MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCoursesOnline.Me] Coursera - Practical Reinforcement Learning

磁力链接/BT种子名称

[FreeCoursesOnline.Me] Coursera - Practical Reinforcement Learning

磁力链接/BT种子简介

种子哈希:31b47a1285df93a33f1c80a563fd43b322fc434d
文件大小: 1.41G
已经下载:4899次
下载速度:极快
收录时间:2018-09-25
最近下载:2025-09-27

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:31B47A1285DF93A33F1C80A563FD43B322FC434D
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 抖音Max TikTok成人版 PornHub 听泉鉴鲍 少女日记 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

宿舍约 猫猫 欧美厕所 厕 黑妹模特 优优 小江 patreon+ai 爱奇蒂 海角 无水印 【厕拍】 toratoragold 学生洗澡 单挑 性感梦梦 摄影师互动 pupu 意淫自己妹妹 母狗 露出 华人 金牌 萨顶顶 不染 合同 丝袜 勾引 姬舞团 +monmon busty asian 美女空姐和富二代男友之间的秘密被渣男分手后曝光 母血 主播 19

文件列表

  • 001.Welcome/001. Why should you care.mp4 34.0 MB
  • 001.Welcome/001. Why should you care.srt 15.8 kB
  • 001.Welcome/002. Reinforcement learning vs all.mp4 11.3 MB
  • 001.Welcome/002. Reinforcement learning vs all.srt 5.0 kB
  • 002.Reinforcement Learning/003. Multi-armed bandit.mp4 18.7 MB
  • 002.Reinforcement Learning/003. Multi-armed bandit.srt 7.4 kB
  • 002.Reinforcement Learning/004. Decision process & applications.mp4 24.1 MB
  • 002.Reinforcement Learning/004. Decision process & applications.srt 9.9 kB
  • 003.Black box optimization/005. Markov Decision Process.mp4 18.9 MB
  • 003.Black box optimization/005. Markov Decision Process.srt 8.5 kB
  • 003.Black box optimization/006. Crossentropy method.mp4 37.8 MB
  • 003.Black box optimization/006. Crossentropy method.srt 15.9 kB
  • 003.Black box optimization/007. Approximate crossentropy method.mp4 20.2 MB
  • 003.Black box optimization/007. Approximate crossentropy method.srt 8.4 kB
  • 003.Black box optimization/008. More on approximate crossentropy method.mp4 24.0 MB
  • 003.Black box optimization/008. More on approximate crossentropy method.srt 10.7 kB
  • 004.All the cool stuff that isn't in the base track/009. Evolution strategies core idea.mp4 21.9 MB
  • 004.All the cool stuff that isn't in the base track/009. Evolution strategies core idea.srt 7.5 kB
  • 004.All the cool stuff that isn't in the base track/010. Evolution strategies math problems.mp4 18.6 MB
  • 004.All the cool stuff that isn't in the base track/010. Evolution strategies math problems.srt 8.8 kB
  • 004.All the cool stuff that isn't in the base track/011. Evolution strategies log-derivative trick.mp4 29.2 MB
  • 004.All the cool stuff that isn't in the base track/011. Evolution strategies log-derivative trick.srt 12.9 kB
  • 004.All the cool stuff that isn't in the base track/012. Evolution strategies duct tape.mp4 22.2 MB
  • 004.All the cool stuff that isn't in the base track/012. Evolution strategies duct tape.srt 9.9 kB
  • 004.All the cool stuff that isn't in the base track/013. Blackbox optimization drawbacks.mp4 16.0 MB
  • 004.All the cool stuff that isn't in the base track/013. Blackbox optimization drawbacks.srt 7.5 kB
  • 005.Striving for reward/014. Reward design.mp4 52.1 MB
  • 005.Striving for reward/014. Reward design.srt 23.8 kB
