MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[Tutorialsplanet.NET] Udemy - Master statistics & machine learning - intuition, math, code

磁力链接/BT种子名称

[Tutorialsplanet.NET] Udemy - Master statistics & machine learning - intuition, math, code

磁力链接/BT种子简介

种子哈希:01e1cbfe829774cf8a044c9227d0cfbf4675c91b
文件大小: 12.84G
已经下载:1741次
下载速度:极快
收录时间:2022-01-09
最近下载:2025-08-19

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:01E1CBFE829774CF8A044C9227D0CFBF4675C91B
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 TikTok成人版 PornHub 草榴社区 哆哔涩漫 呦乐园 萝莉岛

最近搜索

全国第一 破·地狱2024 稀缺 精品 不得不爱 私圈流出 广深虾酱 模特私拍 极品人妻『小燕子 插屁 嚣张 今今 漂亮御姐 细腰纯欲 试衣衣间 老妇人 anna ralphs 三星 我爱死你了 约炮网红 宾馆迷 wsp 屌人 石原 明星流出 反差 母狗 神菜 南航丝袜 本优 震动棒 甜甜真甜

文件列表

  • 06 - Descriptive statistics/004 Code_ data from different distributions.mp4 317.8 MB
  • 16 - Clustering and dimension-reduction/006 Code_ dbscan.mp4 302.1 MB
  • 12 - Correlation/006 Code_ correlation matrix.mp4 296.2 MB
  • 06 - Descriptive statistics/012 Code_ Computing dispersion.mp4 279.0 MB
  • 18 - A real-world data journey/007 Python_ Import and clean the marriage data.mp4 262.0 MB
  • 10 - The t-test family/013 Code_ permutation testing.mp4 252.6 MB
  • 16 - Clustering and dimension-reduction/002 Code_ k-means clustering.mp4 241.5 MB
  • 12 - Correlation/003 Code_ correlation coefficient.mp4 224.5 MB
  • 10 - The t-test family/006 Code_ Two-samples t-test.mp4 221.6 MB
  • 18 - A real-world data journey/003 MATLAB_ Import and clean the marriage data.mp4 211.1 MB
  • 12 - Correlation/018 Code_ Kendall correlation.mp4 193.2 MB
  • 16 - Clustering and dimension-reduction/011 Code_ PCA.mp4 183.6 MB
  • 13 - Analysis of Variance (ANOVA)/008 Code_ One-way ANOVA (independent samples).mp4 181.1 MB
  • 14 - Regression/009 Code_ Multiple regression.mp4 179.3 MB
  • 08 - Probability theory/021 Code_ Law of Large Numbers in action.mp4 173.6 MB
  • 10 - The t-test family/009 Code_ Signed-rank test.mp4 169.7 MB
  • 10 - The t-test family/003 Code_ One-sample t-test.mp4 165.6 MB
  • 08 - Probability theory/015 Code_ sampling variability.mp4 162.3 MB
  • 08 - Probability theory/004 Code_ compute probabilities.mp4 155.6 MB
  • 13 - Analysis of Variance (ANOVA)/001 ANOVA intro, part1.mp4 144.4 MB
  • 18 - A real-world data journey/008 Python_ Import the divorce data.mp4 143.8 MB
  • 07 - Data normalizations and outliers/010 Code_ z-score for outlier removal.mp4 143.5 MB
  • 11 - Confidence intervals on parameters/005 Code_ bootstrapping confidence intervals.mp4 143.4 MB
  • 08 - Probability theory/007 Probability mass vs. density.mp4 140.7 MB
  • 05 - Visualizing data/007 Code_ histograms.mp4 140.0 MB
  • 14 - Regression/011 Code_ polynomial modeling.mp4 135.4 MB
  • 08 - Probability theory/012 Creating sample estimate distributions.mp4 130.9 MB
  • 14 - Regression/015 Under- and over-fitting.mp4 126.7 MB
  • 12 - Correlation/001 Motivation and description of correlation.mp4 124.2 MB
  • 06 - Descriptive statistics/019 Code_ Histogram bins.mp4 123.9 MB
  • 18 - A real-world data journey/009 Python_ Inferential statistics.mp4 121.2 MB
  • 08 - Probability theory/018 Code_ conditional probabilities.mp4 120.7 MB
  • 13 - Analysis of Variance (ANOVA)/011 Code_ Two-way mixed ANOVA.mp4 119.7 MB
  • 18 - A real-world data journey/006 MATLAB_ Inferential statistics.mp4 119.0 MB
  • 16 - Clustering and dimension-reduction/009 Code_ KNN.mp4 113.6 MB
  • 12 - Correlation/010 Code_ partial correlation.mp4 113.5 MB
  • 17 - Signal detection theory/006 F-score.mp4 112.5 MB
  • 09 - Hypothesis testing/004 P-values_ definition, tails, and misinterpretations.mp4 111.6 MB
  • 08 - Probability theory/014 Sampling variability, noise, and other annoyances.mp4 111.2 MB
  • 06 - Descriptive statistics/021 Code_ violin plots.mp4 110.1 MB
  • 13 - Analysis of Variance (ANOVA)/006 The two-way ANOVA.mp4 109.5 MB
  • 12 - Correlation/022 Code_ Cosine similarity vs. Pearson correlation.mp4 107.1 MB
  • 16 - Clustering and dimension-reduction/005 Clustering via dbscan.mp4 105.2 MB
  • 05 - Visualizing data/002 Code_ bar plots.mp4 104.9 MB
  • 06 - Descriptive statistics/024 Code_ entropy.mp4 101.5 MB
  • 18 - A real-world data journey/004 MATLAB_ Import the divorce data.mp4 101.0 MB
  • 08 - Probability theory/010 Code_ cdfs and pdfs.mp4 100.6 MB
  • 11 - Confidence intervals on parameters/003 Code_ compute confidence intervals by formula.mp4 98.9 MB
  • 10 - The t-test family/005 Two-samples t-test.mp4 98.4 MB
  • 08 - Probability theory/023 Code_ the CLT in action.mp4 97.9 MB
  • 09 - Hypothesis testing/001 IVs, DVs, models, and other stats lingo.mp4 95.6 MB
  • 06 - Descriptive statistics/016 Code_ QQ plots.mp4 94.7 MB
  • 09 - Hypothesis testing/008 Parametric vs. non-parametric tests.mp4 91.7 MB
  • 08 - Probability theory/017 Conditional probability.mp4 89.8 MB
  • 13 - Analysis of Variance (ANOVA)/002 ANOVA intro, part 2.mp4 88.3 MB
  • 05 - Visualizing data/004 Code_ box plots.mp4 87.7 MB
  • 06 - Descriptive statistics/014 Code_ IQR.mp4 87.4 MB
  • 14 - Regression/014 Code_ Logistic regression.mp4 85.2 MB
  • 05 - Visualizing data/010 Code_ pie charts.mp4 82.8 MB
  • 14 - Regression/008 Standardizing regression coefficients.mp4 78.8 MB
  • 16 - Clustering and dimension-reduction/014 Code_ ICA.mp4 76.9 MB
  • 13 - Analysis of Variance (ANOVA)/009 Code_ One-way repeated-measures ANOVA.mp4 76.7 MB
  • 12 - Correlation/004 Code_ Simulate data with specified correlation.mp4 73.5 MB
  • 17 - Signal detection theory/003 Code_ d-prime.mp4 72.9 MB
  • 07 - Data normalizations and outliers/003 Code_ z-score.mp4 70.0 MB
  • 06 - Descriptive statistics/009 Code_ computing central tendency.mp4 69.8 MB
  • 08 - Probability theory/008 Code_ compute probability mass functions.mp4 69.4 MB
  • 07 - Data normalizations and outliers/015 Code_ Data trimming to remove outliers.mp4 68.5 MB
  • 17 - Signal detection theory/007 Receiver operating characteristics (ROC).mp4 67.5 MB
  • 10 - The t-test family/012 Permutation testing for t-test significance.mp4 66.6 MB
  • 13 - Analysis of Variance (ANOVA)/005 The omnibus F-test and post-hoc comparisons.mp4 66.4 MB
  • 14 - Regression/001 Introduction to GLM _ regression.mp4 65.0 MB
  • 08 - Probability theory/016 Expected value.mp4 62.5 MB
  • 04 - What are (is_) data_/003 Types of data_ categorical, numerical, etc.mp4 62.2 MB
  • 12 - Correlation/009 Partial correlation.mp4 62.2 MB
  • 17 - Signal detection theory/008 Code_ ROC curves.mp4 57.3 MB
  • 16 - Clustering and dimension-reduction/001 K-means clustering.mp4 56.9 MB
  • 11 - Confidence intervals on parameters/004 Confidence intervals via bootstrapping (resampling).mp4 56.9 MB
  • 06 - Descriptive statistics/011 Measures of dispersion (variance, standard deviation).mp4 56.7 MB
  • 10 - The t-test family/002 One-sample t-test.mp4 56.6 MB
  • 18 - A real-world data journey/002 Introduction.mp4 55.6 MB
