and Key Tools/5. Section5.3c - Primer on Monorepos.mp4 19.2 MB
  • 2. Machine Learning Pipeline - Research Environment/4. Machine Learning Pipeline Model Building.mp4 18.7 MB
  • 7. Serving the model via REST API/3. 7.2b - Flask Crash Course.mp4 18.7 MB
  • 1. Introduction/3. Knowledge requirements.mp4 18.0 MB
  • 13. A Deep Learning Model with Big Data/5. Reproducibility in Neural Networks.mp4 17.8 MB
  • 13. A Deep Learning Model with Big Data/2. Introduction to a Large Dataset - Plant Seedlings Images.mp4 17.5 MB
  • 5. Course Setup and Key Tools/1. Section 5.1 - Introduction.mp4 16.7 MB
  • 7. Serving the model via REST API/6. 7.5 - Adding a Version Endpoint.mp4 16.2 MB
  • 13. A Deep Learning Model with Big Data/1. Challenges of using Big Data in Machine Learning.mp4 16.0 MB
  • 6. Creating a Machine Learning Pipeline Application/1. 6.1 - Introduction.mp4 15.0 MB
  • 10. Deploying to a PaaS (Heroku) without Containers/6. 10.6 - Wrap Up.mp4 14.2 MB
  • 1. Introduction/6.1 DMLM_Slides.zip.zip 14.0 MB
  • 6. Creating a Machine Learning Pipeline Application/10. 6.9 - Wrap Up.mp4 13.9 MB
  • 9. Differential Testing/5. 9.5 Wrap Up.mp4 13.3 MB
  • 5. Course Setup and Key Tools/12. Section 5.6 - Text Editors IDEs.mp4 13.0 MB
  • 10. Deploying to a PaaS (Heroku) without Containers/4. 10.4 - Testing the Deployment Manually.mp4 12.9 MB
  • 3. Machine Learning System Architecture/1. Machine Learning System Architecture and Why it Matters.mp4 11.4 MB
  • 8. Continuous Integration and Deployment Pipelines/2. 8.2 - Setting up CircleCI.mp4 11.1 MB
  • 4. Building a Reproducible Machine Learning Pipeline/6. Third Party Pipeline Closing Remarks.mp4 10.5 MB
  • 5. Course Setup and Key Tools/10. Section5.5c - Requirements files Introduction.mp4 10.0 MB
  • 12. Deploying to IaaS (AWS ECS)/9. 12.8 - Intro the Elastic Container Registry (ECR).mp4 9.8 MB
  • 12. Deploying to IaaS (AWS ECS)/16. 12.15 - Wrap Up.mp4 9.4 MB
  • 5. Course Setup and Key Tools/6. Section 5.4a - Operating System Differences and Gotchas.mp4 8.6 MB
  • 5. Course Setup and Key Tools/8. Section 5.5a - Quick Word for More Advanced Students.mp4 8.6 MB
  • 11. Running Apps with Containers (Docker)/6. 11.6 - Wrap Up.mp4 8.1 MB
  • 12. Deploying to IaaS (AWS ECS)/14. 12.13 - Tearing down the ECS Cluster.mp4 7.3 MB
  • 7. Serving the model via REST API/8. 7.7 - Wrap Up.mp4 6.6 MB
  • 5. Course Setup and Key Tools/14. Section 5.8 - Wrap Up.mp4 6.3 MB
  • 8. Continuous Integration and Deployment Pipelines/6. 8.6 - Wrap Up.mp4 5.6 MB
  • 12. Deploying to IaaS (AWS ECS)/5. 12.4 - Create an AWS Account.mp4 5.1 MB
  • 1. Introduction/7.1 DMLM_Notes.zip.zip 1.6 MB
  • 13. A Deep Learning Model with Big Data/3.1 CNN_Analysis_and Model.zip.zip 1.6 MB
  • 2. Machine Learning Pipeline - Research Environment/5.1 MLPipeline-Notebooks.zip.zip 1.2 MB
