搜索
Udemy - Deep Learning Convolutional Neural Networks in Python (5.2025)
磁力链接/BT种子名称
Udemy - Deep Learning Convolutional Neural Networks in Python (5.2025)
磁力链接/BT种子简介
种子哈希:
05df7c021b6cdc5cc56ebb4fbade372d24b5e8e5
文件大小:
3.96G
已经下载:
382
次
下载速度:
极快
收录时间:
2025-07-07
最近下载:
2025-08-14
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:05DF7C021B6CDC5CC56EBB4FBADE372D24B5E8E5
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
哆哔涩漫
呦乐园
萝莉岛
最近搜索
单男体育生
强
原版 无码
王诗曼雨萌
db 007
不用手
短袜
少妇老公赌博欠下巨债
슬랜더
美腿模特
美屌
花巧娟
换妻交换轮操.
无码连发
逢沢みゆ
柔式
绒毛
潮流
無 流出
泡机
命中注定之人
喷出
母狗小欢
的恋歌
小宝 加钟
天龙八部
蒂娜凯
新作
microsoft office for mac
长袜
文件列表
13. Setting Up Your Environment (FAQ by Student Request)/2. Anaconda Environment Setup.mp4
324.1 MB
06. Natural Language Processing (NLP)/5. Text Classification with CNNs.mp4
313.4 MB
05. Convolutional Neural Networks/4. Why use 0-indexing.mp4
210.7 MB
13. Setting Up Your Environment (FAQ by Student Request)/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
201.3 MB
03. Machine Learning and Neurons/4. Classification Notebook.mp4
180.5 MB
15. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
143.0 MB
15. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
141.4 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/8. Proof that using Jupyter Notebook is the same as not using it.mp4
113.7 MB
02. Google Colab/2. Uploading your own data to Google Colab.mp4
108.3 MB
05. Convolutional Neural Networks/12. Improving CIFAR-10 Results (Legacy).mp4
106.1 MB
04. Feedforward Artificial Neural Networks/10. ANN for Regression.mp4
104.0 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/5. How to Code by Yourself (part 1).mp4
98.1 MB
03. Machine Learning and Neurons/6. Regression Notebook.mp4
91.8 MB
02. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free.mp4
75.1 MB
03. Machine Learning and Neurons/8. How does a model learn.mp4
63.5 MB
15. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
63.1 MB
05. Convolutional Neural Networks/6. CNN Architecture.mp4
62.6 MB
04. Feedforward Artificial Neural Networks/4. Activation Functions.mp4
62.4 MB
06. Natural Language Processing (NLP)/3. Text Preprocessing.mp4
62.3 MB
05. Convolutional Neural Networks/7. CNN Code Preparation.mp4
60.4 MB
03. Machine Learning and Neurons/2. What is Machine Learning.mp4
50.3 MB
05. Convolutional Neural Networks/5. Convolution on Color Images.mp4
48.1 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. How to use Github & Extra Coding Tips (Optional).mp4
46.6 MB
04. Feedforward Artificial Neural Networks/9. ANN for Image Classification.mp4
46.5 MB
06. Natural Language Processing (NLP)/2. Code Preparation (NLP).mp4
46.5 MB
05. Convolutional Neural Networks/1. What is Convolution (part 1).mp4
45.5 MB
16. Appendix FAQ Finale/1. BONUS.mp4
45.3 MB
04. Feedforward Artificial Neural Networks/6. How to Represent Images.mp4
45.2 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. Beginner's Coding Tips.mp4
44.9 MB
03. Machine Learning and Neurons/10. Saving and Loading a Model.mp4
43.7 MB
03. Machine Learning and Neurons/11. Suggestion Box.mp4
41.7 MB
05. Convolutional Neural Networks/8. CNN for Fashion MNIST.mp4
40.4 MB
11. In-Depth Gradient Descent/5. Adam (pt 1).mp4
40.0 MB
03. Machine Learning and Neurons/3. Code Preparation (Classification Theory).mp4
39.6 MB
09. Practical Tips/1. Advanced CNNs and how to Design your Own.mp4
39.1 MB
08. Convolutional Neural Network Description/2. Tracking Shapes in a CNN.mp4
38.9 MB
02. Google Colab/3. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4
38.3 MB
07. Convolution In-Depth/1. Real-Life Examples of Convolution.mp4
37.9 MB
06. Natural Language Processing (NLP)/1. Embeddings.mp4
37.7 MB
04. Feedforward Artificial Neural Networks/8. Code Preparation (ANN).mp4
33.9 MB
02. Google Colab/4. Temporary 403 Errors.mp4
33.2 MB
11. In-Depth Gradient Descent/6. Adam (pt 2).mp4
32.8 MB
04. Feedforward Artificial Neural Networks/5. Multiclass Classification.mp4
32.3 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Where To Get the Code Troubleshooting.mp4
31.1 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/6. How to Code by Yourself (part 2).mp4
30.7 MB
04. Feedforward Artificial Neural Networks/3. The Geometrical Picture.mp4
30.1 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/10. Is Theano Dead.mp4