  • 14 - Regression/013 Logistic regression.mp4 55.3 MB
  • 14 - Regression/005 Code_ simple regression.mp4 54.8 MB
  • 10 - The t-test family/011 Code_ Mann-Whitney U test.mp4 54.6 MB
  • 09 - Hypothesis testing/002 What is an hypothesis and how do you specify one_.mp4 51.5 MB
  • 01 - Introductions/003 Statistics guessing game_.mp4 50.7 MB
  • 14 - Regression/010 Polynomial regression models.mp4 50.5 MB
  • 04 - What are (is_) data_/004 Code_ representing types of data on computers.mp4 50.2 MB
  • 09 - Hypothesis testing/007 Type 1 and Type 2 errors.mp4 48.1 MB
  • 13 - Analysis of Variance (ANOVA)/003 Sum of squares.mp4 48.1 MB
  • 16 - Clustering and dimension-reduction/013 Independent components analysis (ICA).mp4 47.7 MB
  • 08 - Probability theory/009 Cumulative distribution functions.mp4 47.6 MB
  • 14 - Regression/007 Multiple regression.mp4 47.3 MB
  • 13 - Analysis of Variance (ANOVA)/007 One-way ANOVA example.mp4 46.5 MB
  • 18 - A real-world data journey/010 Take-home messages.mp4 45.9 MB
  • 09 - Hypothesis testing/003 Sample distributions under null and alternative hypotheses.mp4 45.9 MB
  • 05 - Visualizing data/006 Histograms.mp4 45.9 MB
  • 07 - Data normalizations and outliers/013 Code_ Euclidean distance for outlier removal.mp4 45.8 MB
  • 07 - Data normalizations and outliers/007 What are outliers and why are they dangerous_.mp4 45.1 MB
  • 12 - Correlation/014 Code_ Spearman correlation and Fisher-Z.mp4 44.8 MB
  • 16 - Clustering and dimension-reduction/010 Principal components analysis (PCA).mp4 44.6 MB
  • 09 - Hypothesis testing/012 Statistical significance vs. classification accuracy.mp4 44.6 MB
  • 12 - Correlation/002 Covariance and correlation_ formulas.mp4 43.9 MB
  • 14 - Regression/002 Least-squares solution to the GLM.mp4 43.4 MB
  • 08 - Probability theory/001 What is probability_.mp4 43.1 MB
  • 08 - Probability theory/020 The Law of Large Numbers.mp4 42.5 MB
  • 07 - Data normalizations and outliers/005 Code_ min-max scaling.mp4 42.4 MB
  • 15 - Statistical power and sample sizes/001 What is statistical power and why is it important_.mp4 41.4 MB
  • 14 - Regression/017 Comparing _nested_ models.mp4 41.0 MB
  • 06 - Descriptive statistics/007 Measures of central tendency (mean).mp4 40.6 MB
  • 01 - Introductions/001 [Important] Getting the most out of this course.mp4 40.1 MB
  • 14 - Regression/003 Evaluating regression models_ R2 and F.mp4 39.9 MB
  • 08 - Probability theory/003 Computing probabilities.mp4 39.3 MB
  • 08 - Probability theory/002 Probability vs. proportion.mp4 39.3 MB
  • 05 - Visualizing data/013 Code_ line plots.mp4 39.1 MB
  • 04 - What are (is_) data_/005 Sample vs. population data.mp4 38.9 MB
  • 05 - Visualizing data/001 Bar plots.mp4 38.6 MB
  • 14 - Regression/004 Simple regression.mp4 38.6 MB
  • 07 - Data normalizations and outliers/002 Z-score standardization.mp4 38.0 MB
  • 15 - Statistical power and sample sizes/002 Estimating statistical power and sample size.mp4 37.9 MB
  • 13 - Analysis of Variance (ANOVA)/010 Two-way ANOVA example.mp4 37.7 MB
  • 04 - What are (is_) data_/002 Where do data come from and what do they mean_.mp4 37.3 MB
  • 18 - A real-world data journey/005 MATLAB_ More data visualizations.mp4 36.0 MB
  • 06 - Descriptive statistics/008 Measures of central tendency (median, mode).mp4 35.9 MB
  • 17 - Signal detection theory/002 d-prime.mp4 35.8 MB
  • 07 - Data normalizations and outliers/017 Nonlinear data transformations.mp4 35.3 MB
  • 07 - Data normalizations and outliers/008 Removing outliers_ z-score method.mp4 35.1 MB
  • 06 - Descriptive statistics/023 Shannon entropy.mp4 34.7 MB
  • 09 - Hypothesis testing/006 Degrees of freedom.mp4 34.5 MB
  • 10 - The t-test family/014 _Unsupervised learning__ How many permutations_.mp4 34.1 MB
  • 10 - The t-test family/001 Purpose and interpretation of the t-test.mp4 33.7 MB
  • 06 - Descriptive statistics/003 Data distributions.mp4 33.5 MB
  • 15 - Statistical power and sample sizes/003 Compute power and sample size using G_Power.mp4 32.7 MB
  • 12 - Correlation/005 Correlation matrix.mp4 32.5 MB
  • 12 - Correlation/017 Kendall's correlation for ordinal data.mp4 31.6 MB
  • 11 - Confidence intervals on parameters/001 What are confidence intervals and why do we need them_.mp4 31.3 MB
  • 09 - Hypothesis testing/009 Multiple comparisons and Bonferroni correction.mp4 31.0 MB
  • 10 - The t-test family/004 _Unsupervised learning__ The role of variance.mp4 30.0 MB
  • 12 - Correlation/013 Fisher-Z transformation for correlations.mp4 29.9 MB
  • 09 - Hypothesis testing/011 Cross-validation.mp4 29.6 MB
  • 02 - Math prerequisites/001 Should you memorize statistical formulas_.mp4 29.4 MB
  • 01 - Introductions/002 About using MATLAB or Python.mp4 28.4 MB
  • 08 - Probability theory/022 The Central Limit Theorem.mp4 28.0 MB
  • 10 - The t-test family/008 Wilcoxon signed-rank (nonparametric t-test).mp4 27.2 MB
  • 05 - Visualizing data/012 Linear vs. logarithmic axis scaling.mp4 26.9 MB
  • 06 - Descriptive statistics/002 Accuracy, precision, resolution.mp4 26.7 MB
  • 07 - Data normalizations and outliers/012 Multivariate outlier detection.mp4 26.3 MB
  • 01 - Introductions/004 Using the Q&A forum.mp4 25.5 MB
  • 12 - Correlation/012 Nonparametric correlation_ Spearman rank.mp4 24.9 MB
  • 06 - Descriptive statistics/018 Histograms part 2_ Number of bins.mp4 24.6 MB
  • 07 - Data normalizations and outliers/016 Non-parametric solutions to outliers.mp4 24.1 MB
  • 17 - Signal detection theory/005 Code_ Response bias.mp4 23.9 MB
  • 17 - Signal detection theory/004 Response bias.mp4 22.9 MB
  • 06 - Descriptive statistics/017 Statistical _moments_.mp4 22.7 MB
  • 12 - Correlation/020 The subgroups correlation paradox.mp4 22.6 MB
  • 06 - Descriptive statistics/001 Descriptive vs. inferential statistics.mp4 22.5 MB
  • 10 - The t-test family/010 Mann-Whitney U test (nonparametric t-test).mp4 21.3 MB
  • 16 - Clustering and dimension-reduction/007 _Unsupervised learning__ dbscan vs. k-means.mp4 20.9 MB
  • 13 - Analysis of Variance (ANOVA)/004 The F-test and the ANOVA table.mp4 20.9 MB
  • 04 - What are (is_) data_/007 The ethics of making up data.mp4 20.6 MB
  • 09 - Hypothesis testing/010 Statistical vs. theoretical vs. clinical significance.mp4 20.0 MB
  • 11 - Confidence intervals on parameters/007 Misconceptions about confidence intervals.mp4 19.5 MB
  • 12 - Correlation/007 _Unsupervised learning__ average correlation matrices.mp4 19.4 MB
  • 05 - Visualizing data/011 When to use lines instead of bars.mp4 18.9 MB
  • 02 - Math prerequisites/007 The logistic function.mp4 18.8 MB
  • 04 - What are (is_) data_/006 Samples, case reports, and anecdotes.mp4 18.7 MB
  • 07 - Data normalizations and outliers/018 An outlier lecture on personal accountability.mp4 18.6 MB
  • 11 - Confidence intervals on parameters/002 Computing confidence intervals via formula.mp4 18.2 MB