  • 14. Common Issues found during deployment/1.1 Troubleshooting.pdf.pdf 228.7 kB
  • 7. Serving the model via REST API/2.1 Section7.2_Notes.pdf.pdf 149.8 kB
  • FreeCoursesOnline.Me.html 110.9 kB
  • 8. Continuous Integration and Deployment Pipelines/4.1 Section8.4_Notes.pdf.pdf 103.2 kB
  • 9. Differential Testing/4.1 Section9.4_Notes.pdf.pdf 103.0 kB
  • FTUForum.com.html 102.8 kB
  • 5. Course Setup and Key Tools/4.1 Section5.3b_Notes.pdf.pdf 102.0 kB
  • 6. Creating a Machine Learning Pipeline Application/4.1 Section6.4_Notes.pdf.pdf 101.1 kB
  • 6. Creating a Machine Learning Pipeline Application/5.1 Section6.4_Notes.pdf.pdf 101.1 kB
  • 5. Course Setup and Key Tools/2.1 Section5.2_Notes.pdf.pdf 98.8 kB
  • 11. Running Apps with Containers (Docker)/4.1 Section11.4_Notes.pdf.pdf 96.3 kB
  • 5. Course Setup and Key Tools/9.1 Section5.5b_Notes.pdf.pdf 94.4 kB
  • 5. Course Setup and Key Tools/13.1 Section5.7_Notes.pdf.pdf 91.0 kB
  • 8. Continuous Integration and Deployment Pipelines/5.1 Section8.5_Notes.pdf.pdf 91.0 kB
  • 6. Creating a Machine Learning Pipeline Application/9.1 Section6.8_Notes.pdf.pdf 88.0 kB
  • 5. Course Setup and Key Tools/3.1 Section5.3a_Notes.pdf.pdf 87.6 kB
  • 5. Course Setup and Key Tools/12.1 Section5.6_Notes.pdf.pdf 86.9 kB
  • 7. Serving the model via REST API/6.1 Section7.5_Notes.pdf.pdf 86.3 kB
  • 5. Course Setup and Key Tools/11.1 Section5.5_Notes.pdf.pdf 85.8 kB
  • 7. Serving the model via REST API/7.1 Section7.6_Notes.pdf.pdf 85.7 kB
  • 7. Serving the model via REST API/4.1 Section7.3_Notes.pdf.pdf 85.1 kB
  • 12. Deploying to IaaS (AWS ECS)/8.1 Section12.7_Notes.pdf.pdf 85.0 kB
  • 11. Running Apps with Containers (Docker)/6.1 Section11.6_Notes.pdf.pdf 84.4 kB
  • 7. Serving the model via REST API/3.1 Section7.2b_Notes.pdf.pdf 83.5 kB
  • 7. Serving the model via REST API/5.1 Section7.4_Notes.pdf.pdf 83.5 kB
  • 6. Creating a Machine Learning Pipeline Application/8.1 Section6.7_Notes.pdf.pdf 83.2 kB
  • 6. Creating a Machine Learning Pipeline Application/6.1 Section6.5_Notes.pdf.pdf 81.2 kB
  • 6. Creating a Machine Learning Pipeline Application/7.1 Section6.6_Notes.pdf.pdf 80.8 kB
  • 3. Machine Learning System Architecture/4.1 Section3.4_Notes.pdf.pdf 80.7 kB
  • 11. Running Apps with Containers (Docker)/2.1 Section11.2_Notes.pdf.pdf 79.7 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/1.1 Section10.1_Notes.pdf.pdf 78.5 kB
  • 6. Creating a Machine Learning Pipeline Application/3.1 Section6.3_Notes.pdf.pdf 77.2 kB
  • 12. Deploying to IaaS (AWS ECS)/2.1 Section12.2_Notes.pdf.pdf 76.5 kB
  • 5. Course Setup and Key Tools/10.1 Section5.5c_Notes.pdf.pdf 75.5 kB
  • 12. Deploying to IaaS (AWS ECS)/10.1 Section12.9_Notes.pdf.pdf 74.1 kB
  • 13. A Deep Learning Model with Big Data/8.1 Section13.8_Notes.pdf.pdf 73.3 kB
  • 3. Machine Learning System Architecture/3.1 Section3.3_Notes.pdf.pdf 72.7 kB