29.3 MB
03. Machine Learning and Neurons/7. The Neuron.mp4
27.6 MB
05. Convolutional Neural Networks/9. CNN for CIFAR-10.mp4
27.0 MB
05. Convolutional Neural Networks/10. Data Augmentation.mp4
27.0 MB
11. In-Depth Gradient Descent/3. Momentum.mp4
26.8 MB
04. Feedforward Artificial Neural Networks/2. Forward Propagation.mp4
26.8 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4
26.6 MB
15. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version).mp4
26.1 MB
10. In-Depth Loss Functions/1. Mean Squared Error.mp4
25.2 MB
03. Machine Learning and Neurons/9. Making Predictions.mp4
24.7 MB
11. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates.mp4
24.6 MB
08. Convolutional Neural Network Description/1. Convolution on 3-D Images.mp4
22.8 MB
06. Natural Language Processing (NLP)/4. CNNs for Text.mp4
22.6 MB
07. Convolution In-Depth/3. Alternative Views on Convolution.mp4
22.5 MB
11. In-Depth Gradient Descent/1. Gradient Descent.mp4
21.8 MB
10. In-Depth Loss Functions/3. Categorical Cross Entropy.mp4
20.5 MB
04. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction.mp4
19.3 MB
12. Appendix FAQ Intro/1. What is the Appendix.mp4
19.2 MB
11. In-Depth Gradient Descent/2. Stochastic Gradient Descent.mp4
19.1 MB
07. Convolution In-Depth/2. Beginner's Guide to Convolution.mp4
18.4 MB
03. Machine Learning and Neurons/5. Code Preparation (Regression Theory).mp4
17.7 MB
05. Convolutional Neural Networks/3. What is Convolution (part 3).mp4
17.0 MB
05. Convolutional Neural Networks/2. What is Convolution (part 2).mp4
15.2 MB
05. Convolutional Neural Networks/11. Batch Normalization.mp4
13.7 MB
13. Setting Up Your Environment (FAQ by Student Request)/1. Pre-Installation Check.mp4
13.7 MB
10. In-Depth Loss Functions/2. Binary Cross Entropy.mp4
13.4 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/9. Python 2 vs Python 3.mp4
10.9 MB
01. Welcome/3. How to Succeed in this Course.mp4
9.4 MB
03. Machine Learning and Neurons/1. Review Section Introduction.mp4
7.9 MB
01. Welcome/1. Introduction and Outline.mp4
7.8 MB
01. Welcome/2. Where to get the code.mp4
7.1 MB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/7. How to Uncompress a .tar.gz file.mp4
6.7 MB
04. Feedforward Artificial Neural Networks/7. Color Mixing Clarification.mp4
2.8 MB
03. Machine Learning and Neurons/6. Regression Notebook.vtt
30.3 kB
15. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt
29.0 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/5. How to Code by Yourself (part 1).vtt
28.5 kB
05. Convolutional Neural Networks/6. CNN Architecture.vtt
25.7 kB
06. Natural Language Processing (NLP)/5. Text Classification with CNNs.vtt
25.1 kB
03. Machine Learning and Neurons/4. Classification Notebook.vtt
24.1 kB
15. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2).vtt
21.4 kB
06. Natural Language Processing (NLP)/3. Text Preprocessing.vtt
21.3 kB
04. Feedforward Artificial Neural Networks/4. Activation Functions.vtt
20.4 kB
05. Convolutional Neural Networks/4. Why use 0-indexing.vtt
20.2 kB
05. Convolutional Neural Networks/5. Convolution on Color Images.vtt
18.8 kB
08. Convolutional Neural Network Description/2. Tracking Shapes in a CNN.vtt
18.7 kB
05. Convolutional Neural Networks/1. What is Convolution (part 1).vtt
18.6 kB
03. Machine Learning and Neurons/3. Code Preparation (Classification Theory).vtt
18.6 kB
05. Convolutional Neural Networks/7. CNN Code Preparation.vtt
18.1 kB
13. Setting Up Your Environment (FAQ by Student Request)/2. Anaconda Environment Setup.vtt
17.7 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. Beginner's Coding Tips.vtt
17.2 kB
13. Setting Up Your Environment (FAQ by Student Request)/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt
17.2 kB
03. Machine Learning and Neurons/2. What is Machine Learning.vtt
17.1 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/6. How to Code by Yourself (part 2).vtt
16.5 kB
06. Natural Language Processing (NLP)/2. Code Preparation (NLP).vtt
16.5 kB
06. Natural Language Processing (NLP)/1. Embeddings.vtt
15.8 kB
11. In-Depth Gradient Descent/5. Adam (pt 1).vtt
15.2 kB
15. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1).vtt
15.0 kB
04. Feedforward Artificial Neural Networks/8. Code Preparation (ANN).vtt
14.8 kB