  • 06 - Descriptive statistics/022 _Unsupervised learning__ asymmetric violin plots.mp4 18.2 MB
  • 09 - Hypothesis testing/005 P-z combinations that you should memorize.mp4 18.2 MB
  • 07 - Data normalizations and outliers/014 Removing outliers by data trimming.mp4 17.7 MB
  • 10 - The t-test family/007 _Unsupervised learning__ Importance of N for t-test.mp4 17.6 MB
  • 06 - Descriptive statistics/010 _Unsupervised learning__ central tendencies with outliers.mp4 17.6 MB
  • 12 - Correlation/011 The problem with Pearson.mp4 17.4 MB
  • 05 - Visualizing data/009 Pie charts.mp4 17.3 MB
  • 06 - Descriptive statistics/015 QQ plots.mp4 17.0 MB
  • 14 - Regression/018 What to do about missing data.mp4 16.8 MB
  • 12 - Correlation/015 _Unsupervised learning__ Spearman correlation.mp4 16.7 MB
  • 12 - Correlation/019 _Unsupervised learning__ Does Kendall vs. Pearson matter_.mp4 15.7 MB
  • 03 - IMPORTANT_ Download course materials/001 Download materials for the entire course_.mp4 15.2 MB
  • 12 - Correlation/021 Cosine similarity.mp4 14.9 MB
  • 17 - Signal detection theory/001 The two perspectives of the world.mp4 14.6 MB
  • 08 - Probability theory/019 Tree diagrams for conditional probabilities.mp4 14.2 MB
  • 02 - Math prerequisites/008 Rank and tied-rank.mp4 13.6 MB
  • 16 - Clustering and dimension-reduction/003 _Unsupervised learning__ K-means and normalization.mp4 13.5 MB
  • 02 - Math prerequisites/003 Scientific notation.mp4 13.5 MB
  • 16 - Clustering and dimension-reduction/008 K-nearest neighbor classification.mp4 13.1 MB
  • 02 - Math prerequisites/006 Natural exponent and logarithm.mp4 12.8 MB
  • 08 - Probability theory/005 Probability and odds.mp4 12.6 MB
  • 05 - Visualizing data/008 _Unsupervised learning__ Histogram proportion.mp4 12.4 MB
  • 07 - Data normalizations and outliers/004 Min-max scaling.mp4 12.3 MB
  • 07 - Data normalizations and outliers/001 Garbage in, garbage out (GIGO).mp4 12.1 MB
  • 16 - Clustering and dimension-reduction/012 _Unsupervised learning__ K-means on PC data.mp4 12.1 MB
  • 17 - Signal detection theory/009 _Unsupervised learning__ Make this plot look nicer_.mp4 12.1 MB
  • 05 - Visualizing data/003 Box-and-whisker plots.mp4 11.7 MB
  • 04 - What are (is_) data_/001 Is _data_ singular or plural_______.mp4 11.5 MB
  • 12 - Correlation/016 _Unsupervised learning__ confidence interval on correlation.mp4 10.8 MB
  • 06 - Descriptive statistics/006 The beauty and simplicity of Normal.mp4 10.7 MB
  • 06 - Descriptive statistics/005 _Unsupervised learning__ histograms of distributions.mp4 10.7 MB
  • 12 - Correlation/008 _Unsupervised learning__ correlation to covariance matrix.mp4 10.6 MB
  • 06 - Descriptive statistics/013 Interquartile range (IQR).mp4 10.3 MB
  • 07 - Data normalizations and outliers/009 The modified z-score method.mp4 10.1 MB
  • 08 - Probability theory/024 _Unsupervised learning__ Averaging pairs of numbers.mp4 9.9 MB
  • 08 - Probability theory/011 _Unsupervised learning__ cdf's for various distributions.mp4 9.8 MB
  • 07 - Data normalizations and outliers/011 _Unsupervised learning__ z vs. modified-z.mp4 9.5 MB
  • 08 - Probability theory/013 Monte Carlo sampling.mp4 9.3 MB
  • 11 - Confidence intervals on parameters/006 _Unsupervised learning__ Confidence intervals for variance.mp4 9.0 MB
  • 06 - Descriptive statistics/025 _Unsupervised learning__ entropy and number of bins.mp4 8.7 MB
  • 05 - Visualizing data/005 _Unsupervised learning__ Boxplots of normal and uniform noise.mp4 8.6 MB
  • 16 - Clustering and dimension-reduction/004 _Unsupervised learning__ K-means on a Gauss blur.mp4 8.3 MB
  • 02 - Math prerequisites/004 Summation notation.mp4 8.1 MB
  • 02 - Math prerequisites/002 Arithmetic and exponents.mp4 7.9 MB
  • 01 - Introductions/005 (optional) Entering time-stamped notes in the Udemy video player.mp4 7.4 MB
  • 02 - Math prerequisites/005 Absolute value.mp4 7.3 MB
  • 07 - Data normalizations and outliers/006 _Unsupervised learning__ Invert the min-max scaling.mp4 7.1 MB
  • 06 - Descriptive statistics/020 Violin plots.mp4 6.8 MB
  • 08 - Probability theory/006 _Unsupervised learning__ probabilities of odds-space.mp4 6.2 MB
  • 14 - Regression/006 _Unsupervised learning__ Compute R2 and F.mp4 5.6 MB
  • 14 - Regression/016 _Unsupervised learning__ Overfit data.mp4 5.1 MB
  • 14 - Regression/012 _Unsupervised learning__ Polynomial design matrix.mp4 5.0 MB
  • 05 - Visualizing data/014 _Unsupervised learning__ log-scaled plots.mp4 3.9 MB
  • 03 - IMPORTANT_ Download course materials/32684220-statsML.zip 1.4 MB
  • 16 - Clustering and dimension-reduction/006 Code_ dbscan_en.srt 50.6 kB
  • 06 - Descriptive statistics/004 Code_ data from different distributions_en.srt 47.0 kB
  • 16 - Clustering and dimension-reduction/006 Code_ dbscan_en.vtt 43.2 kB
  • 12 - Correlation/003 Code_ correlation coefficient_en.srt 41.4 kB
  • 06 - Descriptive statistics/004 Code_ data from different distributions_en.vtt 40.4 kB
  • 08 - Probability theory/015 Code_ sampling variability_en.srt 39.2 kB
  • 06 - Descriptive statistics/012 Code_ Computing dispersion_en.srt 38.1 kB
  • 10 - The t-test family/013 Code_ permutation testing_en.srt 38.0 kB
  • 12 - Correlation/003 Code_ correlation coefficient_en.vtt 35.5 kB
  • 16 - Clustering and dimension-reduction/002 Code_ k-means clustering_en.srt 35.2 kB
  • 07 - Data normalizations and outliers/010 Code_ z-score for outlier removal_en.srt 34.5 kB
  • 17 - Signal detection theory/006 F-score_en.srt 33.9 kB
  • 08 - Probability theory/015 Code_ sampling variability_en.vtt 33.7 kB
  • 06 - Descriptive statistics/012 Code_ Computing dispersion_en.vtt 33.1 kB
  • 10 - The t-test family/006 Code_ Two-samples t-test_en.srt 32.9 kB
  • 12 - Correlation/006 Code_ correlation matrix_en.srt 32.6 kB
  • 10 - The t-test family/013 Code_ permutation testing_en.vtt 32.5 kB
  • 12 - Correlation/022 Code_ Cosine similarity vs. Pearson correlation_en.srt 32.0 kB
  • 10 - The t-test family/003 Code_ One-sample t-test_en.srt 32.0 kB
  • 06 - Descriptive statistics/024 Code_ entropy_en.srt 31.0 kB
  • 14 - Regression/001 Introduction to GLM _ regression_en.srt 30.4 kB
  • 08 - Probability theory/018 Code_ conditional probabilities_en.srt 30.3 kB
  • 12 - Correlation/010 Code_ partial correlation_en.srt 30.1 kB
  • 16 - Clustering and dimension-reduction/002 Code_ k-means clustering_en.vtt 30.1 kB
  • 13 - Analysis of Variance (ANOVA)/006 The two-way ANOVA_en.srt 30.1 kB
  • 18 - A real-world data journey/007 Python_ Import and clean the marriage data_en.srt 30.0 kB
  • 07 - Data normalizations and outliers/010 Code_ z-score for outlier removal_en.vtt 29.5 kB
  • 17 - Signal detection theory/006 F-score_en.vtt 29.4 kB
  • 13 - Analysis of Variance (ANOVA)/002 ANOVA intro, part 2_en.srt 29.1 kB
  • 14 - Regression/009 Code_ Multiple regression_en.srt 28.6 kB
  • 08 - Probability theory/021 Code_ Law of Large Numbers in action_en.srt 28.5 kB