  • 11. Running Apps with Containers (Docker)/1.1 Section11.1_Notes.pdf.pdf 71.9 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/4.1 Section10.4_Notes.pdf.pdf 71.4 kB
  • 9. Differential Testing/5.1 Section9.5_Notes.pdf.pdf 71.1 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/3.1 Section10.3_Notes.pdf.pdf 70.6 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/5.1 Section10.5_Notes.pdf.pdf 69.5 kB
  • 12. Deploying to IaaS (AWS ECS)/13.1 Section12.12_Notes.pdf.pdf 69.1 kB
  • 9. Differential Testing/2.1 Section9.2_Notes.pdf.pdf 66.5 kB
  • 5. Course Setup and Key Tools/6.1 Section5.4_Notes.pdf.pdf 66.0 kB
  • 5. Course Setup and Key Tools/7.1 Section5.4_Notes.pdf.pdf 66.0 kB
  • 12. Deploying to IaaS (AWS ECS)/15.1 Section12.14_Notes.pdf.pdf 65.7 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/6.1 Section10.6_Notes.pdf.pdf 65.4 kB
  • 8. Continuous Integration and Deployment Pipelines/3.1 Section8.3_Notes.pdf.pdf 65.4 kB
  • 7. Serving the model via REST API/1.1 Section7.1_Notes.pdf.pdf 64.9 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/2.1 Section10.2_Notes.pdf.pdf 62.9 kB
  • 12. Deploying to IaaS (AWS ECS)/14.1 Section12.13_Notes.pdf.pdf 61.5 kB
  • 13. A Deep Learning Model with Big Data/10.1 Section13.10_Notes.pdf.pdf 61.5 kB
  • 8. Continuous Integration and Deployment Pipelines/2.1 Section8.2_Notes.pdf.pdf 60.2 kB
  • 11. Running Apps with Containers (Docker)/3.1 Section11.3_Notes.pdf.pdf 59.9 kB
  • 12. Deploying to IaaS (AWS ECS)/6.1 Section12.5_Notes.pdf.pdf 59.3 kB
  • 12. Deploying to IaaS (AWS ECS)/12.1 Section12.11_Notes.pdf.pdf 58.8 kB
  • 12. Deploying to IaaS (AWS ECS)/7.1 Section12.6_Notes.pdf.pdf 58.3 kB
  • 12. Deploying to IaaS (AWS ECS)/11.1 Section12.10_Notes.pdf.pdf 58.2 kB
  • 12. Deploying to IaaS (AWS ECS)/16.1 Section12.15_Notes.pdf.pdf 57.9 kB
  • 11. Running Apps with Containers (Docker)/5.1 Section11.5_Notes.pdf.pdf 57.9 kB
  • 12. Deploying to IaaS (AWS ECS)/9.1 Section12.8_Notes.pdf.pdf 56.6 kB
  • 12. Deploying to IaaS (AWS ECS)/3.1 Section12.3_Notes.pdf.pdf 56.5 kB
  • 12. Deploying to IaaS (AWS ECS)/4.1 Section12.3_Notes.pdf.pdf 56.5 kB
  • 5. Course Setup and Key Tools/5.1 Section5.3c_Notes.pdf.pdf 55.2 kB
  • 12. Deploying to IaaS (AWS ECS)/5.1 Section12.4_Notes.pdf.pdf 54.8 kB
  • 13. A Deep Learning Model with Big Data/9.1 Section13.9_Notes.pdf.pdf 54.5 kB
  • Discuss.FTUForum.com.html 32.7 kB
  • 2. Machine Learning Pipeline - Research Environment/6. Data Analysis - Demo.vtt 21.8 kB
  • 4. Building a Reproducible Machine Learning Pipeline/3. Designing a Custom Pipeline.vtt 20.3 kB
  • 2. Machine Learning Pipeline - Research Environment/7. Feature Engineering - Demo.vtt 14.4 kB
  • 4. Building a Reproducible Machine Learning Pipeline/5. Third Party Pipeline Create Scikit-Learn compatible Feature Transformers.vtt 14.1 kB