  • 006.Bellman equations/015. State and Action Value Functions.mp4 39.1 MB
  • 006.Bellman equations/015. State and Action Value Functions.srt 18.7 kB
  • 006.Bellman equations/016. Measuring Policy Optimality.mp4 19.0 MB
  • 006.Bellman equations/016. Measuring Policy Optimality.srt 8.7 kB
  • 007.Generalized Policy Iteration/017. Policy evaluation & improvement.mp4 33.5 MB
  • 007.Generalized Policy Iteration/017. Policy evaluation & improvement.srt 14.8 kB
  • 007.Generalized Policy Iteration/018. Policy and value iteration.mp4 25.3 MB
  • 007.Generalized Policy Iteration/018. Policy and value iteration.srt 12.3 kB
  • 008.Model-free learning/019. Model-based vs model-free.mp4 30.2 MB
  • 008.Model-free learning/019. Model-based vs model-free.srt 14.4 kB
  • 008.Model-free learning/020. Monte-Carlo & Temporal Difference; Q-learning.mp4 31.6 MB
  • 008.Model-free learning/020. Monte-Carlo & Temporal Difference; Q-learning.srt 14.9 kB
  • 008.Model-free learning/021. Exploration vs Exploitation.mp4 29.6 MB
  • 008.Model-free learning/021. Exploration vs Exploitation.srt 14.3 kB
  • 008.Model-free learning/022. Footnote Monte-Carlo vs Temporal Difference.mp4 10.8 MB
  • 008.Model-free learning/022. Footnote Monte-Carlo vs Temporal Difference.srt 4.9 kB
  • 009.On-policy vs off-policy/023. Accounting for exploration. Expected Value SARSA..mp4 39.6 MB
  • 009.On-policy vs off-policy/023. Accounting for exploration. Expected Value SARSA..srt 17.7 kB
  • 010.Experience Replay/024. On-policy vs off-policy; Experience replay.mp4 28.0 MB
  • 010.Experience Replay/024. On-policy vs off-policy; Experience replay.srt 11.5 kB
  • 011.Limitations of Tabular Methods/025. Supervised & Reinforcement Learning.mp4 53.1 MB
  • 011.Limitations of Tabular Methods/025. Supervised & Reinforcement Learning.srt 26.0 kB
  • 011.Limitations of Tabular Methods/026. Loss functions in value based RL.mp4 35.4 MB
  • 011.Limitations of Tabular Methods/026. Loss functions in value based RL.srt 15.5 kB
  • 011.Limitations of Tabular Methods/027. Difficulties with Approximate Methods.mp4 49.3 MB
  • 011.Limitations of Tabular Methods/027. Difficulties with Approximate Methods.srt 22.4 kB
  • 012.Case Study Deep Q-Network/028. DQN bird's eye view.mp4 29.1 MB
  • 012.Case Study Deep Q-Network/028. DQN bird's eye view.srt 11.7 kB
  • 012.Case Study Deep Q-Network/029. DQN the internals.mp4 31.1 MB
  • 012.Case Study Deep Q-Network/029. DQN the internals.srt 12.5 kB
  • 013.Honor/030. DQN statistical issues.mp4 20.2 MB
  • 013.Honor/030. DQN statistical issues.srt 9.4 kB
  • 013.Honor/031. Double Q-learning.mp4 21.5 MB
  • 013.Honor/031. Double Q-learning.srt 9.7 kB
  • 013.Honor/032. More DQN tricks.mp4 35.6 MB
  • 013.Honor/032. More DQN tricks.srt 16.7 kB
  • 013.Honor/033. Partial observability.mp4 60.0 MB
  • 013.Honor/033. Partial observability.srt 28.4 kB
  • 014.Policy-based RL vs Value-based RL/034. Intuition.mp4 36.6 MB
  • 014.Policy-based RL vs Value-based RL/034. Intuition.srt 15.9 kB