  • 08 - Probability theory/012 Creating sample estimate distributions_en.srt 28.4 kB
  • 10 - The t-test family/006 Code_ Two-samples t-test_en.vtt 28.2 kB
  • 12 - Correlation/001 Motivation and description of correlation_en.srt 28.0 kB
  • 12 - Correlation/006 Code_ correlation matrix_en.vtt 27.8 kB
  • 12 - Correlation/022 Code_ Cosine similarity vs. Pearson correlation_en.vtt 27.6 kB
  • 10 - The t-test family/009 Code_ Signed-rank test_en.srt 27.5 kB
  • 10 - The t-test family/003 Code_ One-sample t-test_en.vtt 27.3 kB
  • 16 - Clustering and dimension-reduction/011 Code_ PCA_en.srt 27.2 kB
  • 06 - Descriptive statistics/011 Measures of dispersion (variance, standard deviation)_en.srt 26.9 kB
  • 13 - Analysis of Variance (ANOVA)/001 ANOVA intro, part1_en.srt 26.8 kB
  • 06 - Descriptive statistics/024 Code_ entropy_en.vtt 26.5 kB
  • 13 - Analysis of Variance (ANOVA)/008 Code_ One-way ANOVA (independent samples)_en.srt 26.3 kB
  • 11 - Confidence intervals on parameters/003 Code_ compute confidence intervals by formula_en.srt 26.3 kB
  • 13 - Analysis of Variance (ANOVA)/003 Sum of squares_en.srt 26.2 kB
  • 14 - Regression/001 Introduction to GLM _ regression_en.vtt 26.1 kB
  • 18 - A real-world data journey/007 Python_ Import and clean the marriage data_en.vtt 26.1 kB
  • 14 - Regression/013 Logistic regression_en.srt 26.1 kB
  • 09 - Hypothesis testing/004 P-values_ definition, tails, and misinterpretations_en.srt 26.0 kB
  • 05 - Visualizing data/002 Code_ bar plots_en.srt 26.0 kB
  • 14 - Regression/015 Under- and over-fitting_en.srt 26.0 kB
  • 08 - Probability theory/018 Code_ conditional probabilities_en.vtt 26.0 kB
  • 12 - Correlation/010 Code_ partial correlation_en.vtt 25.8 kB
  • 13 - Analysis of Variance (ANOVA)/006 The two-way ANOVA_en.vtt 25.8 kB
  • 13 - Analysis of Variance (ANOVA)/002 ANOVA intro, part 2_en.vtt 25.2 kB
  • 09 - Hypothesis testing/001 IVs, DVs, models, and other stats lingo_en.srt 24.9 kB
  • 05 - Visualizing data/007 Code_ histograms_en.srt 24.8 kB
  • 14 - Regression/009 Code_ Multiple regression_en.vtt 24.5 kB
  • 08 - Probability theory/021 Code_ Law of Large Numbers in action_en.vtt 24.4 kB
  • 08 - Probability theory/012 Creating sample estimate distributions_en.vtt 24.4 kB
  • 14 - Regression/003 Evaluating regression models_ R2 and F_en.srt 24.4 kB
  • 18 - A real-world data journey/35855730-state-marriage-rates-90-95-99-19.xlsx 24.2 kB
  • 08 - Probability theory/023 Code_ the CLT in action_en.srt 24.1 kB
  • 12 - Correlation/001 Motivation and description of correlation_en.vtt 24.1 kB
  • 18 - A real-world data journey/003 MATLAB_ Import and clean the marriage data_en.srt 24.1 kB
  • 06 - Descriptive statistics/016 Code_ QQ plots_en.srt 24.0 kB
  • 06 - Descriptive statistics/014 Code_ IQR_en.srt 24.0 kB
  • 09 - Hypothesis testing/002 What is an hypothesis and how do you specify one__en.srt 23.8 kB
  • 16 - Clustering and dimension-reduction/010 Principal components analysis (PCA)_en.srt 23.8 kB
  • 10 - The t-test family/009 Code_ Signed-rank test_en.vtt 23.6 kB
  • 12 - Correlation/018 Code_ Kendall correlation_en.vtt 23.5 kB
  • 05 - Visualizing data/002 Code_ bar plots_en.vtt 23.2 kB
  • 13 - Analysis of Variance (ANOVA)/001 ANOVA intro, part1_en.vtt 23.2 kB
  • 16 - Clustering and dimension-reduction/011 Code_ PCA_en.vtt 23.1 kB
  • 06 - Descriptive statistics/011 Measures of dispersion (variance, standard deviation)_en.vtt 23.1 kB
  • 18 - A real-world data journey/35855734-state-divorce-rates-90-95-99-19.xlsx 23.0 kB
  • 14 - Regression/011 Code_ polynomial modeling_en.srt 23.0 kB
  • 13 - Analysis of Variance (ANOVA)/003 Sum of squares_en.vtt 22.9 kB
  • 09 - Hypothesis testing/004 P-values_ definition, tails, and misinterpretations_en.vtt 22.8 kB
  • 09 - Hypothesis testing/007 Type 1 and Type 2 errors_en.srt 22.7 kB
  • 11 - Confidence intervals on parameters/003 Code_ compute confidence intervals by formula_en.vtt 22.6 kB
  • 08 - Probability theory/004 Code_ compute probabilities_en.srt 22.6 kB
  • 13 - Analysis of Variance (ANOVA)/008 Code_ One-way ANOVA (independent samples)_en.vtt 22.5 kB
  • 17 - Signal detection theory/003 Code_ d-prime_en.srt 22.4 kB
  • 14 - Regression/013 Logistic regression_en.vtt 22.3 kB
  • 14 - Regression/015 Under- and over-fitting_en.vtt 22.2 kB
  • 16 - Clustering and dimension-reduction/005 Clustering via dbscan_en.srt 22.2 kB
  • 11 - Confidence intervals on parameters/005 Code_ bootstrapping confidence intervals_en.srt 22.2 kB
  • 07 - Data normalizations and outliers/007 What are outliers and why are they dangerous__en.srt 22.1 kB
  • 13 - Analysis of Variance (ANOVA)/011 Code_ Two-way mixed ANOVA_en.srt 22.0 kB
  • 16 - Clustering and dimension-reduction/001 K-means clustering_en.srt 21.5 kB
  • 04 - What are (is_) data_/003 Types of data_ categorical, numerical, etc_en.srt 21.4 kB
  • 09 - Hypothesis testing/001 IVs, DVs, models, and other stats lingo_en.vtt 21.4 kB
  • 05 - Visualizing data/007 Code_ histograms_en.vtt 21.3 kB
  • 12 - Correlation/002 Covariance and correlation_ formulas_en.srt 21.3 kB
  • 13 - Analysis of Variance (ANOVA)/007 One-way ANOVA example_en.srt 21.1 kB
  • 18 - A real-world data journey/003 MATLAB_ Import and clean the marriage data_en.vtt 21.0 kB
  • 14 - Regression/003 Evaluating regression models_ R2 and F_en.vtt 21.0 kB
  • 08 - Probability theory/009 Cumulative distribution functions_en.srt 20.9 kB
  • 08 - Probability theory/023 Code_ the CLT in action_en.vtt 20.8 kB
  • 16 - Clustering and dimension-reduction/010 Principal components analysis (PCA)_en.vtt 20.7 kB
  • 06 - Descriptive statistics/014 Code_ IQR_en.vtt 20.6 kB
  • 06 - Descriptive statistics/009 Code_ computing central tendency_en.srt 20.6 kB
  • 06 - Descriptive statistics/016 Code_ QQ plots_en.vtt 20.6 kB
  • 12 - Correlation/004 Code_ Simulate data with specified correlation_en.srt 20.5 kB
  • 07 - Data normalizations and outliers/017 Nonlinear data transformations_en.srt 20.3 kB
  • 09 - Hypothesis testing/002 What is an hypothesis and how do you specify one__en.vtt 20.2 kB
  • 14 - Regression/004 Simple regression_en.srt 20.2 kB
  • 05 - Visualizing data/010 Code_ pie charts_en.srt 19.8 kB
  • 14 - Regression/011 Code_ polynomial modeling_en.vtt 19.8 kB
  • 07 - Data normalizations and outliers/003 Code_ z-score_en.srt 19.7 kB
  • 17 - Signal detection theory/002 d-prime_en.srt 19.7 kB
  • 14 - Regression/007 Multiple regression_en.srt 19.6 kB
  • 09 - Hypothesis testing/007 Type 1 and Type 2 errors_en.vtt 19.5 kB
  • 06 - Descriptive statistics/007 Measures of central tendency (mean)_en.srt 19.4 kB
  • 10 - The t-test family/005 Two-samples t-test_en.srt 19.4 kB
  • 10 - The t-test family/001 Purpose and interpretation of the t-test_en.srt 19.4 kB
  • 08 - Probability theory/004 Code_ compute probabilities_en.vtt 19.3 kB