  • 4. Building a Reproducible Machine Learning Pipeline/2. Procedural Programming Pipeline.vtt 13.0 kB
  • 3. Machine Learning System Architecture/5. Building a Reproducible Machine Learning Pipeline.vtt 13.0 kB
  • 2. Machine Learning Pipeline - Research Environment/3. Machine Learning Pipeline Feature Selection.vtt 11.5 kB
  • 13. A Deep Learning Model with Big Data/3. Building a CNN in the Research Environment.vtt 10.5 kB
  • 4. Building a Reproducible Machine Learning Pipeline/4. Leveraging a Third Party Pipeline Scikit-Learn.vtt 9.8 kB
  • 2. Machine Learning Pipeline - Research Environment/2. Machine Learning Pipeline Feature Engineering.vtt 9.5 kB
  • 1. Introduction/2. Course curriculum overview.vtt 9.5 kB
  • 13. A Deep Learning Model with Big Data/4. Production Code for a CNN Learning Pipeline.vtt 9.4 kB
  • 2. Machine Learning Pipeline - Research Environment/10. Getting Ready for Deployment - Demo.vtt 9.2 kB
  • 2. Machine Learning Pipeline - Research Environment/1. Machine Learning Pipeline Overview.vtt 9.0 kB
  • 1. Introduction/1. Introduction to the course.vtt 7.8 kB
  • 6. Creating a Machine Learning Pipeline Application/9. 6.8 - Building the Package.vtt 7.4 kB
  • 8. Continuous Integration and Deployment Pipelines/4. 8.4 - Publishing the Model to Gemfury.vtt 7.4 kB
  • 7. Serving the model via REST API/7. 7.6 - API Schema Validation.vtt 7.3 kB
  • 6. Creating a Machine Learning Pipeline Application/8. 6.7 - Versioning and Logging.vtt 7.2 kB
  • 5. Course Setup and Key Tools/9. Section5.5b - Virtualenv Introduction.vtt 7.1 kB
  • 4. Building a Reproducible Machine Learning Pipeline/8. Bonus Should feature selection be part of the pipeline.vtt 7.0 kB
  • 3. Machine Learning System Architecture/2. Specific Challenges of Machine Learning Systems.vtt 6.9 kB
  • 12. Deploying to IaaS (AWS ECS)/12. 12.11 - Creating the ECS Cluster with the EC2 Launch Method.vtt 6.5 kB
  • 8. Continuous Integration and Deployment Pipelines/3. 8.3 - Setup Circle CI Config.vtt 6.4 kB
  • 13. A Deep Learning Model with Big Data/8. 13.8 - Packaging the CNN.vtt 6.3 kB
  • 3. Machine Learning System Architecture/4. Machine Learning System Component Breakdown.vtt 6.2 kB
  • 5. Course Setup and Key Tools/13. Section 5.7 - Engineering and Python Best Practices.vtt 6.1 kB
  • 4. Building a Reproducible Machine Learning Pipeline/5.1 preprocessors.py.py 5.7 kB
  • 6. Creating a Machine Learning Pipeline Application/2. 6.2 - Training the Model.vtt 5.4 kB
  • 11. Running Apps with Containers (Docker)/5. 11.5 Releasing to Heroku with Docker.vtt 5.3 kB
  • 3. Machine Learning System Architecture/3. Machine Learning System Approaches.vtt 5.3 kB
  • 2. Machine Learning Pipeline - Research Environment/9. Model Building - Demo.vtt 5.3 kB
  • 8. Continuous Integration and Deployment Pipelines/1. 8.1 - Introduction to CICD.vtt 5.1 kB