  • 014.Policy-based RL vs Value-based RL/035. All Kinds of Policies.mp4 16.8 MB
  • 014.Policy-based RL vs Value-based RL/035. All Kinds of Policies.srt 7.6 kB
  • 014.Policy-based RL vs Value-based RL/036. Policy gradient formalism.mp4 33.1 MB
  • 014.Policy-based RL vs Value-based RL/036. Policy gradient formalism.srt 13.6 kB
  • 014.Policy-based RL vs Value-based RL/037. The log-derivative trick.mp4 13.9 MB
  • 014.Policy-based RL vs Value-based RL/037. The log-derivative trick.srt 6.0 kB
  • 015.REINFORCE/038. REINFORCE.mp4 32.9 MB
  • 015.REINFORCE/038. REINFORCE.srt 14.3 kB
  • 016.Actor-critic/039. Advantage actor-critic.mp4 25.8 MB
  • 016.Actor-critic/039. Advantage actor-critic.srt 12.1 kB
  • 016.Actor-critic/040. Duct tape zone.mp4 18.4 MB
  • 016.Actor-critic/040. Duct tape zone.srt 8.0 kB
  • 016.Actor-critic/041. Policy-based vs Value-based.mp4 17.6 MB
  • 016.Actor-critic/041. Policy-based vs Value-based.srt 7.2 kB
  • 016.Actor-critic/042. Case study A3C.mp4 27.4 MB
  • 016.Actor-critic/042. Case study A3C.srt 11.4 kB
  • 016.Actor-critic/043. A3C case study (2 2).mp4 15.7 MB
  • 016.Actor-critic/043. A3C case study (2 2).srt 6.1 kB
  • 016.Actor-critic/044. Combining supervised & reinforcement learning.mp4 25.2 MB
  • 016.Actor-critic/044. Combining supervised & reinforcement learning.srt 12.2 kB
  • 017.Measuting exploration/045. Recap bandits.mp4 25.9 MB
  • 017.Measuting exploration/045. Recap bandits.srt 12.2 kB
  • 017.Measuting exploration/046. Regret measuring the quality of exploration.mp4 22.3 MB
  • 017.Measuting exploration/046. Regret measuring the quality of exploration.srt 10.4 kB
  • 017.Measuting exploration/047. The message just repeats. 'Regret, Regret, Regret.'.mp4 19.3 MB
  • 017.Measuting exploration/047. The message just repeats. 'Regret, Regret, Regret.'.srt 8.9 kB
  • 018.Uncertainty-based exploration/048. Intuitive explanation.mp4 23.3 MB
  • 018.Uncertainty-based exploration/048. Intuitive explanation.srt 11.2 kB
  • 018.Uncertainty-based exploration/049. Thompson Sampling.mp4 17.9 MB
  • 018.Uncertainty-based exploration/049. Thompson Sampling.srt 8.1 kB
  • 018.Uncertainty-based exploration/050. Optimism in face of uncertainty.mp4 17.3 MB
  • 018.Uncertainty-based exploration/050. Optimism in face of uncertainty.srt 8.1 kB
  • 018.Uncertainty-based exploration/051. UCB-1.mp4 23.3 MB
  • 018.Uncertainty-based exploration/051. UCB-1.srt 10.6 kB
  • 018.Uncertainty-based exploration/052. Bayesian UCB.mp4 42.8 MB
  • 018.Uncertainty-based exploration/052. Bayesian UCB.srt 19.8 kB
  • 019.Planning with Monte Carlo Tree Search/053. Introduction to planning.mp4 54.1 MB
  • 019.Planning with Monte Carlo Tree Search/053. Introduction to planning.srt 26.0 kB
  • 019.Planning with Monte Carlo Tree Search/054. Monte Carlo Tree Search.mp4 32.4 MB
  • 019.Planning with Monte Carlo Tree Search/054. Monte Carlo Tree Search.srt 15.2 kB
  • [FreeCoursesOnline.Me].url 133 Bytes
  • [FreeTutorials.Us].url 119 Bytes
  • [FTU Forum].url 252 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!