  • 13 - Analysis of Variance (ANOVA)/005 The omnibus F-test and post-hoc comparisons_en.srt 19.3 kB
  • 08 - Probability theory/017 Conditional probability_en.srt 19.3 kB
  • 17 - Signal detection theory/003 Code_ d-prime_en.vtt 19.2 kB
  • 16 - Clustering and dimension-reduction/005 Clustering via dbscan_en.vtt 19.1 kB
  • 18 - A real-world data journey/008 Python_ Import the divorce data_en.srt 19.0 kB
  • 07 - Data normalizations and outliers/007 What are outliers and why are they dangerous__en.vtt 19.0 kB
  • 16 - Clustering and dimension-reduction/014 Code_ ICA_en.srt 18.9 kB
  • 08 - Probability theory/007 Probability mass vs. density_en.srt 18.9 kB
  • 11 - Confidence intervals on parameters/005 Code_ bootstrapping confidence intervals_en.vtt 18.9 kB
  • 13 - Analysis of Variance (ANOVA)/009 Code_ One-way repeated-measures ANOVA_en.srt 18.8 kB
  • 13 - Analysis of Variance (ANOVA)/011 Code_ Two-way mixed ANOVA_en.vtt 18.8 kB
  • 14 - Regression/008 Standardizing regression coefficients_en.srt 18.8 kB
  • 16 - Clustering and dimension-reduction/009 Code_ KNN_en.srt 18.6 kB
  • 06 - Descriptive statistics/008 Measures of central tendency (median, mode)_en.srt 18.6 kB
  • 04 - What are (is_) data_/003 Types of data_ categorical, numerical, etc_en.vtt 18.5 kB
  • 16 - Clustering and dimension-reduction/001 K-means clustering_en.vtt 18.5 kB
  • 08 - Probability theory/001 What is probability__en.srt 18.4 kB
  • 12 - Correlation/002 Covariance and correlation_ formulas_en.vtt 18.3 kB
  • 06 - Descriptive statistics/019 Code_ Histogram bins_en.srt 18.3 kB
  • 08 - Probability theory/009 Cumulative distribution functions_en.vtt 18.2 kB
  • 13 - Analysis of Variance (ANOVA)/007 One-way ANOVA example_en.vtt 18.1 kB
  • 12 - Correlation/018 Code_ Kendall correlation_en.srt 18.0 kB
  • 06 - Descriptive statistics/009 Code_ computing central tendency_en.vtt 17.8 kB
  • 07 - Data normalizations and outliers/017 Nonlinear data transformations_en.vtt 17.8 kB
  • 12 - Correlation/004 Code_ Simulate data with specified correlation_en.vtt 17.7 kB
  • 14 - Regression/017 Comparing _nested_ models_en.srt 17.7 kB
  • 16 - Clustering and dimension-reduction/013 Independent components analysis (ICA)_en.srt 17.7 kB
  • 04 - What are (is_) data_/005 Sample vs. population data_en.srt 17.6 kB
  • 05 - Visualizing data/001 Bar plots_en.srt 17.4 kB
  • 09 - Hypothesis testing/012 Statistical significance vs. classification accuracy_en.srt 17.4 kB
  • 14 - Regression/004 Simple regression_en.vtt 17.4 kB
  • 06 - Descriptive statistics/003 Data distributions_en.srt 17.2 kB
  • 05 - Visualizing data/010 Code_ pie charts_en.vtt 17.1 kB
  • 07 - Data normalizations and outliers/003 Code_ z-score_en.vtt 17.0 kB
  • 15 - Statistical power and sample sizes/002 Estimating statistical power and sample size_en.srt 17.0 kB
  • 14 - Regression/007 Multiple regression_en.vtt 16.9 kB
  • 17 - Signal detection theory/002 d-prime_en.vtt 16.8 kB
  • 09 - Hypothesis testing/011 Cross-validation_en.srt 16.8 kB
  • 10 - The t-test family/001 Purpose and interpretation of the t-test_en.vtt 16.8 kB
  • 10 - The t-test family/005 Two-samples t-test_en.vtt 16.8 kB
  • 10 - The t-test family/012 Permutation testing for t-test significance_en.srt 16.7 kB
  • 06 - Descriptive statistics/007 Measures of central tendency (mean)_en.vtt 16.7 kB
  • 07 - Data normalizations and outliers/015 Code_ Data trimming to remove outliers_en.srt 16.7 kB
  • 13 - Analysis of Variance (ANOVA)/005 The omnibus F-test and post-hoc comparisons_en.vtt 16.6 kB
  • 08 - Probability theory/017 Conditional probability_en.vtt 16.5 kB
  • 18 - A real-world data journey/008 Python_ Import the divorce data_en.vtt 16.5 kB
  • 18 - A real-world data journey/009 Python_ Inferential statistics_en.srt 16.5 kB
  • 13 - Analysis of Variance (ANOVA)/010 Two-way ANOVA example_en.srt 16.5 kB
  • 08 - Probability theory/008 Code_ compute probability mass functions_en.srt 16.4 kB
  • 09 - Hypothesis testing/006 Degrees of freedom_en.vtt 16.4 kB
  • 08 - Probability theory/007 Probability mass vs. density_en.vtt 16.3 kB
  • 16 - Clustering and dimension-reduction/014 Code_ ICA_en.vtt 16.3 kB
  • 13 - Analysis of Variance (ANOVA)/009 Code_ One-way repeated-measures ANOVA_en.vtt 16.3 kB
  • 05 - Visualizing data/006 Histograms_en.srt 16.2 kB
  • 14 - Regression/008 Standardizing regression coefficients_en.vtt 16.1 kB
  • 06 - Descriptive statistics/008 Measures of central tendency (median, mode)_en.vtt 16.1 kB
  • 08 - Probability theory/022 The Central Limit Theorem_en.srt 15.9 kB
  • 06 - Descriptive statistics/023 Shannon entropy_en.srt 15.9 kB
  • 16 - Clustering and dimension-reduction/009 Code_ KNN_en.vtt 15.9 kB
  • 08 - Probability theory/001 What is probability__en.vtt 15.9 kB
  • 06 - Descriptive statistics/021 Code_ violin plots_en.srt 15.8 kB
  • 12 - Correlation/009 Partial correlation_en.srt 15.8 kB
  • 06 - Descriptive statistics/019 Code_ Histogram bins_en.vtt 15.8 kB
  • 08 - Probability theory/016 Expected value_en.srt 15.7 kB
  • 18 - A real-world data journey/006 MATLAB_ Inferential statistics_en.srt 15.7 kB
  • 05 - Visualizing data/001 Bar plots_en.vtt 15.6 kB
  • 12 - Correlation/017 Kendall's correlation for ordinal data_en.srt 15.6 kB
  • 08 - Probability theory/003 Computing probabilities_en.srt 15.5 kB
  • 14 - Regression/017 Comparing _nested_ models_en.vtt 15.5 kB
  • 16 - Clustering and dimension-reduction/013 Independent components analysis (ICA)_en.vtt 15.4 kB
  • 04 - What are (is_) data_/005 Sample vs. population data_en.vtt 15.3 kB
  • 09 - Hypothesis testing/012 Statistical significance vs. classification accuracy_en.vtt 15.0 kB
  • 09 - Hypothesis testing/003 Sample distributions under null and alternative hypotheses_en.srt 15.0 kB
  • 06 - Descriptive statistics/003 Data distributions_en.vtt 14.9 kB
  • 08 - Probability theory/010 Code_ cdfs and pdfs_en.srt 14.8 kB
  • 08 - Probability theory/020 The Law of Large Numbers_en.srt 14.8 kB
  • 07 - Data normalizations and outliers/012 Multivariate outlier detection_en.srt 14.7 kB
  • 15 - Statistical power and sample sizes/002 Estimating statistical power and sample size_en.vtt 14.7 kB
  • 15 - Statistical power and sample sizes/001 What is statistical power and why is it important__en.srt 14.7 kB
  • 14 - Regression/002 Least-squares solution to the GLM_en.srt 14.7 kB
  • 09 - Hypothesis testing/011 Cross-validation_en.vtt 14.7 kB
  • 06 - Descriptive statistics/018 Histograms part 2_ Number of bins_en.srt 14.7 kB
  • 07 - Data normalizations and outliers/002 Z-score standardization_en.srt 14.6 kB
  • 10 - The t-test family/012 Permutation testing for t-test significance_en.vtt 14.5 kB
  • 14 - Regression/014 Code_ Logistic regression_en.srt 14.5 kB
  • 07 - Data normalizations and outliers/008 Removing outliers_ z-score method_en.srt 14.5 kB
  • 08 - Probability theory/002 Probability vs. proportion_en.srt 14.5 kB