  • 8. Continuous Integration and Deployment Pipelines/5. 8.5 - Testing the CI Pipeline.vtt 5.0 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/3. 10.3 - Heroku Config.vtt 5.0 kB
  • 6. Creating a Machine Learning Pipeline Application/5. 6.4 - Making Predictions with the Model.vtt 4.9 kB
  • 13. A Deep Learning Model with Big Data/4.1 CNNProdCode.zip.zip 4.8 kB
  • 12. Deploying to IaaS (AWS ECS)/3. 12.3a - Intro to AWS ECS.vtt 4.6 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/1. 10.1 - Introduction.vtt 4.5 kB
  • 1. Introduction/3. Knowledge requirements.vtt 4.5 kB
  • 11. Running Apps with Containers (Docker)/1. 11.1 Introduction to Containers and Docker.vtt 4.5 kB
  • 12. Deploying to IaaS (AWS ECS)/10. 12.9 - Uploading Images to the Elastic Container Registry (ECR).vtt 4.3 kB
  • 9. Differential Testing/2. 9.2 - Setting up Differential Tests.vtt 4.3 kB
  • 2. Machine Learning Pipeline - Research Environment/8. Feature Selection - Demo.vtt 4.2 kB
  • 6. Creating a Machine Learning Pipeline Application/3. 6.3 - Connecting the Pipeline.vtt 4.1 kB
  • 7. Serving the model via REST API/5. 7.4 - Adding the Prediction Endpoint.vtt 4.1 kB
  • 13. A Deep Learning Model with Big Data/9. 13.9 - Adding the CNN to the API.vtt 4.0 kB
  • 1. Introduction/5. Guide to Setting up your Computer.html 4.0 kB
  • 7. Serving the model via REST API/4. 7.3 - Adding Config and Logging.vtt 4.0 kB
  • 12. Deploying to IaaS (AWS ECS)/11. 12.10 - Creating the ECS Cluster with Fargate Launch Method.vtt 3.9 kB
  • 13. A Deep Learning Model with Big Data/5. Reproducibility in Neural Networks.vtt 3.8 kB
  • 7. Serving the model via REST API/1. 7.1 - Introduction.vtt 3.8 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/5. 10.5 - Deploying to Heroku via CI.vtt 3.8 kB
  • 11. Running Apps with Containers (Docker)/4. 11.4 Building and Running the Docker Container.vtt 3.7 kB
  • 13. A Deep Learning Model with Big Data/6. Setting the Seed for Keras.html 3.7 kB
  • 12. Deploying to IaaS (AWS ECS)/4. 12.3b - Container Orchestration Options Kubernetes, ECS, Docker Swarm.vtt 3.7 kB
  • 12. Deploying to IaaS (AWS ECS)/13. 12.12 - Updating the Cluster Containers.vtt 3.6 kB
  • 2. Machine Learning Pipeline - Research Environment/4. Machine Learning Pipeline Model Building.vtt 3.6 kB
  • 1. Introduction/4. How to Approach this course.html 3.4 kB
  • 4. Building a Reproducible Machine Learning Pipeline/1. Production Code overview.vtt 3.4 kB
  • 5. Course Setup and Key Tools/3. Section 5.3 - How to Use the Course Resources, Monorepos + Git Refresher.vtt 3.3 kB
  • 12. Deploying to IaaS (AWS ECS)/1. 12.1 - Introduction to AWS.vtt 3.3 kB
  • 9. Differential Testing/4. 9.4 - Differential Tests in CI (Part 2 of 2).vtt 3.3 kB
  • 5. Course Setup and Key Tools/2. Section 5.2 - Installing and Configuring Git.vtt 3.2 kB
  • 6. Creating a Machine Learning Pipeline Application/6. 6.5 - Data Validation in the Model Package.vtt 3.2 kB