04. Feedforward Artificial Neural Networks/6. How to Represent Images.vtt
14.4 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. How to use Github & Extra Coding Tips (Optional).vtt
14.1 kB
11. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates.vtt
13.7 kB
09. Practical Tips/1. Advanced CNNs and how to Design your Own.vtt
13.6 kB
15. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version).vtt
13.4 kB
02. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free.vtt
13.0 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/8. Proof that using Jupyter Notebook is the same as not using it.vtt
13.0 kB
02. Google Colab/3. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.vtt
13.0 kB
03. Machine Learning and Neurons/8. How does a model learn.vtt
12.9 kB
08. Convolutional Neural Network Description/1. Convolution on 3-D Images.vtt
12.7 kB
11. In-Depth Gradient Descent/6. Adam (pt 2).vtt
12.7 kB
05. Convolutional Neural Networks/12. Improving CIFAR-10 Results (Legacy).vtt
12.1 kB
04. Feedforward Artificial Neural Networks/10. ANN for Regression.vtt
12.0 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/10. Is Theano Dead.vtt
12.0 kB
03. Machine Learning and Neurons/7. The Neuron.vtt
11.5 kB
04. Feedforward Artificial Neural Networks/2. Forward Propagation.vtt
11.2 kB
02. Google Colab/2. Uploading your own data to Google Colab.vtt
11.1 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. Get Your Hands Dirty, Practical Coding Experience, Data Links.vtt
10.8 kB
04. Feedforward Artificial Neural Networks/3. The Geometrical Picture.vtt
10.7 kB
10. In-Depth Loss Functions/1. Mean Squared Error.vtt
10.4 kB
05. Convolutional Neural Networks/10. Data Augmentation.vtt
10.4 kB
04. Feedforward Artificial Neural Networks/5. Multiclass Classification.vtt
10.1 kB
04. Feedforward Artificial Neural Networks/9. ANN for Image Classification.vtt
9.2 kB
06. Natural Language Processing (NLP)/4. CNNs for Text.vtt
9.1 kB
11. In-Depth Gradient Descent/1. Gradient Descent.vtt
9.0 kB
10. In-Depth Loss Functions/3. Categorical Cross Entropy.vtt
9.0 kB
12. Appendix FAQ Intro/1. What is the Appendix.vtt
8.3 kB
03. Machine Learning and Neurons/5. Code Preparation (Regression Theory).vtt
8.2 kB
07. Convolution In-Depth/1. Real-Life Examples of Convolution.vtt
8.0 kB
07. Convolution In-Depth/3. Alternative Views on Convolution.vtt
7.6 kB
03. Machine Learning and Neurons/9. Making Predictions.vtt
7.5 kB
05. Convolutional Neural Networks/8. CNN for Fashion MNIST.vtt
7.3 kB
04. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction.vtt
7.2 kB
16. Appendix FAQ Finale/1. BONUS.vtt
7.2 kB
05. Convolutional Neural Networks/3. What is Convolution (part 3).vtt
7.2 kB
07. Convolution In-Depth/2. Beginner's Guide to Convolution.vtt
7.2 kB
11. In-Depth Gradient Descent/3. Momentum.vtt
7.0 kB
10. In-Depth Loss Functions/2. Binary Cross Entropy.vtt
6.6 kB
05. Convolutional Neural Networks/2. What is Convolution (part 2).vtt
6.5 kB
05. Convolutional Neural Networks/11. Batch Normalization.vtt
6.1 kB
01. Welcome/2. Where to get the code.vtt
6.1 kB
13. Setting Up Your Environment (FAQ by Student Request)/1. Pre-Installation Check.vtt
5.9 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/9. Python 2 vs Python 3.vtt
5.6 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Where To Get the Code Troubleshooting.vtt
5.2 kB
05. Convolutional Neural Networks/9. CNN for CIFAR-10.vtt
5.1 kB
11. In-Depth Gradient Descent/2. Stochastic Gradient Descent.vtt
4.8 kB
03. Machine Learning and Neurons/10. Saving and Loading a Model.vtt
4.5 kB
03. Machine Learning and Neurons/11. Suggestion Box.vtt
4.2 kB
01. Welcome/3. How to Succeed in this Course.vtt
4.0 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/7. How to Uncompress a .tar.gz file.vtt
3.7 kB
01. Welcome/1. Introduction and Outline.vtt
3.3 kB
03. Machine Learning and Neurons/1. Review Section Introduction.vtt
3.3 kB
02. Google Colab/4. Temporary 403 Errors.vtt
3.3 kB
04. Feedforward Artificial Neural Networks/7. Color Mixing Clarification.vtt
1.0 kB
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. Data-Links.txt
96 Bytes
01. Welcome/2. Github-Link.txt
81 Bytes
14. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. Github-Link.txt
81 Bytes
01. Welcome/2. Code-Link.txt
64 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!