  • 07 - Data normalizations and outliers/015 Code_ Data trimming to remove outliers_en.vtt 14.4 kB
  • 18 - A real-world data journey/009 Python_ Inferential statistics_en.vtt 14.4 kB
  • 08 - Probability theory/008 Code_ compute probability mass functions_en.vtt 14.4 kB
  • 13 - Analysis of Variance (ANOVA)/010 Two-way ANOVA example_en.vtt 14.3 kB
  • 05 - Visualizing data/006 Histograms_en.vtt 14.0 kB
  • 12 - Correlation/005 Correlation matrix_en.srt 13.9 kB
  • 08 - Probability theory/022 The Central Limit Theorem_en.vtt 13.8 kB
  • 06 - Descriptive statistics/023 Shannon entropy_en.vtt 13.8 kB
  • 14 - Regression/005 Code_ simple regression_en.srt 13.7 kB
  • 12 - Correlation/009 Partial correlation_en.vtt 13.7 kB
  • 18 - A real-world data journey/006 MATLAB_ Inferential statistics_en.vtt 13.7 kB
  • 01 - Introductions/003 Statistics guessing game__en.srt 13.6 kB
  • 08 - Probability theory/016 Expected value_en.vtt 13.5 kB
  • 06 - Descriptive statistics/021 Code_ violin plots_en.vtt 13.5 kB
  • 12 - Correlation/017 Kendall's correlation for ordinal data_en.vtt 13.4 kB
  • 11 - Confidence intervals on parameters/001 What are confidence intervals and why do we need them__en.srt 13.4 kB
  • 02 - Math prerequisites/007 The logistic function_en.srt 13.4 kB
  • 04 - What are (is_) data_/004 Code_ representing types of data on computers_en.srt 13.4 kB
  • 08 - Probability theory/003 Computing probabilities_en.vtt 13.4 kB
  • 06 - Descriptive statistics/017 Statistical _moments__en.srt 13.4 kB
  • 08 - Probability theory/014 Sampling variability, noise, and other annoyances_en.srt 13.4 kB
  • 09 - Hypothesis testing/008 Parametric vs. non-parametric tests_en.srt 13.2 kB
  • 11 - Confidence intervals on parameters/004 Confidence intervals via bootstrapping (resampling)_en.srt 13.1 kB
  • 09 - Hypothesis testing/003 Sample distributions under null and alternative hypotheses_en.vtt 13.1 kB
  • 07 - Data normalizations and outliers/013 Code_ Euclidean distance for outlier removal_en.srt 13.1 kB
  • 05 - Visualizing data/004 Code_ box plots_en.srt 13.1 kB
  • 08 - Probability theory/010 Code_ cdfs and pdfs_en.vtt 12.9 kB
  • 07 - Data normalizations and outliers/005 Code_ min-max scaling_en.srt 12.9 kB
  • 15 - Statistical power and sample sizes/001 What is statistical power and why is it important__en.vtt 12.8 kB
  • 09 - Hypothesis testing/009 Multiple comparisons and Bonferroni correction_en.srt 12.8 kB
  • 05 - Visualizing data/012 Linear vs. logarithmic axis scaling_en.srt 12.8 kB
  • 08 - Probability theory/020 The Law of Large Numbers_en.vtt 12.8 kB
  • 06 - Descriptive statistics/018 Histograms part 2_ Number of bins_en.vtt 12.7 kB
  • 14 - Regression/002 Least-squares solution to the GLM_en.vtt 12.6 kB
  • 18 - A real-world data journey/004 MATLAB_ Import the divorce data_en.srt 12.6 kB
  • 07 - Data normalizations and outliers/002 Z-score standardization_en.vtt 12.6 kB
  • 07 - Data normalizations and outliers/012 Multivariate outlier detection_en.vtt 12.6 kB
  • 17 - Signal detection theory/004 Response bias_en.srt 12.5 kB
  • 14 - Regression/010 Polynomial regression models_en.srt 12.5 kB
  • 07 - Data normalizations and outliers/008 Removing outliers_ z-score method_en.vtt 12.5 kB
  • 14 - Regression/014 Code_ Logistic regression_en.vtt 12.4 kB
  • 08 - Probability theory/002 Probability vs. proportion_en.vtt 12.4 kB
  • 12 - Correlation/005 Correlation matrix_en.vtt 12.0 kB
  • 17 - Signal detection theory/008 Code_ ROC curves_en.srt 11.9 kB
  • 10 - The t-test family/002 One-sample t-test_en.srt 11.9 kB
  • 14 - Regression/005 Code_ simple regression_en.vtt 11.8 kB
  • 01 - Introductions/003 Statistics guessing game__en.vtt 11.8 kB
  • 06 - Descriptive statistics/002 Accuracy, precision, resolution_en.srt 11.7 kB
  • 08 - Probability theory/014 Sampling variability, noise, and other annoyances_en.vtt 11.6 kB
  • 11 - Confidence intervals on parameters/001 What are confidence intervals and why do we need them__en.vtt 11.6 kB
  • 09 - Hypothesis testing/008 Parametric vs. non-parametric tests_en.vtt 11.6 kB
  • 02 - Math prerequisites/007 The logistic function_en.vtt 11.5 kB
  • 11 - Confidence intervals on parameters/004 Confidence intervals via bootstrapping (resampling)_en.vtt 11.4 kB
  • 06 - Descriptive statistics/017 Statistical _moments__en.vtt 11.4 kB
  • 04 - What are (is_) data_/004 Code_ representing types of data on computers_en.vtt 11.4 kB
  • 12 - Correlation/014 Code_ Spearman correlation and Fisher-Z_en.srt 11.4 kB
  • 07 - Data normalizations and outliers/013 Code_ Euclidean distance for outlier removal_en.vtt 11.3 kB
  • 17 - Signal detection theory/007 Receiver operating characteristics (ROC)_en.srt 11.2 kB
  • 05 - Visualizing data/004 Code_ box plots_en.vtt 11.2 kB
  • 05 - Visualizing data/013 Code_ line plots_en.srt 11.1 kB
  • 09 - Hypothesis testing/009 Multiple comparisons and Bonferroni correction_en.vtt 11.0 kB
  • 05 - Visualizing data/012 Linear vs. logarithmic axis scaling_en.vtt 11.0 kB
  • 07 - Data normalizations and outliers/005 Code_ min-max scaling_en.vtt 11.0 kB
  • 12 - Correlation/012 Nonparametric correlation_ Spearman rank_en.srt 11.0 kB
  • 14 - Regression/010 Polynomial regression models_en.vtt 10.9 kB
  • 18 - A real-world data journey/004 MATLAB_ Import the divorce data_en.vtt 10.9 kB
  • 17 - Signal detection theory/004 Response bias_en.vtt 10.8 kB
  • 13 - Analysis of Variance (ANOVA)/004 The F-test and the ANOVA table_en.srt 10.7 kB
  • 10 - The t-test family/008 Wilcoxon signed-rank (nonparametric t-test)_en.srt 10.7 kB
  • 04 - What are (is_) data_/007 The ethics of making up data_en.srt 10.5 kB
  • 06 - Descriptive statistics/015 QQ plots_en.srt 10.4 kB
  • 17 - Signal detection theory/008 Code_ ROC curves_en.vtt 10.4 kB
  • 10 - The t-test family/002 One-sample t-test_en.vtt 10.3 kB
  • 09 - Hypothesis testing/010 Statistical vs. theoretical vs. clinical significance_en.srt 10.2 kB
  • 08 - Probability theory/019 Tree diagrams for conditional probabilities_en.srt 10.2 kB
  • 12 - Correlation/011 The problem with Pearson_en.srt 10.1 kB
  • 12 - Correlation/013 Fisher-Z transformation for correlations_en.srt 10.1 kB
  • 06 - Descriptive statistics/002 Accuracy, precision, resolution_en.vtt 10.0 kB
  • 12 - Correlation/014 Code_ Spearman correlation and Fisher-Z_en.vtt 9.8 kB
  • 14 - Regression/018 What to do about missing data_en.srt 9.8 kB
  • 17 - Signal detection theory/007 Receiver operating characteristics (ROC)_en.vtt 9.8 kB
  • 02 - Math prerequisites/008 Rank and tied-rank_en.srt 9.8 kB
  • 11 - Confidence intervals on parameters/002 Computing confidence intervals via formula_en.srt 9.7 kB
  • 05 - Visualizing data/013 Code_ line plots_en.vtt 9.6 kB
  • 12 - Correlation/012 Nonparametric correlation_ Spearman rank_en.vtt 9.5 kB
  • 18 - A real-world data journey/005 MATLAB_ More data visualizations_en.srt 9.5 kB