  • 7. Serving the model via REST API/3. 7.2b - Flask Crash Course.vtt 3.2 kB
  • 13. A Deep Learning Model with Big Data/10. 13.10 - Additional Considerations and Wrap Up.vtt 3.2 kB
  • 12. Deploying to IaaS (AWS ECS)/6. 12.5 - Setting Permissions with IAM.vtt 3.1 kB
  • 9. Differential Testing/3. 9.3 - Differential Tests in CI (Part 1 of 2).vtt 3.1 kB
  • 5. Course Setup and Key Tools/4. Section5.3b - Opening Pull Requests.vtt 3.1 kB
  • 11. Running Apps with Containers (Docker)/3. 11.3 Creating Our API App Dockerfile.vtt 2.9 kB
  • 5. Course Setup and Key Tools/11. Section5.5d - Virtualenv refresher.vtt 2.9 kB
  • 4. Building a Reproducible Machine Learning Pipeline/3.1 CustomPipeline.zip.zip 2.8 kB
  • 12. Deploying to IaaS (AWS ECS)/8. 12.7 - Configuring the AWS CLI.vtt 2.8 kB
  • 4. Building a Reproducible Machine Learning Pipeline/2.1 ProceduralPrograming.zip.zip 2.8 kB
  • 5. Course Setup and Key Tools/7. Section 5.4b - System Path and Pythonpath Demo.vtt 2.7 kB
  • 9. Differential Testing/1. 9.1 - Introduction.vtt 2.7 kB
  • 12. Deploying to IaaS (AWS ECS)/15. 12.14 - Deploying to ECS via the CI pipeline.vtt 2.7 kB
  • 2. Machine Learning Pipeline - Research Environment/11. Bonus Machine Learning Pipeline Additional Resources.vtt 2.6 kB
  • 6. Creating a Machine Learning Pipeline Application/7. 6.6 - Feature Engineering in the Pipeline.vtt 2.6 kB
  • 2. Machine Learning Pipeline - Research Environment/12. Randomness in Machine Learning - Setting the Seed.html 2.6 kB
  • 11. Running Apps with Containers (Docker)/2. 11.2 Installing Docker.vtt 2.5 kB
  • 13. A Deep Learning Model with Big Data/1. Challenges of using Big Data in Machine Learning.vtt 2.5 kB
  • 12. Deploying to IaaS (AWS ECS)/2. 12.2 - AWS Costs and Caution.vtt 2.4 kB
  • 4. Building a Reproducible Machine Learning Pipeline/6. Third Party Pipeline Closing Remarks.vtt 2.4 kB
  • 12. Deploying to IaaS (AWS ECS)/7. 12.6 - Installing the AWS CLI.vtt 2.4 kB
  • 6. Creating a Machine Learning Pipeline Application/10. 6.9 - Wrap Up.vtt 2.4 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/2. 10.2 - Heroku Account Creation.vtt 2.3 kB
  • 6. Creating a Machine Learning Pipeline Application/1. 6.1 - Introduction.vtt 2.3 kB
  • 3. Machine Learning System Architecture/1. Machine Learning System Architecture and Why it Matters.vtt 2.3 kB
  • 5. Course Setup and Key Tools/10. Section5.5c - Requirements files Introduction.vtt 2.3 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/6. 10.6 - Wrap Up.vtt 2.2 kB
  • 5. Course Setup and Key Tools/5. Section5.3c - Primer on Monorepos.vtt 2.2 kB
  • 5. Course Setup and Key Tools/1. Section 5.1 - Introduction.vtt 2.1 kB
  • 9. Differential Testing/5. 9.5 Wrap Up.vtt 2.0 kB
  • 13. A Deep Learning Model with Big Data/2. Introduction to a Large Dataset - Plant Seedlings Images.vtt 2.0 kB