  • 13 - Analysis of Variance (ANOVA)/004 The F-test and the ANOVA table_en.vtt 9.4 kB
  • 10 - The t-test family/008 Wilcoxon signed-rank (nonparametric t-test)_en.vtt 9.3 kB
  • 11 - Confidence intervals on parameters/007 Misconceptions about confidence intervals_en.srt 9.3 kB
  • 09 - Hypothesis testing/005 P-z combinations that you should memorize_en.srt 9.3 kB
  • 16 - Clustering and dimension-reduction/008 K-nearest neighbor classification_en.srt 9.2 kB
  • 04 - What are (is_) data_/007 The ethics of making up data_en.vtt 9.1 kB
  • 06 - Descriptive statistics/015 QQ plots_en.vtt 9.1 kB
  • 10 - The t-test family/010 Mann-Whitney U test (nonparametric t-test)_en.srt 9.1 kB
  • 18 - A real-world data journey/010 Take-home messages_en.srt 8.9 kB
  • 02 - Math prerequisites/003 Scientific notation_en.srt 8.9 kB
  • 17 - Signal detection theory/001 The two perspectives of the world_en.srt 8.9 kB
  • 12 - Correlation/011 The problem with Pearson_en.vtt 8.9 kB
  • 09 - Hypothesis testing/010 Statistical vs. theoretical vs. clinical significance_en.vtt 8.8 kB
  • 12 - Correlation/013 Fisher-Z transformation for correlations_en.vtt 8.8 kB
  • 05 - Visualizing data/011 When to use lines instead of bars_en.srt 8.8 kB
  • 08 - Probability theory/019 Tree diagrams for conditional probabilities_en.vtt 8.8 kB
  • 07 - Data normalizations and outliers/014 Removing outliers by data trimming_en.srt 8.7 kB
  • 05 - Visualizing data/009 Pie charts_en.srt 8.7 kB
  • 04 - What are (is_) data_/002 Where do data come from and what do they mean__en.srt 8.6 kB
  • 14 - Regression/018 What to do about missing data_en.vtt 8.6 kB
  • 02 - Math prerequisites/008 Rank and tied-rank_en.vtt 8.4 kB
  • 11 - Confidence intervals on parameters/002 Computing confidence intervals via formula_en.vtt 8.4 kB
  • 18 - A real-world data journey/005 MATLAB_ More data visualizations_en.vtt 8.4 kB
  • 01 - Introductions/004 Using the Q&A forum_en.srt 8.3 kB
  • 02 - Math prerequisites/006 Natural exponent and logarithm_en.srt 8.2 kB
  • 11 - Confidence intervals on parameters/007 Misconceptions about confidence intervals_en.vtt 8.1 kB
  • 09 - Hypothesis testing/005 P-z combinations that you should memorize_en.vtt 8.1 kB
  • 16 - Clustering and dimension-reduction/008 K-nearest neighbor classification_en.vtt 8.0 kB
  • 05 - Visualizing data/003 Box-and-whisker plots_en.srt 8.0 kB
  • 10 - The t-test family/011 Code_ Mann-Whitney U test_en.srt 7.9 kB
  • 10 - The t-test family/014 _Unsupervised learning__ How many permutations__en.srt 7.9 kB
  • 04 - What are (is_) data_/006 Samples, case reports, and anecdotes_en.srt 7.9 kB
  • 10 - The t-test family/010 Mann-Whitney U test (nonparametric t-test)_en.vtt 7.8 kB
  • 06 - Descriptive statistics/006 The beauty and simplicity of Normal_en.srt 7.8 kB
  • 18 - A real-world data journey/010 Take-home messages_en.vtt 7.8 kB
  • 17 - Signal detection theory/001 The two perspectives of the world_en.vtt 7.7 kB
  • 12 - Correlation/021 Cosine similarity_en.srt 7.7 kB
  • 02 - Math prerequisites/003 Scientific notation_en.vtt 7.7 kB
  • 05 - Visualizing data/011 When to use lines instead of bars_en.vtt 7.6 kB
  • 07 - Data normalizations and outliers/014 Removing outliers by data trimming_en.vtt 7.6 kB
  • 05 - Visualizing data/009 Pie charts_en.vtt 7.5 kB
  • 04 - What are (is_) data_/002 Where do data come from and what do they mean__en.vtt 7.5 kB
  • 07 - Data normalizations and outliers/004 Min-max scaling_en.srt 7.4 kB
  • 01 - Introductions/004 Using the Q&A forum_en.vtt 7.2 kB
  • 06 - Descriptive statistics/013 Interquartile range (IQR)_en.srt 7.2 kB
  • 02 - Math prerequisites/006 Natural exponent and logarithm_en.vtt 7.2 kB
  • 12 - Correlation/020 The subgroups correlation paradox_en.srt 7.1 kB
  • 08 - Probability theory/005 Probability and odds_en.srt 7.1 kB
  • 10 - The t-test family/007 _Unsupervised learning__ Importance of N for t-test_en.srt 7.0 kB
  • 15 - Statistical power and sample sizes/003 Compute power and sample size using G_Power_en.srt 7.0 kB
  • 05 - Visualizing data/003 Box-and-whisker plots_en.vtt 6.9 kB
  • 04 - What are (is_) data_/006 Samples, case reports, and anecdotes_en.vtt 6.9 kB
  • 10 - The t-test family/014 _Unsupervised learning__ How many permutations__en.vtt 6.9 kB
  • 06 - Descriptive statistics/006 The beauty and simplicity of Normal_en.vtt 6.9 kB
  • 10 - The t-test family/011 Code_ Mann-Whitney U test_en.vtt 6.9 kB
  • 12 - Correlation/021 Cosine similarity_en.vtt 6.7 kB
  • 06 - Descriptive statistics/001 Descriptive vs. inferential statistics_en.srt 6.5 kB
  • 17 - Signal detection theory/005 Code_ Response bias_en.srt 6.5 kB
  • 07 - Data normalizations and outliers/016 Non-parametric solutions to outliers_en.srt 6.5 kB
  • 07 - Data normalizations and outliers/004 Min-max scaling_en.vtt 6.4 kB
  • 18 - A real-world data journey/002 Introduction_en.srt 6.4 kB
  • 12 - Correlation/020 The subgroups correlation paradox_en.vtt 6.3 kB
  • 06 - Descriptive statistics/013 Interquartile range (IQR)_en.vtt 6.2 kB
  • 01 - Introductions/001 [Important] Getting the most out of this course_en.srt 6.2 kB
  • 08 - Probability theory/005 Probability and odds_en.vtt 6.2 kB
  • 02 - Math prerequisites/004 Summation notation_en.srt 6.1 kB
  • 10 - The t-test family/007 _Unsupervised learning__ Importance of N for t-test_en.vtt 6.1 kB
  • 01 - Introductions/002 About using MATLAB or Python_en.srt 6.1 kB
  • 07 - Data normalizations and outliers/009 The modified z-score method_en.srt 6.0 kB
  • 12 - Correlation/008 _Unsupervised learning__ correlation to covariance matrix_en.srt 6.0 kB
  • 15 - Statistical power and sample sizes/003 Compute power and sample size using G_Power_en.vtt 5.9 kB
  • 07 - Data normalizations and outliers/001 Garbage in, garbage out (GIGO)_en.srt 5.8 kB
  • 02 - Math prerequisites/002 Arithmetic and exponents_en.srt 5.8 kB
  • 06 - Descriptive statistics/001 Descriptive vs. inferential statistics_en.vtt 5.7 kB
  • 07 - Data normalizations and outliers/016 Non-parametric solutions to outliers_en.vtt 5.7 kB
  • 17 - Signal detection theory/005 Code_ Response bias_en.vtt 5.6 kB
  • 18 - A real-world data journey/002 Introduction_en.vtt 5.6 kB
  • 03 - IMPORTANT_ Download course materials/001 Download materials for the entire course__en.srt 5.5 kB
  • 01 - Introductions/001 [Important] Getting the most out of this course_en.vtt 5.5 kB
  • 02 - Math prerequisites/004 Summation notation_en.vtt 5.3 kB
  • 01 - Introductions/002 About using MATLAB or Python_en.vtt 5.3 kB
  • 07 - Data normalizations and outliers/009 The modified z-score method_en.vtt 5.2 kB
  • 12 - Correlation/008 _Unsupervised learning__ correlation to covariance matrix_en.vtt 5.2 kB
  • 07 - Data normalizations and outliers/001 Garbage in, garbage out (GIGO)_en.vtt 5.1 kB
  • 06 - Descriptive statistics/020 Violin plots_en.srt 5.1 kB
  • 02 - Math prerequisites/002 Arithmetic and exponents_en.vtt 5.1 kB