  • 7. Serving the model via REST API/6. 7.5 - Adding a Version Endpoint.vtt 2.0 kB
  • 12. Deploying to IaaS (AWS ECS)/16. 12.15 - Wrap Up.vtt 1.9 kB
  • 4. Building a Reproducible Machine Learning Pipeline/7. Scikit-Learn Pipeline - Code.html 1.9 kB
  • 5. Course Setup and Key Tools/6. Section 5.4a - Operating System Differences and Gotchas.vtt 1.8 kB
  • 10. Deploying to a PaaS (Heroku) without Containers/4. 10.4 - Testing the Deployment Manually.vtt 1.6 kB
  • 5. Course Setup and Key Tools/12. Section 5.6 - Text Editors IDEs.vtt 1.6 kB
  • 11. Running Apps with Containers (Docker)/6. 11.6 - Wrap Up.vtt 1.6 kB
  • 8. Continuous Integration and Deployment Pipelines/2. 8.2 - Setting up CircleCI.vtt 1.6 kB
  • 4. Building a Reproducible Machine Learning Pipeline/9. Bonus Additional Resources on Scikit-Learn.html 1.4 kB
  • 5. Course Setup and Key Tools/14. Section 5.8 - Wrap Up.vtt 1.3 kB
  • 7. Serving the model via REST API/8. 7.7 - Wrap Up.vtt 1.3 kB
  • 6. Creating a Machine Learning Pipeline Application/4. 6.4a - Gotchas.html 1.2 kB
  • 12. Deploying to IaaS (AWS ECS)/9. 12.8 - Intro the Elastic Container Registry (ECR).vtt 1.2 kB
  • 4. Building a Reproducible Machine Learning Pipeline/10. Bonus Resources to Improve as a Python Developer.html 1.1 kB
  • 3. Machine Learning System Architecture/6. Additional Reading Resources.html 1.1 kB
  • 1. Introduction/8. FAQ Where can I learn more about the required skills.html 1.0 kB
  • 8. Continuous Integration and Deployment Pipelines/6. 8.6 - Wrap Up.vtt 998 Bytes
  • 15. Final Section/1. Bonus Discount for other courses.html 814 Bytes
  • 5. Course Setup and Key Tools/8. Section 5.5a - Quick Word for More Advanced Students.vtt 768 Bytes
  • 12. Deploying to IaaS (AWS ECS)/14. 12.13 - Tearing down the ECS Cluster.vtt 740 Bytes
  • 2. Machine Learning Pipeline - Research Environment/14. FAQ Where can I learn more about the pipeline steps.html 623 Bytes
  • 12. Deploying to IaaS (AWS ECS)/5. 12.4 - Create an AWS Account.vtt 603 Bytes
  • [TGx]Downloaded from torrentgalaxy.org.txt 524 Bytes
  • 2. Machine Learning Pipeline - Research Environment/13. Randomness in Machine Learning - Additional reading resources.html 522 Bytes
  • 13. A Deep Learning Model with Big Data/7. Seed for Neural Networks - Additional reading resources.html 397 Bytes
  • How you can help Team-FTU.txt 235 Bytes
  • 14. Common Issues found during deployment/1. Troubleshooting.html 105 Bytes
  • 2. Machine Learning Pipeline - Research Environment/5. Jupyter notebooks covered in this section.html 93 Bytes
  • 1. Introduction/6. Slides covered in this course.html 92 Bytes
  • 1. Introduction/7. Notes covered in this course.html 91 Bytes
  • Torrent Downloaded From GloDls.to.txt 84 Bytes
  • 7. Serving the model via REST API/2. 7.2 - Creating the API Skeleton.vtt 0 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!