  • 03 - IMPORTANT_ Download course materials/001 Download materials for the entire course__en.vtt 4.9 kB
  • 16 - Clustering and dimension-reduction/007 _Unsupervised learning__ dbscan vs. k-means_en.srt 4.5 kB
  • 06 - Descriptive statistics/010 _Unsupervised learning__ central tendencies with outliers_en.srt 4.4 kB
  • 06 - Descriptive statistics/020 Violin plots_en.vtt 4.4 kB
  • 02 - Math prerequisites/005 Absolute value_en.srt 4.3 kB
  • 02 - Math prerequisites/001 Should you memorize statistical formulas__en.srt 4.3 kB
  • 07 - Data normalizations and outliers/018 An outlier lecture on personal accountability_en.srt 4.2 kB
  • 10 - The t-test family/004 _Unsupervised learning__ The role of variance_en.srt 4.2 kB
  • 12 - Correlation/007 _Unsupervised learning__ average correlation matrices_en.srt 4.2 kB
  • 16 - Clustering and dimension-reduction/007 _Unsupervised learning__ dbscan vs. k-means_en.vtt 4.0 kB
  • 06 - Descriptive statistics/022 _Unsupervised learning__ asymmetric violin plots_en.srt 3.9 kB
  • 07 - Data normalizations and outliers/011 _Unsupervised learning__ z vs. modified-z_en.srt 3.9 kB
  • 08 - Probability theory/013 Monte Carlo sampling_en.srt 3.9 kB
  • 06 - Descriptive statistics/010 _Unsupervised learning__ central tendencies with outliers_en.vtt 3.9 kB
  • 05 - Visualizing data/005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.srt 3.8 kB
  • 01 - Introductions/25299297-stats-intro-GuessTheTest.zip 3.8 kB
  • 02 - Math prerequisites/001 Should you memorize statistical formulas__en.vtt 3.8 kB
  • 02 - Math prerequisites/005 Absolute value_en.vtt 3.8 kB
  • 07 - Data normalizations and outliers/018 An outlier lecture on personal accountability_en.vtt 3.7 kB
  • 19 - Bonus section/002 Bonus content.html 3.7 kB
  • 07 - Data normalizations and outliers/006 _Unsupervised learning__ Invert the min-max scaling_en.srt 3.7 kB
  • 10 - The t-test family/004 _Unsupervised learning__ The role of variance_en.vtt 3.7 kB
  • 12 - Correlation/007 _Unsupervised learning__ average correlation matrices_en.vtt 3.7 kB
  • 05 - Visualizing data/008 _Unsupervised learning__ Histogram proportion_en.srt 3.5 kB
  • 07 - Data normalizations and outliers/011 _Unsupervised learning__ z vs. modified-z_en.vtt 3.4 kB
  • 08 - Probability theory/013 Monte Carlo sampling_en.vtt 3.4 kB
  • 08 - Probability theory/011 _Unsupervised learning__ cdf's for various distributions_en.srt 3.4 kB
  • 12 - Correlation/016 _Unsupervised learning__ confidence interval on correlation_en.srt 3.4 kB
  • 06 - Descriptive statistics/022 _Unsupervised learning__ asymmetric violin plots_en.vtt 3.4 kB
  • 12 - Correlation/019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.srt 3.4 kB
  • 05 - Visualizing data/005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.vtt 3.3 kB
  • 08 - Probability theory/024 _Unsupervised learning__ Averaging pairs of numbers_en.srt 3.3 kB
  • 07 - Data normalizations and outliers/006 _Unsupervised learning__ Invert the min-max scaling_en.vtt 3.2 kB
  • 08 - Probability theory/006 _Unsupervised learning__ probabilities of odds-space_en.srt 3.2 kB
  • 01 - Introductions/005 (optional) Entering time-stamped notes in the Udemy video player_en.srt 3.2 kB
  • 06 - Descriptive statistics/005 _Unsupervised learning__ histograms of distributions_en.srt 3.1 kB
  • 05 - Visualizing data/008 _Unsupervised learning__ Histogram proportion_en.vtt 3.0 kB
  • 12 - Correlation/019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.vtt 3.0 kB
  • 08 - Probability theory/011 _Unsupervised learning__ cdf's for various distributions_en.vtt 3.0 kB
  • 12 - Correlation/016 _Unsupervised learning__ confidence interval on correlation_en.vtt 3.0 kB
  • 08 - Probability theory/006 _Unsupervised learning__ probabilities of odds-space_en.vtt 2.8 kB
  • 08 - Probability theory/024 _Unsupervised learning__ Averaging pairs of numbers_en.vtt 2.8 kB
  • 14 - Regression/016 _Unsupervised learning__ Overfit data_en.srt 2.8 kB
  • 01 - Introductions/005 (optional) Entering time-stamped notes in the Udemy video player_en.vtt 2.7 kB
  • 06 - Descriptive statistics/005 _Unsupervised learning__ histograms of distributions_en.vtt 2.7 kB
  • 09 - Hypothesis testing/006 Degrees of freedom_en.srt 2.7 kB
  • 16 - Clustering and dimension-reduction/003 _Unsupervised learning__ K-means and normalization_en.srt 2.5 kB
  • 05 - Visualizing data/014 _Unsupervised learning__ log-scaled plots_en.srt 2.5 kB
  • 14 - Regression/016 _Unsupervised learning__ Overfit data_en.vtt 2.4 kB
  • 17 - Signal detection theory/009 _Unsupervised learning__ Make this plot look nicer__en.srt 2.4 kB
  • 04 - What are (is_) data_/001 Is _data_ singular or plural________en.srt 2.4 kB
  • 16 - Clustering and dimension-reduction/012 _Unsupervised learning__ K-means on PC data_en.srt 2.3 kB
  • 16 - Clustering and dimension-reduction/003 _Unsupervised learning__ K-means and normalization_en.vtt 2.2 kB
  • 05 - Visualizing data/014 _Unsupervised learning__ log-scaled plots_en.vtt 2.2 kB
  • 17 - Signal detection theory/009 _Unsupervised learning__ Make this plot look nicer__en.vtt 2.1 kB
  • 04 - What are (is_) data_/001 Is _data_ singular or plural________en.vtt 2.1 kB
  • 06 - Descriptive statistics/025 _Unsupervised learning__ entropy and number of bins_en.srt 2.1 kB
  • 16 - Clustering and dimension-reduction/004 _Unsupervised learning__ K-means on a Gauss blur_en.srt 2.0 kB
  • 16 - Clustering and dimension-reduction/012 _Unsupervised learning__ K-means on PC data_en.vtt 2.0 kB
  • 11 - Confidence intervals on parameters/006 _Unsupervised learning__ Confidence intervals for variance_en.srt 1.9 kB
  • 12 - Correlation/015 _Unsupervised learning__ Spearman correlation_en.srt 1.9 kB
  • 06 - Descriptive statistics/025 _Unsupervised learning__ entropy and number of bins_en.vtt 1.8 kB
  • 16 - Clustering and dimension-reduction/004 _Unsupervised learning__ K-means on a Gauss blur_en.vtt 1.8 kB
  • 11 - Confidence intervals on parameters/006 _Unsupervised learning__ Confidence intervals for variance_en.vtt 1.7 kB
  • 12 - Correlation/015 _Unsupervised learning__ Spearman correlation_en.vtt 1.7 kB
  • 14 - Regression/006 _Unsupervised learning__ Compute R2 and F_en.srt 1.5 kB
  • 14 - Regression/006 _Unsupervised learning__ Compute R2 and F_en.vtt 1.3 kB
  • 14 - Regression/012 _Unsupervised learning__ Polynomial design matrix_en.srt 1.1 kB
  • 14 - Regression/012 _Unsupervised learning__ Polynomial design matrix_en.vtt 1.0 kB
  • 19 - Bonus section/001 About deep learning.html 619 Bytes
  • 18 - A real-world data journey/001 Note about the code for this section.html 135 Bytes
  • 01 - Introductions/[Tutorialsplanet.NET].url 128 Bytes
  • 12 - Correlation/[Tutorialsplanet.NET].url 128 Bytes
  • 19 - Bonus section/[Tutorialsplanet.NET].url 128 Bytes
  • [Tutorialsplanet.NET].url 128 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!